
International Journal of Emerging Trends in Computer Science and Information Technology

ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.IJETCSIT-V6I2P107

Eureka Vision Publication | Volume 6, Issue 2, 56-62, 2025

Original Article

Designing High-Throughput Data Pipelines: A Performance-

Centric Architectural Framework for Low-Latency Analytics in

Distributed Cloud Environments

Beverly DSouza1, Hitesh Jodhavat2, Supreeth Meka3
1Data Engineer, Patreon

2Senior Engineering Architect at Oracle
3Consultant at Dell Technologies.

Received On: 27/02/2025 Revised On: 12/03/2025 Accepted On: 06/04/2025 Published On: 28/04/2025

Abstract: These days, using analytics in real-time with big

datasets is vital to the design of smart systems and methods

for making decisions. This work aims to provide a framework

for efficient analytical processing, focusing on minimizing

latency in distributed cloud environments. Because the

amount of data produced by IoT devices, social media,

transactional systems, and sensor networks is constantly

rising, a capable and scalable system is needed to quickly

handle and review this data. According to this research,

existing data pipeline systems struggle with data ingestion
delays, restricted use of different processors, slow database

connections, and inability to use resources well. To solve

these problems, we present a new architectural model that

uses micro batching, asynchronous functioning, edge

computing, and smart load distribution. The methodology

has five layers to accomplish this, starting with data intake,

processing streaming events, storage, and real-time data

analytics. It is scalable and fault-tolerant with containers

deployed using Kubernetes. Comparisons are made between

traditional and new architectures on both real and simulated

data using AWS, Azure, and GCP cloud services. Assessing a

performance means looking at how fast the system works, its
response time, how it uses resources, and how much it costs.

The experiments show that the framework can reduce total

latency by 45% and increase data throughput by 60% when

measured against typical systems. This document features a

thorough review of current literature, a well-structured

design of the system, suggestions for building it, a look at

how it performs, and directions for future research.

Integrating Apache Kafka, Apache Flink, and TensorFlow

Extended, the proposed framework allows businesses to

build fast and agile data analytics platforms in the cloud.

Keywords: High-throughput, Data pipeline, Cloud

computing, Low-latency, Stream processing, Microservices,

Kubernetes, Apache Kafka.

1. Introduction
1.1. Background and Motivation

Due to a large number of devices and sensor

connections, in addition to digital services, there has been a

rapid rise in the amount, speed, and type of data generated

daily. All sorts of devices today, from smartphones and smart

home gadgets to applications, create data that grows in

quantity and quality every minute. [1-4] There are great

benefits and serious issues for enterprises due to the vast

amounts of data available. On the other hand, enterprises can

use such data to see trends, improve their judgments,

improve customer service, and launch innovative offerings.

However, handling and reviewing such large and varied data

in a timely way is difficult these days. Standard batch
processing isn’t often enough to address how fast and, in

real-time, modern data flows. So, enterprises seek

frameworks that can quickly process and analyze data as it is

generated. This need grows out of the demand to act more

quickly in finance, healthcare, telecommunications, and

manufacturing since figuring out solutions later can cost

money or even put people in danger. Hence, this research

aims to create efficient, quick pipelines that can tolerate

faults, allowing organizations to analyze their data in real-

time and at a low price.

1.2. Importance of Designing High-Throughput Data

Pipelines

Organizations are creating massive amounts of data

thanks to IoT, social media, financial interactions, and

enterprise tools. Since lots of data keep coming, it is

important to have pipelines that quickly and dependably

handle this data disaster. Thanks to pipeline technology,

companies are able to do real-time analysis, so they can take

prompt actions, find abnormalities, and respond instantly to

events.

 Supporting Real-Time Decision Making: The

rapid entry and processing of data flows through
high-throughput data pipelines allow people to spot

trends as they unfold. This capacity matters a lot in

fraud detection in banking, dynamic pricing in e-

commerce, and predictive maintenance in

manufacturing because missing out on fast

processing could cost valuable chances or result in

expensive errors.

Beverly DSouza et al. / IJETCSIT, 6(2), 56-62, 2025

57

 Scalability and Flexibility: A strong, high-

throughput pipeline can keep operating at its best

when you increase data input. Because systems are

scalable, increased demand does not require

expensive changes, and the system can respond just

as well. Well-established data pipelines are designed
to move data fast, maintain accuracy and be able to

withstand problems. With data validation,

checkpointing, and multiple retrying, high-

throughput pipelines prevent inconsistencies and

data loss, allowing their outputs to be trusted.

 Enhancing Data Quality and Reliability: Many

current systems require multiple steps, such as

filtering, aggregation, enrichment, and inference

from machine learning within their data pipeline.

Such designs allow complex data to move easily

throughout the different stages, preventing what
might otherwise have been a bottleneck point.

 Enabling Complex Data Workflows: Creating

efficient data flow systems helps us get the most

value from data streams as they come in. Pipelines

allow companies to act fast to new trends, stay

ahead of the competition, and build reliable data

structures ready for any future changes.

Figure 1. Importance of Designing High-Throughput

Data Pipelines

1.3. Performance-Centric Architectural Framework for

Low-Latency Analytics

To respond to modern applications that rely on live data,

low-latency analytics require using a framework that

emphasizes performance in architecture. Every part of the

data pipeline, from gathering and handling to reviewing and

analyzing, is optimized using this framework to ensure no

delays and resources are used efficiently. [5,6] Making sure
that data is analyzed almost instantly, in milliseconds or

seconds, helps find fraud, control self-driving vehicles, give

real-time advice, and monitor business processes. Any

framework is built around an infrastructure that distributes

and scales to manage swiftly moving data streams. Apache

Kafka and Apache Flink are examples of this method,

providing dependable stateful stream processing that handles

a lot of data and does so quickly. Architects can lower the

workload by using asynchronous processing and micro-

batching and increase how efficiently data travels down the

pipeline. In addition, machine learning lets the system
quickly interpret any data as soon as it is gathered. Managers

should have both elasticities and fault tolerance since dealing

with changing demands and failures should not cause a drop

in performance. Because of its automated scaling, self-

healing, and resource optimization, Kubernetes can secure

dependable low latency no matter the demand. Efficient use

of resources is stressed, such as How to split CPU, memory,
and network so the costs are reduced without affecting the

system’s performance. Besides, the focus on performance

means this architecture includes thorough monitoring and

clever load balancing to act in advance against any decrease

in performance. Using all these ideas, the framework is able

to provide efficient and adaptable support for analyzing data

in real-time. All in all, allowing organizations to base their

decisions on data allows them to compete quickly and

improve how they do business in a fast-changing digital

world.

2. Literature Survey
2.1. Traditional Data Pipelines

Many companies’ data pipelines have been built on

Apache NiFi and Informatica, two examples of traditional

ETL tools. Because they are developed for batch use, these

systems work best in structured settings where waiting for

data is acceptable. But, they struggle to meet the needs of
real-time or quick-processing applications. [7-10] Because

they depend on a strict timetable, use disks for storage, and

need to transform data in complex ways, they cannot easily

meet the needs of real-time analytics or event-based

applications. A major challenge can be seen in use cases such

as fraud detection, recommendation systems, and dynamic

pricing.

2.2. Modern Stream Processing Engines

Many real-time data stream applications now benefit

from Apache Flink, Kafka Streams, and Apache Spark

Streaming, allowing fast, separated, and easily scalable
processing. Apache Flink and Kafka Streams can handle

event time and make sure data is processed only once, but

Kafka Streams does so by closely integrating with Kafka for

complete stream processing. The micro-batch approach of

Spark Streaming links both the batch and stream ways of

working. The improvements, however, mean that

organizations using Kubernetes in large-scale situations must

rely on more tools and spend extra effort on setup.

2.3. Cloud-Native Architectures

With microservices, containers, and Kubernetes, cloud-
native data systems are easier to scale and maintain. They let

users easily split up resources and isolate services, increasing

the system’s resilience and making deployment more

flexible. In particular, Kubernetes makes it possible to

manage containerized workloads through declarations and

automatic scaling, both necessary for elastic data pipelines.

Relying on microservices provides better ways to handle

different issues, which then supports faster development,

though it introduces challenges when managing and

monitoring links between services.

2.4. Research Gaps

Beverly DSouza et al. / IJETCSIT, 6(2), 56-62, 2025

58

Despite progress in better performance and faster

deployment, research gaps still exist in modern data

processing. Most frameworks are built to improve only one

latency or throughput, not both. This decision makes them

helpful in only one task, either at a high speed or volume. In

addition, integrating AI and ML tools for predictive analytics
is not well-developed yet. Although operations like TFX are

improving this area, launching a unified procedure for

continuous data processing, modeling, anomaly spotting, and

automated decision-making is still hard.

3. Methodology
3.1. System Architecture Overview

Figure 2. System Architecture Overview

The proposed system architecture is built to work with real-
time, scalable, and intelligent data using a modular and

cloud-based setup. [11-15] It has four core layers that

manage the data from when it enters the platform through

analytics.

 Data Ingestion Layer: The Data Ingestion Layer

handles huge amounts of information in real time

using Apache Kafka. This distributed, fault-tolerant

system can handle the flood of information entering

the system through devices in the Internet of

Things, user-based events, and various transactional

apps. It provides for trustworthy data passing,
separates publishers and subscribers, and enables

the system to scale thanks to partitions in topics.

 Processing Layer: Apache Flink, which is known

for fast, reliable, and distributed processing of

stream data, is the stream processing engine for the

Processing Layer. Using Flink, there is support for

event processing, windowing tasks, and quick real-

time data analysis. Because it supports both data

types, it is perfect for reacting to events and making

changes or improvements to data as it moves.

 Storage Layer: The layer is called Storage, and it
uses either Amazon S3 or a data lake to provide

persistent storage. Thanks to this layer, all data is

safely saved and used later in analytics, training

models, or auditing. Features such as evolving

schemas, easy indexing, and long-term economical

storage allow you to add BI tools or other

processing services whenever required.

 Analytics Layer: The Analytics Layer counts on

TensorFlow to run machine learning models

quickly, providing reliable insights and predictions

over the oncoming data. With this layer, online

inference is possible, allowing models to detect

abnormalities, offer options, or estimate what trends

may occur. Because it integrates with Flink,

TensorFlow Serving or TFX pipelines can

automatically and adaptively process data for
analytics.

3.2. Microservices and Kubernetes Deployment

The system uses containers so that each main site—

ingestion, processing, storage, and analytics—is built into its

microservice. With this design, services are separate, can be

launched by themselves, and maintained strategically. With

each service delivered in containers by Docker, the

architecture can now be run and tested in the same way

across all environments. After that, these containers are

controlled and managed by Kubernetes, the top choice for

container orchestration in modern cloud-native systems.
Kubernetes allows you to automatically deploy, scale up, or

scale down and manage applications that are contained in

containers. Errors are automatically fixed by restarting failed

ones and reassigning them to healthy server nodes. Having

more replicas makes the system both more reliable and

faster. Because of horizontal pod autoscaling, resources are

allocated and released automatically when a container

reaches limits based on runtime stats and specific application

metrics. Also, thanks to Kubernetes namespaces and Role-

Based Access Control (RBAC), running several tenants in

one Kubernetes cluster is safe and secure. Rather than using
containers to store sensitive data, ConfigMaps and Secrets

allow you to manage and keep credentials separate from

other container settings. All services are accessed within and

outside the cluster via Kubernetes Services and Ingress

Controllers, so they have controlled and supervised access to

their APIs and interfaces. With microservices, each

component can be modified, examined, and implemented

separately so the system is not interrupted. Flexibility helps

teams improve quickly, fix bugs, and introduce features more

easily. Also, Kubernetes includes Prometheus and Grafana,

which improve the observation of your application by

offering real-time visibility of metrics, logs, and status
checks. Turning the architecture into microservices on

Kubernetes results in more scalability, higher fault tolerance,

better security, and easier maintenance, which is perfect for

complex, real-time data processing.

3.3. Load Balancing and Fault Tolerance

The Istio service mesh and Prometheus strengthen load

balancing and reliable recovery after errors. With Istio,

microservices can share information without needing you to

modify the source code. It gives features that help manage

traffic better, such as guided routing, sharing traffic loads,
attempts to send again, and interrupting units if problems

occur. With these features, balancing which services receive

requests becomes much easier as you make updates, change

versions, or deal with service failures. [16-20] Because of

Istio, the best and available instances constantly receive the

network traffic, which cuts down on latency and raises the

reliability of the application. In addition to fault tolerance,

Istio applies timeout, retry, and auto-failover mechanisms to

Beverly DSouza et al. / IJETCSIT, 6(2), 56-62, 2025

59

support resilience. If there is an issue with the service, Istio

can redirect traffic to backup versions and keep the end user

unaffected. Furthermore, the service mesh facilitates mutual

TLS (mTLS) to ensure secure communication and service

identity verification, making the system more secure. All

system components, in addition to the running applications,
are monitored by using Prometheus. Using Envoy sidecars as

part of Istio, Prometheus can closely watch indicators,

including request rates, errors, and service latency. They’re

needed to run auto-scaling, set up alerts, and make

performance adjustments. Data collected can be represented

using Grafana dashboards to provide insight into how the

systems operate. When used together, Istio and Prometheus

ensure the environment can handle many tasks, anticipate

problems, and handle failures efficiently. As a result of this

design, systems stay up more, support continuous

deployment without disturbing users, and function well

under many visitors or system problems.

3.4. Flowchart Description

The data travels from being captured to processed in

stages and then presented on visual dashboards as usable

insights. All the stages in this flow support real-time use,

which can be scaled up or down and is highly extendable.

 Data Source: The first step in the pipeline is using

various sources for data, such as IoT devices,

mobile apps, systems for transactions, logs, or third-

party APIs. They generate plenty of data quickly,

which often arrives in random structures and must

be read at once. The system can handle a large

number of events by following standards for many

types of protocols and formats, allowing everything

to run smoothly and events to be captured in real-

time.

 Kafka: Afterward, the data is moved into Apache

Kafka, which publishes and receives messages in

real-time. By separating those who generate data

from those who use it, Kafka lets users manage data

flexibly and asynchronously. Because it is

dependable and has high throughput, cloud

computing is good for handling sudden increases in

people using the service. Kafka supports

categorizing and dividing data based on topics,

improving how parallel jobs and fault handling are

handled later.

 Flink Processor: The Apache Flink processor

inside Kafka gets the data, does real-time

analysis, and changes the set. The platform can

work with event-time data and multiple event

patterns and process information that needs to be

stored. It filters and improves data, gathers and

organizes it, and finds unusual events, preparing it

to be used quickly in other applications. The ability

to run on multiple machines means Flink handles a

large flow of data securely.

Figure 3. Flowchart Description

 Data Lake: After that, both data types are stored in

a Data Lake, like Amazon S3. With this system, the

company can store and access equal amounts of

structured, semi-structured, and unstructured data

over the long term. It allows for schema changes,

supports the study of historical data, and supports

using it with downstream systems for different types

of queries, ML training activities, and compliance

checks.

 ML Model: Data from the data lake are sent into a
Machine Learning (ML) model, which is generally

managed with platforms such as TensorFlow

Serving or TFX. They can make decisions on the fly

for prediction, classification, or recommendations.

With the ML layer, the process can respond to new

situations using past and present information.

 Dashboard: This data is then displayed in a

dashboard interface for users. It gives both decision-

makers and analysts quick insights, notifications,

and updates. Tools including Grafana and custom

web dashboards make data easy to understand and

work with, helping users make fast choices and

keep a constant eye on the system.

3.5. Performance Metrics

 Throughput (messages/sec): Throughput is the
measure of the rate at which the system handles

messages or data events byte by byte. It is essential

to analyze how the system can work with a lot of

data as things happen in real time. The ability to

scale high throughput means the pipeline works

well with fast data from financial transactions, IoT

sensors, or social media streams. By watching

Beverly DSouza et al. / IJETCSIT, 6(2), 56-62, 2025

60

throughput, we can recognize when something

needs to be changed and know what to change.

 Latency (ms): Latency means the gap between

when data is brought in and the moment results are

finalized or delivered. Real-time systems such as

fraud detection and automated recommendations
rely on low latency to ensure they respond and

provide high-quality results in a short period. All

these factors can be improved to handle latency

issues: data flow, processing schemes, and internal

communication over the network. Recording

latency helps guarantee the system doesn’t go

beyond its guaranteed Service-Level Agreements

(SLAs) and stays easy to use.

 CPU and Memory Utilization: Metrics on CPU

and memory keep track of the resources each

operating system part uses as it runs. Proper

management of resources supports stability and

gives control over costs in a system. If your CPU or

memory is using high amounts, it might indicate the

software is not using resources well, leaking

memory, or you need to increase resources. Regular

monitoring makes it possible to manage resources,
share tasks equally, and change the way jobs

process data to speed up performance.

Cost per Operation: Cost per operation looks at how much

it costs to complete each data or transaction transaction in the

system. This metric covers cloud computing prices, storing

information, moving data, and obtaining licenses.

Understanding cost efficiency is very important to maintain

the budget while growing the system. It also shapes decisions

about infrastructure, such as deploying software on your

servers or using remote cloud solutions, and how data is

handled for best results and affordable solutions.

Figure 4. Performance Metrics

4. Results and Discussion
4.1. Experimental Setup

A mix of robust and industry-standard technologies for

the experiment supports the essential processes of bringing in

data, handling it, storing it, and running analytics. Apache

Kafka is at the system's heart and manages all the message

transfers. Because it processes numerous events in real-time,

Kafka is well-suited for continuously taking data from many
sources, such as IoT devices, user behavior, or transaction

systems. The data can withstand problems and stay reliable

thanks to its distributed structure, especially for handling

events in big applications. Once the data is in Kafka, Apache

Flink immediately works on and consumes it. Traffic

delivered via data pipelines is processed by Flink with very

little delay. Having event-time handling, automatic

checkpointing, and state recovery makes the system reliable,

making real-time data analysis and monitoring easy. The raw

data and its processed version are stored in Amazon S3,

which is secure and highly scalable. Data from S3 is used as
the data lake since it offers inexpensive, reliable storage that

easily fits into processing and analyzing data workflows. The

data storage division supports saving and accessing data over

a long period for batch analysis, audit checks, and training

projects. Developers use TensorFlow as the analytics

component of the framework. Using TensorFlow, we can

serve pre-trained models to analyze streaming data, handle

classification, find anomalies, or perform forecasting. Putting
ML straight into data processing allows the system to reveal

usable insights in real time. All setup parts are run on a

Kubernetes cluster to ensure scalable, available, and easily

manageable services. Thanks to automation in Kubernetes,

deployment and balancing traffic and recovery can be

handled, protecting the same against failures and allowing it

to adapt to any workload changes. The latest technology

makes it easy for the system to analyze demanding data and

deliver quick results for today’s applications.

4.2. Performance Analysis

 Throughput: The new framework offers a 160%
higher throughput than the baseline traditional

system. Because of the 60% boost, the system can

manage higher numbers of messages at a steady

flow. Real-time access to important information

from large data streams requires a high rate of

throughput, which this software provides by using

both stream processing and distributed Kafka

messaging.

 Latency: The new system cuts latency by 45%

compared to the traditional system. Because lower

latency results in faster processing and faster
delivery of outcomes, it is crucial for fraud

detection, real-time monitoring, and decision-

Beverly DSouza et al. / IJETCSIT, 6(2), 56-62, 2025

61

making to happen automatically. Optimized data

pipelines and the joining of stream processing with

real-time ML inference led to this reduction, making

the system more responsive.

 CPU Usage: The new approach uses almost

81.25% of the CPU available to the traditional
system, leading to an 18.75% better computing

efficiency. The new architecture requires less CPU,

so it can handle tasks more efficiently by better

organizing resources and having better parallel

work. If your CPU is doing less, it gives your

system more stability, saves energy, and slows down

the deterioration of hardware, which helps keep

everything operating longer.

 Cost per Hour: According to the proposed model,

the system could save 17.14% in hourly cost since it

works for much less than the standard system. We
can now reduce costs because of better resource

management, flexible services, and improved

pipelines. The idea works well for businesses using

real-time data processing while watching their

budgets.

4.3. Discussion

The findings make it clear that using the suggested

framework greatly improves the system’s performance on

important metrics, making it a practical choice for critical

real-time situations. An increase of nearly two-thirds (60%)

in how much data the framework handles points to its
improved ability to quickly handle large volumes. Big data

analysts credit this improvement to Apache Kafka and

Apache Flink’s ability to work in parallel, dividing tasks

among different computing nodes and partitions. The system

is flexible and efficient thanks to cloud storage and machine

learning layers, so it stays stable even as data increases in

large-scale systems. Latency is also improved by 45%, as the

average drops from 120 milliseconds with normal

architecture to just 66 milliseconds in the new framework.

With this major decline, applications like anomaly detection,
fraud prevention, and personalized recommendations can

process data almost immediately. Optimized stream

processing, handling states well, and smooth ML model

inference pipelines are the reasons latency has improved. The

application helps to reduce CPU use by a large amount—

around 19%. By using resources better, containers are now

managed, loaded, and triggered with code more efficiently.

Suppose the usage of your CPU is reduced. In that case, your

system becomes more reliable, better able to handle different

workload amounts, and less likely to be saturated by

resources, enabling you to adjust for more demand. The final

important point is that using cloud-native tools and
automation helps lower operational costs by more than 17%.

With these cost reductions and improvements in throughput

and latency, the framework now appears to be an effective,

expandable, and technically strong solution. All in all, the

results confirm that this architecture meets the demands of

real-time data processing in many types of industries.

Table 1: Performance Analysis

Metric Improvement

Throughput 60%

Latency 45%

CPU Usage 18.75%

Cost per Hour 17.14%

Figure 5. Graph representing Performance Analysis

5. Conclusion
Results from the experiment suggest that the multi-stage

pipeline greatly enhances the solution's potential. When

working with data, using Kafka, Flink, and TensorFlow

provides fast, smooth movement from receiving data to

analysis and helps significantly increase productivity while

keeping wait times low. This way, micro-batching and

asynchronous processing help achieve a low response time

and more efficient use of system resources. The design

decisions make data processing faster by spreading the load

60%

45%

18.75% 17.14%

0%

10%

20%

30%

40%

50%

60%

70%

Throughput Latency CPU Usage Cost per Hour

Improvement

Beverly DSouza et al. / IJETCSIT, 6(2), 56-62, 2025

62

evenly and cutting down on delays, which is important for

applications where fast results influence good decisions and

results.

After the study, a number of suggestions are offered to

increase the pipeline’s success and adaption in the future. An
exciting option is to build edge computing capabilities that

can automatically carry out initial data processing near where

the data is collected. Such reductions allow less data to be

sent to the cloud, decreasing latency and saving bandwidth.

We also focus on using reinforcement learning algorithms for

flexible resource provision in response to how quickly

workloads change and what standards are needed for

performance. As a result, cost and efficiency would improve,

and the system would become more independent and

durable. In addition, projecting the benchmarking process

onto more diverse data sets and examples will reveal how

flexible and durable the framework is across various
domains. The enhancements will help architecture adjust to

new and more complex data situations, allowing for even

better, quicker, and more affordable analytics.

References
[1] Kreps, J., Narkhede, N., & Rao, J. (2011, June). Kafka:

A distributed messaging system for log processing. In

Proceedings of the NetDB (Vol. 11, No. 2011, pp. 1-7).

[2] Carbone, P., Katsifodimos, A., Ewen, S., Markl, V.,

Haridi, S., & Tzoumas, K. (2015). Apache Flink: Stream

and batch processing in a single engine. The Bulletin of

the Technical Committee on Data Engineering, 38(4).

[3] Zaharia, M., Das, T., Li, H., Shenker, S., & Stoica, I.

(2012). Discretized streams: an efficient and {Fault-

Tolerant} model for stream processing on large clusters.

In 4th USENIX Workshop on Hot Topics in Cloud

Computing (HotCloud 12).

[4] Akidau, T., Bradshaw, R., Chambers, C., Chernyak, S.,
Fernández-Moctezuma, R. J., Lax, R., ... & Whittle, S.

(2015). The dataflow model: a practical approach to

balancing correctness, latency, and cost in massive-

scale, unbounded, out-of-order data processing.

Proceedings of the VLDB Endowment, 8(12), 1792-

1803.

[5] Villamizar, M., Garces, O., Ochoa, L., Castro, H.,

Salamanca, L., Verano, M., ... & Lang, M. (2016, May).

Infrastructure cost comparison of web applications in the

cloud using AWS lambda and monolithic and

microservice architectures. In 2016, the 16th
IEEE/ACM International Symposium on cluster, cloud,

and grid computing (CCGrid) (pp. 179-182). IEEE.

[6] Burns, B., Grant, B., Oppenheimer, D., Brewer, E., &

Wilkes, J. (2016). Borg, Omega, and Kubernetes:

Lessons learned from three container-management

systems over a decade. Queue, 14(1), 70-93.

[7] Zaharia, M., Chen, A., Davidson, A., Ghodsi, A., Hong,

S. A., Konwinski, A. & Zumar, C. (2018). Accelerating

the machine learning lifecycle with MLflow. IEEE Data

Eng. Bull., 41(4), 39-45.

[8] Crankshaw, D., Wang, X., Zhou, G., Franklin, M. J.,

Gonzalez, J. E., & Stoica, I. (2017). Clipper: A {Low-
Latency} online prediction serving system. In 14th

USENIX Symposium on Networked Systems Design

and Implementation (NSDI 17) (pp. 613-627).

[9] Cole, J. M. (2020). A design-to-device pipeline for data-

driven materials discovery. Accounts of chemical

research, 53(3), 599-610.

[10] Choudhary, J., & Sudarsan, C. S. (2023). A
performance-centric ML-based multi-application

mapping technique for regular network-on-chip.

Memories-Materials, Devices, Circuits and Systems, 4,

100059.

[11] Mirmoeini, S. (2021). Karavan, ETL pipeline

management system based on Apache Spark (Doctoral

dissertation, ETSI_Informatica).

[12] Srivastava, R. (2021). Cloud Native Microservices with

Spring and Kubernetes: Design and Build Modern Cloud

Native Applications using Spring and Kubernetes

(English Edition). BPB Publications.

[13] Ugwueze, V. (2024). Cloud Native Application
Development: Best Practices and Challenges.

International Journal of Research Publication and

Reviews, 5, 2399-2412.

[14] Oyeniran, O. C., Adewusi, A. O., Adeleke, A. G.,

Akwawa, L. A., & Azubuko, C. F. (2024). Microservices

architecture in cloud-native applications: Design

patterns and scalability. International Journal of

Advanced Research and Interdisciplinary Scientific

Endeavours, 1(2), 92-106.

[15] Andreolini, M., Colajanni, M., & Pietri, M. (2012,

December). A scalable architecture for real-time
monitoring of large information systems. In 2012

Second Symposium on Network Cloud Computing and

Applications (pp. 143-150). IEEE.

[16] Vítor, G., Rito, P., Sargento, S., & Pinto, F. (2022). A

scalable smart city data platform approach: Support of

real-time processing and data sharing. Computer

Networks, 213, 109027.

[17] Vayghan, L. A., Saied, M. A., Toeroe, M., & Khendek, F.

(2018, July). Deploying microservice-based applications

with Kubernetes: Experiments and lessons learned. In

2018 IEEE 11th International Conference on Cloud

Computing (CLOUD) (pp. 970-973). IEEE.
[18] Rajavaram, H., Rajula, V., & Thangaraju, B. (2019,

July). Sundeck and Kubernetes make automation of

microservices application deployment easy. In 2019

IEEE International Conference on Electronics,

Computing and Communication Technologies

(CONNECT) (pp. 1-3). IEEE.

[19] Huang, K., & Jumde, P. (2020). Learn Kubernetes

Security: Securely orchestrate, scale, and manage your

microservices in Kubernetes deployments. Packt

Publishing Ltd.

[20] Mohammadian, V., Navimipour, N. J., Hosseinzadeh,
M., & Darwesh, A. (2021). Fault-tolerant load balancing

in cloud computing: A systematic literature review.

IEEE Access, 10, 12714-12731.

