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Abstract: Recommender systems have become necessary in all e-businesses, social networks, streaming services, and other digital 

environments. These systems use user interaction data, including browsing history, purchasing behaviors and content preferences, 

to provide recommended results, thereby improving users’ experience. However, collecting, storing, and processing sensitive 

personal data are associated with certain privacy impacts. Data breaches, engagement of cybercriminals, and growing concern for 

protecting personal data rights have brought forth important issues like profiling without consent & misuse, violation of rights, 

and non-adherence to regulative policies. To rectify these problems, Privacy-Enhancing Technologies or PETs have been 

considered important to avoid compromising privacy in personalization. This paper investigates the applicability of some of the 

leading PETs, like differential privacy, federated learning, homomorphic encryption, and SMC, in the structure and functionality 

of personalized recommender engines in an organized manner. It is mainly a design approach that incorporates privacy into the 

steps in the recommendation process without raw data aggregation. Thus, in our experiments on benchmark datasets, PETs take 
only about 2-5% in recommendation performance but significantly reduce privacy loss and improve the user’s sense of privacy 

protection. Furthermore, such technologies enable adapting data security and protection standards, including GDPR and CCPA, 

to reach ethical and sustainable large-scale personalization. 
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1. Introduction 
1.1 The Evolution of Personalized Recommender Systems 

In the context of the digital economy, no product can perform without using recommender systems for user engagement, 

satisfaction, and sales increases. These systems consider a range of data relative to the user, including browsing histories, purchase 

history, social networking activities,  content consumption time, etc., to stake and recommend content items, services or info most 

relevant to the user. Some examples are the product that Amazon suggests for a customer to buy, movies that Netflix recommends 

for someone to watch, or a playlist that Spotify comes up with for a user to listen to. [1-3] The strength of such strategies in 

personalization is based on getting a shorter list of contents and a more relevant user experience. However this has its disadvantage 

where users must compromise their personal information with the service providers. Collecting and storing this PII at a central 

location means a user is at risk of invasion of his/her privacy and may be profiled, or the information could be used for things the 

user never intended by parties that access the central location. 
 

1.2 Risks and Vulnerabilities in Centralized Data Collection 

With the growth of the digital community, the audience becomes supervised by the kind of data they provide and how it is 

processed and used for commercial purposes. In recent years, there is a precedent of such a dangerous application of personal data 

problems, for example, the Facebook - Cambridge Analytica case, which became a reason for trust in companies and organizations 

that have applied such data; reputational losses, as well as for stringent actions by various regulators. Large centers of user data 

where the information of millions of people is collected and accumulated in one place are becoming tempting targets for hackers 

and insiders. Furthermore, there are other changes in today’s laws, particularly due to the data protection regulation for EU citizens 

and residents in the EU territory, known as GDPR and the CCPA regulation. These laws focus on data minimization, purpose 

limitation, and the user’s right to consent, which makes traditional data-greedy recommender models dangerous. Therefore, the 

provision of personalization while addressing the privacy threat is a technical and moral issue. 
 

1.3 Driving the Adoption of Privacy-Enhancing Technologies (PETs) 

As these concerns continued to grow, new solutions like Privacy-Enhancing Technologies (PETs) have been seen as 

useful ways of reclaiming the effectiveness of recommender systems to restore users’ privacy. These include cryptographic, 

statistical, and machine learning concepts such as federated learning, Differential Privacy, Homomorphic Encryption, and Secure 

Multiparty Computation, which makes data usage feasible without transmission of the raw individual data. As a result, by replacing 
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centralized solutions with decentralized or privacy-preserving ones, PETs can achieve high-quality recommendations, fulfilling 

regulatory obligations and strengthening users’ trust. This work is motivated by the research on how such PETs can be applied to 

ER models, the assessment of the costs and benefits of doing that, as well as identifiable strategies for managing the set of 

technical, computational, and operational challenges that arise in its practical implementation in customized recommender engines. 

This paper brings a modest addition to the literature that intends to support digital personalization to be sustainable, safe, and 
compliant with autonomy and data dignity. 

 

2. Literature Survey 
The incorporation of PET into personalization in recommender systems has attracted robust interest in the last decade. 

Several key papers have preliminarily assessed how privacy-preserving techniques can be applied with little to no significant 

impact on recommendation quality. Table 1 presents the major findings of various studies in this research area. 

Table 1: Summary of Important Studies on Privacy-Enhancing Technologies in Recommender Systems 

Study PET Used Model Dataset Key Findings 

McMahan et al. 

(2017) 
Federated Learning CNN 

Google 

Keyboard 

Preserved user privacy with <3% accuracy 

loss. 

Dwork et al. 

(2006) 
Differential Privacy SVM Netflix Prize 

Added noise maintained privacy with 

minimal utility loss. 

Aono et al. (2017) 
Homomorphic 

Encryption 

Matrix 

Factorization 
MovieLens 

Achieved privacy-preserving collaborative 

filtering. 

Bonawitz et al. 

(2019) 
Secure Aggregation Deep Learning Google Pixel 

Enhanced user data protection with 

scalability. 

 

2.1 McMahan et al. (2017): Federated Learning in Mobile Applications 
McMahan et al., meanwhile, proposed Federated Learning (FL), which allows various data to be trained on multiple 

devices while they are not directly sent to a central server [4]. This made them perform experiments with the keyboard input 

prediction tool - Gboard, to show that FL could offer a comparable model performance to the standard centralized model, within a 

3% drop in accuracy. Relatedly, user data was retained locally, less invasive to the user's privacy. This foundational research thus 

laid the ground for leveraging FL as a platform for private ML in mobile and personalized services. 

 

2.2 Dwork et al. (2006): Differential Privacy for Secure Statistical Analysis 

Differential Privacy (DP) was defined mathematically by Cynthia Dwork, meaning that alteration of data will not lead to 

any significant change in the result of an analysis [5]. In its application to the Netflix Prize dataset, DP techniques applied random 

noise to private computations in a way relevant to recommender models while keeping the user profiles safe against reverse 

engineering. The discussions by Dwork can be said to have introduced inherently essential techniques in reconstructing GDPR- or 

CCPA-compliant systems. 
 

2.3 Aono et al. (2017): Homomorphic Encryption for Collaborative Filtering 

Specifically, Aono et al. have examined concrete views of the homomorphic encryption techniques applied to the 

architecture of collaborative filtering models, such as matrix factorization techniques based on the MovieLens database [6]. The 

two provided a way for encrypted user-item interaction to be handled and passed through models without needing to be decrypted 

for training or usage. Though HE adds considerable computation complexity, the study showed that encrypted CF is implementable 

for privacy-sensitive recommendation application domains where users' trust relationships with their service providers are 

insignificant. 

 

2.4 Bonawitz et al. (2019): Secure Aggregation at Scale 

In the context of FL, Bonawitz et al. provided an improvement to this issue proposing a scalable Secure Aggregation 
protocol [7]. Similarly, secure aggregation enabled hundreds of thousands of users of Google Pixel devices to contribute encrypted 

model updates to the server. In contrast, only the aggregate of all updates could be learned rather than the specifics. This technique 

showed how privacy could be enhanced while achieving the goal of scaling up recommender systems for deployment and creating 

the prospect of privacy-preserving recommender systems in various business environments. 

 

These studies show that PETs can be incorporated into recommender systems at a theoretical level, and the solutions are 

feasible at a practical level. The discussed techniques have different levels of privacy protection that imply tradeoffs with 

computational complexity and the model's performance. Thus, choosing an appropriate method based on the application domain 

and risk assessment is crucial. 
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3. Methodology 
3.1 System Architecture Overview 

To start incorporating PETs into recommender systems for use in personalized environments [8-12], we suggest several 

proposed architecture components of such a generic PET. 

Fig 1. System Architecture Overview  

 Local User Devices: Traditional conveyance instruments, for example, smart devices, tablets or a PC as local training 

stations. The data of the users always resides on the user’s device. These devices use FL to carry out model updates and 

train local copies of the same model without transmitting the raw data to a central server. 

 Privacy Module: A privacy module comes before the final model updates are sent from the devices to the aggregator. 

This module incorporates privacy regulation techniques like Differential Privacy (DP: Addition of controlled noise to 

updates) or Homomorphic Encryption (HE: Secretive of model parameters). 

 Central Aggregator: Such a central only collects the received model updates but does not have access to raw data or 

unencrypted parameters. Secure Multiparty Computation (SMPC) or Secure Aggregation schemes help ensure that only 
the computed sum is available and no other information of a single user is unveiled. 

 Recommendation Engine: Thus, with the introduction of the new and updated text related to the global model, it is 

possible to receive more specific user recommendations. Notably, the optimality condition of the entire feedback loop is 

to ensure that raw data is least exposed at every point. 

 

3.2 Techniques Implemented 

In our implementation, there are four types of privacy preservation methods integrated into the recommended engine system: 

 Federated Learning (FL): Facilitility training where the model picks data locally on the user's devices. That is to say, 

only the model updates but not the user data clear text are sent to the server. It also minimizes the potential threat to a 

client’s privacy resulting from data storage in a central location. 

 Differential Privacy (DP): The noise is added to the updates before passing it to the server to prevent the server from 
gaining excess information about a specific user. It is significant to note that DP guarantees that the findings from the 

model transcend to the other parts of the population while not disclosing information about the individual participants. 

 Homomorphic Encryption (HE): Can work on encrypted data straightforwardly, thus ensuring that security and privacy 

are maintained. Parameters and model updates are encrypted at users and then in encrypted form are processed at the 

aggregator and again in decrypted form only after reaching the aggregator securely. 

 Secure Multiparty Computation (SMPC): Distributes the computation process across multiple non-colluding parties. In 

the construction of the model, each party receives only a partial fragment of data and another party's data is encrypted so 

that no one party retains the full detail of the user data during the process of model aggregation. 

Table 2: Privacy Techniques and Their Key Characteristics 

Technique 
Security 

Strength 

Computational 

Overhead 
Use-case Suitability 

Federated Learning (FL) High Low to Medium Mobile apps, real-time typing predictions 

Differential Privacy (DP) Medium to High Low 
Large-scale databases, recommender 

systems 

Homomorphic Encryption (HE) Very High High Financial services, healthcare data 

Secure Multiparty Computation 

(SMPC) 
Very High Very High Cross-organizational data collaboration 

 

Local User Devices

Privacy Module

Central Aggregator

Recommendation Engine
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3.3 Experimental Setup 

3.3.1 Dataset 

We employed the MovieLens 1M Dataset, a commonly employed benchmark dataset, to measure the effectiveness of 

recommender systems. [13-5] The dataset has about 1 million ratings of 6,000 users over 4,000 movies with ample scale for 

measuring performance and privacy considerations. 
 

3.3.2 Evaluation Metrics 

To exhaustively assess trade-offs in terms of privacy vs. recommendation quality, we borrowed the following metrics from related 

literature: 

 Precision@10: Metrics the proportion of salient items of the top 10 recommendations for each user. 

 Recall@10: Measures the proportion of all items among the top 10 suggestions. 

 Root Mean Square Error (RMSE): Measures the discrepancy between predicted and real ratings, indicating how accurate 

predictions are. 

 

3.3.3 Baseline Comparison 

We have contrasted our privacy-preserving models with a benchmark Matrix Factorization model without PETs. This 
baseline is a regular recommender engine with complete centralized knowledge of all user information. 

 

3.3.4 Hardware and Environment 

All experiments were performed on: 

 Hardware: NVIDIA RTX 3090 GPU, 64 GB DDR4 RAM, Intel Xeon 3.2GHz processor 

 Software Environment: Python 3.10, TensorFlow Federated (for FL), PySyft (for SMPC and HE), and OpenDP (for DP). 

The experiment was run in a controlled environment to keep the computation time, model convergence, and performance metrics 

consistently captured and comparable between various privacy configurations. 

 

3.4 System Architecture Description 

The architecture of a Privacy-Enhancing Recommender Engine is depicted in Figure 2. It consists of four significant 

interlinked modules: Local User Devices, Privacy Module, Central Aggregator, and the Recommendation Engine. Each module has 
a certain function to serve to provide both effective recommendation generation and user data protection. 

 

3.4.1 Local User Devices (Federated Learning) 

The process begins at the local user devices. Every device, for example, smartphones or desktop computers, trains a model 

locally on its private user data. This decentralized training under Federated Learning (FL) principles means that raw user data 

never actually leaves the device. Rather than uploading sensitive data, only local model updates (like gradients or parameter 

changes) are sent. As illustrated in the figure, local training is performed by several user devices independently and produces 

updates that are securely transferred to the subsequent module. 

 

3.4.2 Privacy Module (Differential Privacy and Homomorphic Encryption) 

The local updates are fed through the Privacy Module before aggregation, which consists of two primary privacy-
enhancing layers. First, the Differential Privacy (DP) Layer applies statistically calibrated noise to the local model updates, making 

personal user contributions unidentifiable. Then, the Homomorphic Encryption (HE) Layer encrypts the noisy updates, executing 

computations directly on encrypted data without decryption. This two-layer privacy scheme significantly enhances data 

confidentiality so neither the aggregator nor any outside attacker can obtain the original user data from the communicated updates. 

 

3.4.3 Central Aggregator (Secure Aggregation) 

The Central Aggregator gets the privacy-protected and encrypted updates from all devices involved. The Central 

Aggregator employs secure aggregation protocols to merge these encrypted model updates to arrive at a global model update 

without getting access to any single device's raw data. This procedure ensures that even in case of compromise of the aggregator, 

an individual user's data stays safe and is not decipherable. The aggregated model is, therefore, a privacy-reserved amalgamation of 

knowledge acquired on all devices. 
 

3.4.4 Recommendation Engine (Model Update and Deployment) 

Lastly, the Recommendation Engine is provided with the aggregated model by the central aggregator. This engine is used 

to update, optimize, and refine the recommendation models using securely aggregated knowledge. The new models are deployed 

back to the local user devices, enhancing personalization while ensuring strict privacy guarantees. The new models allow devices 

to offer improved recommendations during future user interactions without re-exposing sensitive personal information. 
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Fig 2. System Architecture Description 
 

3.5 Discussion on Architectural Advantages 

The architecture of the proposed solution successfully decentralizes data processing and offers multi-layered protection 

against privacy threats. Through a synergistic use of Federated Learning, Differential Privacy, and Homomorphic Encryption, the 

system keeps privacy threats at a minimum during each transmission and computation phase. The layer-based privacy ensures 

conformity with data protection laws (such as GDPR and CCPA), increases users' trust, and provides an acceptable rate of 
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recommendation accuracy. Additionally, this architecture is modular so that future additions are possible whereby new privacy 

technologies (e.g., Secure Multiparty Computation or Trusted Execution Environments) can be easily integrated. 

 

4. Personalized vs. Generic Recommendations: Conceptual Architecture 
The diagram above shows the central difference between generic and personalised recommendations, fueled by data from 

IoT services and user profiling. The system is programmed to infer, process, and provide recommendation results that are either 

generalizable to a large population of users or specific to a particular user's interests and behavioral context. 

 
Fig 3. Conceptual Flow of Personalized vs. Generic Recommendation 

 

4.1 Generic Recommendation Flow 
Topping the diagram is where the system gauges the trendy places using hit counts by visited locations by a large crowd 

of people. [16-20] It is a generalized suggestion, adequate when not much or no user-specific knowledge is recorded. The system is 

questioned using "Where to go?" from the user, and an averaged list of Top N recommendations on places to go is the return from 

previous patterns gathered among users in large numbers. The inference engine is instrumental in processing population-level data 

and finding universally applicable hotspots. 

 

4.2 Personalized Recommendation Flow 

Contrarily, the personalized recommendation flow starts with gathering user activities via IoT devices and services, e.g., 

smart TVs, smartphones, or smart homes. Such devices constantly record location history, transaction logs, and interaction habits, 

which are saved in a User Profile. The user profile contains personalized preferences and beliefs, which are input to the Inference 

Engine. The engine computes these preferences in the context of general trends and gives personalized outputs - i.e., Top N places 

to visit (fit my tastes). This maximizes user satisfaction by matching recommendations to their requirements. 
 

4.3 Key Takeaways from the Conceptual Flow 

 User behavior data is critical to personalization and is harvested through IoT-enabled services. 

 User profile building serves as a link between raw behavioral data and semantic user beliefs. 

 Generic models emphasize statistical popularity, whereas personalized models combine these with user preferences for 

contextual relevance. 

 The Inference Engine is at the center of both flows, but it receives different inputs: broad crowd data for generic 

recommendations and enriched profiles for personalized ones. 

This comparison of architecture underscores the significance of personalization mechanisms in contemporary recommendation 

systems while emphasizing how user trust and utility depend on the depth and safeguarding of accumulated personal data. 
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5. Results and Discussion 
5.1 Recommendation Accuracy 

To measure how Privacy-Enhancing Technologies (PETs) affect the performance of recommendations, we compared 

several model configurations utilizing Precision@10, Recall@10, and Root Mean Square Error (RMSE) values. The data are 

reported in Table 2. 

Table 3: Model Performance Metrics under Different Privacy Techniques 

Model Precision@10 Recall@10 RMSE 

Baseline 0.713 0.498 0.845 

Federated Learning (FL) 0.701 0.485 0.862 

FL + Differential Privacy (ε=1) 0.693 0.478 0.874 

FL + Homomorphic Encryption (HE) 0.690 0.475 0.877 

 

Fig 4. Graphical Model Performance Metrics under Different Privacy Techniques 

 

Without integrating any privacy-oblivious processes, the base model had the greatest Precision@10 of 0.713 and the greatest 

Recall@10 of 0.498, with RMSE equaling 0.845. While combining Federated Learning (FL) by itself, there was a minor 
degradation in recommendation quality, with Precision@10 falling to 0.701 and RMSE rising modestly to 0.862. Adding 

Differential Privacy (DP) on top of FL caused Precision@10 to fall even lower to 0.693 due mainly to the added intentional noise 

to the model updates in order to protect privacy. The FL + Homomorphic Encryption combination produced the worst 

Precision@10 of 0.690 and the highest RMSE of 0.877 amongst all tested models. Overall, the use of PETs makes for an estimated 

2.8% reduction in Precision@10. Yet, the slight performance concession must be countered against the noteworthy privacy 

benefits provided, especially regarding user data being completely decentralized and boosted privacy protection without delving 

into raw data. 

 

5.2 Privacy Gain 

Aside from recommendation accuracy, an important aspect of evaluation is enhancing privacy protection. To measure this, 

we used the Privacy Risk Score, a 0 to 1 scale where higher scores reflect higher vulnerability. The baseline system had a Privacy 
Risk Score of 0.62, reflecting a high risk of exposure to personal data under conventional centralized architectures. Utilizing 

Federated Learning lowered the score significantly to 0.19 since users' data was kept local on their devices. Adding Differential 

Privacy to FL lowered the risk score to 0.12, indicating the added layer of noise protection from individual re-identification. 

Applying Federated Learning with Homomorphic Encryption produced the best privacy outcomes, with a Privacy Risk Score of as 

low as 0.08. Such outcomes are illustrated in Figure 4, which graphs the trade-off between recommendation accuracy 

(Precision@10) and privacy (Risk Score). Though there is a minimal loss in precision between configurations, the loss in privacy 

risk is significant, demonstrating the success of PETs at protecting user information with slight compromises in recommendation 

quality. 

 

5.3 Computational Overhead 

Yet another reason to use PETs in recommender systems is computational cost. In our experiments, using Federated 

Learning caused a 1.3× training time increase over the baseline centralized model. This cost arises from performing many local 
training iterations and securely aggregating model updates instead of simply centralized optimization. When Differential Privacy 
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was added on top of Federated Learning, the computational overhead was infinitesimally small, merely 5% over and above the 

cost, as adding noise is computationally lightweight compared to training deep learning models. When Homomorphic Encryption 

was used with Federated Learning, the computational overhead became significantly more evident. Training time doubled, 

resulting in 2.1× the runtime compared to the baseline.  

 
This follows the shortcomings of Homomorphic Encryption, whereby huge resources must be allocated to conduct 

operations over encrypted values. A comparison of computation overhead across different methods is provided. The discussion 

points out that though Federated Learning and Differential Privacy bring in computationally manageable overheads suitable for  

most commercial deployments, Homomorphic Encryption integration requires serious consideration, especially in resource-limited 

settings. 

 

6. Conclusion 
PET adoption in recommender systems is a major step towards achieving the best of both worlds, P-RECS. The 

experimental study conducted on the MovieLens 1M dataset substantiates the claims of the PETs like federated learning, 

differential privacy, and homomorphic encryption implementation impact on the recommendation system with insignificant 

performance loss. Namely, the changes in accuracy varied across different privacy-preserving models while remaining below 5%, 

meaning that users can continue receiving accurate and valuable recommendations for private data. Also, the above-given PETs 

brought down the measured privacy risk by a percentage of about 80%.  

 

They increased the ability of the system to prevent adversary attacks on data privacy, which is essential in meeting the 

requirements of contemporary privacy regulations such as GDPR and CCPA. Besides the effectiveness of the recommendation 

quality, we identify that privacy-preserving models can still scale commercially viable in practice, especially when employing 

Federated Learning and Differential Privacy. The full Homomorphic Encryption computation mode has a big computational 
overhead. Hence, a fully encrypted scheme may not be suitable for certain applications with stringent time or spatial requirements. 

Overall, this research indicates that PETs are not only conceptual artefacts but technologies that can enhance the privacy protection 

offered by recommender systems while making efficiency gains. 

 

6.1 Future Work 

However, as highlighted in this study, there are several directions the research can take for the integration of PETs into 

recommender systems. One is the improvement of the overhead of Homomorphic Encryption schemes so that fully encrypted 

recommendation computations become efficient even on small devices such as smartphones and IoT systems. Further to this, future 

research directions include incorporating lightweight privacy-preserving approaches, for instance, integrating other forms of FL 

like Differential Privacy and Secure Aggregation or even higher efficiency than those used above. , as well as enable work on 

extending the validity of designed approaches to the given problem beyond the NLTK to other actual and frequently explored 

domains like social media activity, purchase histories, and multimedia consumption. 
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