

International Journal of Emerging Trends in Computer Science and Information Technology

 ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246/IJETCSIT-V6I1P104

Eureka Vision Publication | Volume 6, Issue 1, pp. 35-42, 2025

Original Article

Event-Driven Data Engineering in Microservices Architectures

Karthikeyan Muthusamy

Associate Professor and Head, Dept. of Computer Science, at Sengunthar Engineering College Erode, India.

Received On: 07/01/2025 Revised On: 20/01/2025 Accepted On: 23/01/2025 Published On: 24/01/2025

Abstract - Event-driven data engineering in microservices

architectures represents a transformative approach to building

responsive and scalable systems. This architecture leverages

events changes in state or updates to enable asynchronous

communication between decoupled services. By implementing

an event-driven architecture (EDA), organizations can achieve

real-time data processing, enhancing their ability to react to

changes as they occur. For instance, in a retail environment,

an event-driven system can instantly update inventory levels

and adjust marketing strategies based on sales transactions,

fostering agility and responsiveness. The core components of

EDA include event producers, which generate events; event

routers, responsible for distributing these events; and event

consumers, which process the events and execute necessary

actions. This decoupling allows for independent scaling and

deployment of services, significantly improving system

reliability and reducing latency. However, challenges such as

ensuring data consistency and managing event duplication

must be addressed. Solutions like event sourcing and

Command Query Responsibility Segregation (CQRS) can help

maintain consistency across services. As organizations

increasingly seek real-time insights, adopting event-driven

architectures is becoming essential for enhancing business

capabilities, enabling rapid decision-making, and fostering

innovation in a data-centric world.

Keywords - Event-Driven Architecture, Microservices, Real-

Time Data Processing, Asynchronous Communication, Event

Producers, Event Consumers, Data Consistency, Scalability.

1. Introduction
In the rapidly evolving landscape of software

development, microservices architectures have emerged as a

preferred approach for building scalable and maintainable

applications. This architectural style promotes the

decomposition of applications into smaller, independent

services that can be developed, deployed, and scaled

independently. One of the most significant advancements in

this domain is the adoption of event-driven data engineering.

This approach focuses on the production, detection,

consumption, and reaction to events changes in state that occur

within a system allowing for more responsive and dynamic

applications.

1.1. Importance of Event-Driven Architectures

Event-driven architectures (EDAs) facilitate

asynchronous communication between microservices, enabling

them to react to events in real-time. Unlike traditional request-

response models, where services depend on synchronous

interactions, EDA allows services to operate independently.

For instance, when a user places an order, an event is generated

that can trigger various downstream processes such as

inventory updates, payment processing, and shipment

notifications without requiring direct communication between

services. This decoupling not only enhances system resilience

but also improves scalability, as services can be scaled

independently based on their specific load requirements.

Moreover, EDAs support real-time data processing, which is

crucial for businesses aiming to leverage data-driven insights.

In industries like finance or e-commerce, the ability to process

and respond to events instantaneously can provide a

competitive edge. For example, fraud detection systems can

analyze transaction events in real-time to identify suspicious

activities and take immediate action.

1.2. Challenges and Considerations

While the benefits of event-driven data engineering are

substantial, there are challenges that organizations must

navigate. Ensuring data consistency across distributed services

can be complex due to the asynchronous nature of event

processing. Additionally, managing event duplication and

ensuring that events are processed exactly once are critical

considerations for maintaining system integrity. To address

these challenges, organizations can implement strategies such

as event sourcing and Command Query Responsibility

Segregation (CQRS). These approaches help maintain a clear

separation between read and write operations while ensuring

robust data management practices.

2. Event-Driven Data Engineering: Concepts and

Principles
2.1. Definition of Event-Driven Architectures (EDA)

Event-Driven Architecture (EDA) is a software design

paradigm that emphasizes the production, detection, and

reaction to events significant changes in state within a system.

In EDA, an event is defined as a notification that signifies a

change, such as an item being added to a shopping cart in an e-

commerce application or a sensor detecting a temperature

change in an IoT device. This architecture allows for

asynchronous communication between decoupled services,

enabling them to operate independently while still being able

to respond to events as they occur. The core components of

EDA include event producers, event routers, and event

consumers. Event producers generate events and publish them

to an event router or broker, which is responsible for filtering

and distributing these events to the appropriate consumers.

Karthikeyan Muthusamy / IJETCSIT, 6(1), 35-42, 2025

 36

This decoupling of producers and consumers allows for greater

flexibility and scalability, as services can be modified or scaled

independently without impacting other components of the

system. For instance, if a new consumer is added to process

specific types of events, it can be integrated without requiring

changes to the existing producers or other consumers. EDAs

are particularly beneficial in modern applications built on

microservices architectures.

They facilitate real-time data processing and enable

systems to react promptly to user actions or external triggers.

This responsiveness is crucial for applications that demand

immediate feedback, such as financial services, online gaming,

and real-time analytics platforms. By leveraging event-driven

principles, organizations can create systems that are not only

more efficient but also more resilient against failures due to

their ability to handle events asynchronously.

2.2. Role of Events in Microservices-Based Data Processing

In microservices architectures, events play a pivotal role

in facilitating data processing and communication among

independent services. Events serve as the primary means

through which microservices interact with one another,

allowing them to exchange information without being tightly

coupled. This loose coupling is essential for achieving the

agility and scalability that microservices promise. When an

event occurs such as a user completing a purchase an event

notification is generated that encapsulates relevant information

about the change in state.

This notification can include details like the items

purchased, transaction ID, and user information. The event

producer publishes this notification to an event broker or

message queue, where it can be consumed by one or more

event consumers that are interested in that specific type of

event. For example, in an e-commerce application, different

services may respond to the purchase event: one service may

update inventory levels, another may initiate payment

processing, and yet another may trigger shipment notifications.

Events also enable real-time data processing by

allowing services to react immediately as changes occur. This

capability is crucial for applications that require timely insights

or actions based on user interactions or system states. For

instance, in a financial trading application, market data events

must be processed in real-time to inform trading decisions and

maintain competitive advantage. Moreover, events contribute

to improved fault tolerance within microservices architectures.

By logging events in durable storage systems, organizations

can maintain an audit trail of actions taken within the system.

In case of failure or error, these logged events can be replayed

to restore the system to its previous state or correct

inconsistencies.

2.3. Data Consistency, Event Sourcing, and CQRS

(Command Query Responsibility Segregation

Data consistency poses significant challenges in distributed

systems like those built on microservices architectures. As

services operate independently and communicate through

asynchronous events, ensuring that all components reflect the

same state at any given time can be complex. To address these

challenges effectively, two key strategies event sourcing and

Command Query Responsibility Segregation (CQRS) are often

employed.

Event sourcing is a pattern where state changes are stored as a

sequence of events rather than just storing the current state

itself. Each event represents a change that has occurred within

the system (e.g., "Item X was added to cart"). By maintaining a

log of all these events, it becomes possible to reconstruct the

current state by replaying them in order. This approach not

only provides an audit trail but also allows for greater

flexibility in handling changes over time since past states can

be revisited or analyzed without needing complex migrations

or transformations.

On the other hand, CQRS separates the responsibilities

for reading data from those for writing data. In this model,

commands (which modify state) are distinct from queries

(which retrieve data). This separation allows each side to be

optimized independently; for instance, write operations can

focus on consistency while read operations can be optimized

for performance and scalability. CQRS works well with event

sourcing because it enables systems to react quickly to

commands by updating their state based on incoming events

while providing efficient read models tailored for various

consumer needs.

Together, event sourcing and CQRS enhance data

consistency by ensuring that all changes are captured as

discrete events and allowing different models for reading and

writing data based on specific use cases. These strategies

empower organizations to build robust microservices

architectures capable of maintaining consistency across

distributed components while facilitating real-time processing

and responsiveness.

3. Architectural Patterns for Event-Driven Data

Engineering
3.1. Message-Driven Microservices

Event-Driven Architecture (EDA) for Microservices, a

modern approach to handling data flow and communication

between loosely coupled services. In this model, services do

not communicate directly but instead rely on event-based

interactions to trigger operations asynchronously. This enables

greater scalability, resilience, and real-time data processing.

At the starting point, events are generated by an event

producer, which could be a microservice responsible for

tracking user actions, database changes, or any significant

system updates. These events are then placed into an event

queue, a crucial component that acts as a temporary storage

buffer. Message brokers like Apache Kafka, RabbitMQ, or

AWS SQS are commonly used for this purpose. The queue

ensures that events are not lost and can be processed in the

correct order, even if consumers are temporarily unavailable.

Karthikeyan Muthusamy / IJETCSIT, 6(1), 35-42, 2025

 37

Figure 1. Event-Driven Microservices Data Flow

An event mediator is positioned between the event

producer and consumers. This component ensures that events

are routed appropriately based on predefined rules. It could be

implemented using an event-driven framework like Kafka

Streams, Apache Flink, or Google Cloud Pub/Sub, which

enables advanced event processing, filtering, and

transformation before dispatching them to multiple consumers.

On the right side of the diagram, multiple event consumers are

shown. These microservices subscribe to the event channel and

process the received events independently. This allows

different services to react to the same event in different ways—

for example, one service might update a database, another

might trigger a notification, and yet another might start a

machine learning pipeline. This decoupling ensures that system

performance remains high and that failures in one service do

not directly impact others. Finally, the presence of Kubernetes

(represented by the Kubernetes logo) indicates that this

architecture is designed for containerized environments.

Kubernetes provides orchestration, auto-scaling, and fault

tolerance, making it easier to deploy and manage

microservices-based applications. The entire event-driven

system thus enhances agility, scalability, and real-time

responsiveness, making it ideal for modern cloud-native

applications.

3.2. Event Sourcing and Change Data Capture (CDC)

3.2.1. Capturing Database Changes as Events

Change Data Capture (CDC) is a technique that

identifies and captures changes in a database, such as inserts,

updates, and deletes, and replicates these changes in real-time

to other systems. In an event-driven architecture, CDC

transforms these database changes into events that can be

consumed by microservices. The process begins with a log-

mining component that monitors the database's transaction logs

for any modifications. Once a change is detected, it is

formatted as an event (e.g., "OrderCreated" or

"CustomerUpdated") and published to an event bus or

messaging system. This method of capturing changes ensures

that all microservices have access to the latest data without

tightly coupling them to the database. By treating database

changes as events, CDC allows for asynchronous

communication among services, enabling them to react to

changes in real-time. For instance, when a new order is placed,

the order service can publish an event that triggers inventory

updates and initiates payment processing across different

services without direct dependencies.

3.2.2. Benefits for Microservices Data Consistency

CDC provides significant benefits for maintaining data

consistency across microservices architectures. First, it

establishes a clear source of truth by externalizing the state of

the database into a stream of events. This allows each

microservice to subscribe to relevant events and update its own

state accordingly. As a result, even if services are distributed

across different locations or environments, they can remain

synchronized with the latest data. Moreover, CDC enhances

fault tolerance and resilience in microservices.

maintaining an event log of all changes, organizations

can recover from failures more effectively. If a service fails or

goes offline, it can replay the events from the log to restore its

state without losing any critical data. This capability is

particularly valuable in scenarios where real-time data

processing is essential.

3.3. Stream Processing and Real-Time Analytics

3.3.1. Tools for Stream Processing

Stream processing is essential for handling real-time

data flows in microservices architectures. Several powerful

tools facilitate this process, including Apache Flink, Kafka

Streams, and Spark Streaming. Apache Flink is known for its

ability to handle complex event processing with low latency

and high throughput. It supports stateful computations and

offers advanced features like event time processing and

Karthikeyan Muthusamy / IJETCSIT, 6(1), 35-42, 2025

 38

windowing operations. Kafka Streams, part of the Apache

Kafka ecosystem, provides a lightweight library for building

applications that process streams of data. It integrates

seamlessly with Kafka's messaging system, allowing

developers to build robust stream processing applications using

familiar Kafka concepts. Spark Streaming extends Apache

Spark's capabilities to handle real-time data streams. It allows

developers to process live data streams using Spark's powerful

batch processing capabilities, making it suitable for scenarios

where both batch and stream processing are required.

3.3.2. Use Cases and Benefits in Microservices

The integration of stream processing tools within

microservices architectures offers numerous benefits and use

cases. One prominent application is real-time analytics, where

businesses can gain immediate insights from data as it flows

through their systems. For example, e-commerce platforms can

analyze customer behavior in real-time to optimize marketing

strategies or adjust inventory levels dynamically based on

demand. Another significant use case is fraud detection in

financial services. By continuously monitoring transaction

streams using tools like Apache Flink or Kafka Streams,

organizations can identify suspicious activities instantaneously

and take action to mitigate risks. Stream processing also

enhances operational efficiency by enabling event-driven

workflows across microservices. For instance, when an event

occurs such as a user signing up for a service stream

processing can trigger automated workflows that update user

profiles, send welcome emails, and initiate onboarding

processes without manual intervention.

4. Data Engineering Challenges in Event-Driven

Microservices
4.1. Data Consistency and Eventual Consistency

4.1.1. Handling Distributed Transactions (SAGA Pattern)

In event-driven microservices architectures, maintaining

data consistency across distributed services is a significant

challenge, particularly when multiple services are involved in a

single business transaction. The SAGA pattern is a widely

adopted approach to manage distributed transactions by

breaking them down into a series of smaller, manageable

transactions. Each service involved in the SAGA performs its

local transaction and publishes an event to notify other services

of the outcome. There are two main types of SAGA

implementations: choreography and orchestration. In the

choreographed approach, each service knows the next step to

take based on the events it receives, allowing for a

decentralized flow of control.

Conversely, orchestration relies on a central coordinator

that directs the process, managing the sequence of service calls

and compensating actions if any transaction fails. For example,

consider an e-commerce application where placing an order

involves multiple services: inventory management, payment

processing, and shipping. When a user places an order, the

inventory service checks stock levels and reserves items. If

successful, it publishes an event to proceed with payment

processing. If payment fails, the SAGA pattern allows for a

compensating transaction to release the reserved inventory,

thus ensuring that all services maintain consistent states.

4.1.2. Eventual Consistency

In many microservices architectures, achieving

immediate consistency across all services is impractical due to

latency and network partitioning issues. Instead, these systems

often adopt eventual consistency, which accepts that temporary

inconsistencies may exist but guarantees that all services will

converge to a consistent state over time. This model allows

services to operate independently while asynchronously

propagating updates through events. To implement eventual

consistency effectively, developers must design their services

to handle scenarios where data may not be immediately

synchronized. This can involve utilizing patterns such as

Command Query Responsibility Segregation (CQRS) and

event sourcing, where state changes are logged as events that

can be replayed or processed later to achieve consistency.

4.2. Scalability and Performance Considerations

4.2.1. Optimizing Message Brokers and Event-Driven

Pipelines

Scalability is a crucial consideration in event-driven

microservices architectures due to the dynamic nature of

workloads and user interactions. As the number of events

generated by various services increases, optimizing message

brokers becomes essential for maintaining performance and

reliability. Message brokers like Apache Kafka, RabbitMQ, or

Amazon SNS act as intermediaries that facilitate

communication between producers (event publishers) and

consumers (event subscribers).

To optimize message brokers for scalability, organizations can

employ several strategies:

• Partitioning: By partitioning topics in message brokers like

Kafka, organizations can distribute event processing across

multiple consumers. Each partition can be processed

independently, allowing for parallelism that enhances

throughput.

• Load Balancing: Implementing load balancing among

consumers ensures that no single consumer becomes a

bottleneck. This can be achieved through consumer groups

in Kafka or round-robin distribution in RabbitMQ.

• Retention Policies: Setting appropriate retention policies

helps manage storage costs while ensuring that events are

available for processing when needed. Organizations should

balance between retaining enough historical data for

replaying events and managing storage efficiently.

• Monitoring and Scaling: Continuous monitoring of

message broker performance metrics (e.g., throughput,

latency) allows organizations to identify potential

bottlenecks early. Auto-scaling mechanisms can be

implemented to dynamically adjust resources based on

workload demands.

4.2.2. Use Cases and Benefits in Microservices

The benefits of optimizing scalability and performance

in event-driven architectures are significant. For instance, real-

Karthikeyan Muthusamy / IJETCSIT, 6(1), 35-42, 2025

 39

time analytics applications can process high volumes of

streaming data from various sources without sacrificing

performance or responsiveness. E-commerce platforms can

handle spikes in traffic during sales events by scaling their

microservices dynamically based on incoming orders.

Moreover, optimized event-driven pipelines enhance fault

tolerance by enabling services to process events independently.

If one service experiences downtime or fails to process an

event, other services can continue functioning without

disruption.

4.3. Schema Evolution and Data Versioning

4.3.1. Handling Changes in Event Schema Over Time

In event-driven microservices architectures, schema

evolution refers to the process of managing changes to the

structure of events over time without disrupting existing

services. As business requirements evolve, it is common for

event schemas to change, necessitating careful handling to

ensure compatibility between producers and consumers of

events. One effective approach to manage schema evolution is

to adopt backward compatibility principles. This means that

new versions of an event schema should accommodate older

versions, allowing consumers that rely on previous schemas to

continue functioning without modification. For instance, if a

new field is added to an event, it should be marked as optional

so that consumers not expecting this field can still process the

event without errors.

Various strategies can be employed for schema evolution,

including:

• Versioning Events: Each event can include a version

number indicating its schema version. This allows

consumers to process events according to their expected

version, enabling them to handle multiple versions of the

same event type concurrently.

• Schema Registries: Implementing a schema registry (e.g.,

Confluent Schema Registry) can help manage schema

versions and enforce compatibility rules. The registry can

validate changes against defined compatibility types (e.g.,

backward, forward, or full compatibility), ensuring that

producers and consumers remain aligned.

• Event Transformation: When an event schema changes,

it may be necessary to transform old events into the new

format during processing. This can be done using

transformation logic in the consumer that adapts old

events into a format compatible with the current business

logic.

• Decoupling Services: By designing services to be less

dependent on strict schemas, organizations can reduce the

impact of schema changes. This might involve using

generic data structures or employing techniques such as

event sourcing, where the state is derived from a sequence

of events rather than a fixed schema.

4.4. Observability and Debugging

4.4.1. Logging, Tracing, and Monitoring Event Flows

Observability is crucial in event-driven microservices

architectures due to the complexity introduced by

asynchronous communication between services. Effective

logging, tracing, and monitoring are essential for diagnosing

issues and ensuring system reliability. Logging involves

capturing detailed information about events as they are

produced and consumed across services. Each service should

log relevant information about incoming and outgoing events,

including timestamps, event types, and any associated

metadata. Structured logging formats (e.g., JSON) facilitate

easier parsing and analysis of logs by centralized logging

systems like ELK Stack (Elasticsearch, Logstash, Kibana) or

Splunk. Tracing provides insights into the flow of events

through various services in the architecture. Distributed tracing

tools like OpenTelemetry or Jaeger allow developers to track

individual requests as they propagate through different

microservices. By instrumenting services with tracing libraries,

organizations can visualize how events traverse the system and

identify bottlenecks or failures in real-time.

Monitoring involves continuously observing system

performance metrics related to event processing. Key

performance indicators (KPIs) such as event throughput,

latency, error rates, and consumer lag are critical for

maintaining system health. Tools like Prometheus and Grafana

can be employed to collect metrics from services and visualize

them in dashboards for real-time monitoring. Implementing

observability practices enables teams to quickly identify issues

arising from event processing delays or failures in downstream

services. For example, if a consumer service fails to process an

incoming event due to a schema mismatch or a transient error,

observability tools can help pinpoint the root cause and

facilitate rapid recovery.

5. Implementation Case Study: Event-Driven

Data Engineering in Microservices Architectures
5.1. Case Study: EDEKA Group

EDEKA Group, one of Germany's leading supermarket

chains, faced significant challenges with its traditional

infrastructure, which relied heavily on batch updates. This

approach resulted in siloed systems among its supply chain, in-

store operations, merchandise management applications, and

customer-facing platforms. To address these issues and

enhance operational efficiency, EDEKA decided to implement

an event-driven architecture (EDA).

5.2. Solution Implementation

EDEKA collaborated with a cloud consulting firm to

develop a comprehensive event-driven architecture that

dismantled legacy data silos. The new architecture utilized an

event mesh to enable real-time master data streaming across

the company's enterprise systems and touchpoints. Key

components of the solution included:

• Dynamic Event-Driven Data Exchange: EDEKA

replaced traditional batch updates with a dynamic event-

driven model, allowing for immediate data sharing across

all systems.

• Flexible Platform Adoption: The architecture supported

various protocols and environments, ensuring compatibility

Karthikeyan Muthusamy / IJETCSIT, 6(1), 35-42, 2025

 40

with existing technologies while allowing for future

scalability.

• Enhanced Data Visibility: By implementing real-time data

streaming, EDEKA gained better insights into system data

flows, improving decision-making processes.

The event-driven approach allowed EDEKA to create a more

responsive and integrated system where changes in inventory

or customer orders were immediately reflected across all

platforms. This capability not only improved customer

experience but also streamlined internal operations.

5.3. Benefits Realized

The implementation of EDA at EDEKA yielded several

significant benefits:

• Real-Time Omnichannel Experience: Customers

experienced instant updates regarding product availability

and promotions, enhancing their shopping experience.

• Simplified Integration: The new architecture reduced the

complexity of integrating various systems, making it easier

to add or remove services without disrupting existing

operations.

• Scalability: The event-driven model facilitated the addition

of new services and functionalities as needed without

impacting overall system performance.

6. Future Trends and Research Directions
As we look toward the future of event-driven data

engineering in microservices architectures, several key trends

and research directions are emerging that promise to shape the

landscape significantly. One of the most notable trends is the

increasing adoption of event-driven architectures (EDA),

which enable microservices to communicate asynchronously

through events. This shift allows organizations to enhance

scalability, responsiveness, and decoupling among services. As

industries such as e-commerce, banking, and IoT demand real-

time processing capabilities, the reliance on event-driven

models is expected to grow, facilitating immediate reactions to

user actions and system changes. Another critical trend is the

integration of artificial intelligence (AI) and machine learning

within microservices. These technologies are becoming

integral to enhancing the functionality and efficiency of

microservices-based applications. AI can automate various

processes, enabling predictive analytics and personalized user

experiences. For instance, AI-driven microservices can analyze

customer behavior in real-time to optimize recommendations

and improve service delivery. As organizations increasingly

leverage AI capabilities, research will focus on developing

more sophisticated algorithms that can operate effectively

within distributed microservices environments.

The rise of serverless computing is also transforming

how microservices are deployed and managed. By abstracting

infrastructure management, serverless frameworks allow

developers to focus on writing code without worrying about

underlying resources. This trend is particularly beneficial for

startups and organizations with fluctuating workloads, as it

enables rapid scaling and cost optimization. Future research

may explore the implications of serverless architectures on

event-driven systems, particularly in terms of performance

metrics and operational efficiencies. Lastly, as microservices

architectures evolve, observability and monitoring will become

increasingly crucial. With the complexity introduced by

asynchronous communication and distributed systems,

organizations will need robust strategies for logging, tracing,

and monitoring event flows. Research directions may include

developing advanced tools that provide deeper insights into

system performance and help identify bottlenecks or failures in

real-time. Enhanced observability practices will be essential for

maintaining system reliability and ensuring seamless operation

across diverse microservices.

7. Conclusion
In conclusion, event-driven data engineering in

microservices architectures represents a transformative

approach that empowers organizations to build responsive,

scalable, and resilient systems. By leveraging events as the

primary means of communication between decoupled services,

businesses can enhance their ability to react to real-time

changes and user interactions. This architectural style not only

facilitates better resource utilization and operational efficiency

but also enables organizations to innovate rapidly in response

to evolving market demands. However, the journey toward

implementing an effective event-driven architecture is not

without its challenges. Issues such as data consistency, schema

evolution, and observability require careful consideration and

strategic planning. As organizations continue to embrace

event-driven models, they must invest in robust solutions that

address these challenges while also exploring emerging trends

such as AI integration and serverless computing. By doing so,

they can harness the full potential of event-driven data

engineering, positioning themselves for success in an

increasingly data-driven world. Ultimately, the future of event-

driven microservices is bright, with ongoing advancements

promising to further enhance system capabilities and user

experiences. As organizations adopt these innovative

approaches, they will not only improve their operational agility

but also create new opportunities for growth and differentiation

in the marketplace.

References
[1] DS Stream. (n.d.). Microservices in data engineering: How

to break a monolith into smaller parts. Retrieved from

https://dsstream.com/microservices-in-data-engineering-

how-to-break-a-monolith-into-smaller-parts/

[2] Red Hat Developers. (n.d.). Event-driven architecture

overview. Retrieved from

https://developers.redhat.com/topics/event-driven

[3] Microservices.io. (n.d.). Event-driven architecture

patterns. Retrieved from

https://microservices.io/patterns/data/event-driven-

architecture.html

[4] XenonStack. (n.d.). Event-driven architecture in

microservices. Retrieved from

https://www.xenonstack.com/blog/event-driven-

architecture

https://www.xenonstack.com/blog/event-driven-architecture
https://www.xenonstack.com/blog/event-driven-architecture

Karthikeyan Muthusamy / IJETCSIT, 6(1), 35-42, 2025

 41

[5] Suman Chintala, "Harnessing AI and BI for Smart Cities:

Transforming Urban Life with Data Driven Solutions",

International Journal of Science and Research (IJSR),

Volume 13 Issue 9, September 2024, pp. 337-342,

https://www.ijsr.net/getabstract.php?paperid=SR24902235

715, DOI: https://www.doi.org/10.21275/SR24902235715

[6] Volt Active Data. (2022). What is event-driven

microservices architecture? Retrieved from

https://www.voltactivedata.com/blog/2022/10/what-is-

event-driven-microservices-architecture/

[7] Kashyap, V. (n.d.). Microservices architecture: Event-

driven data handling. LinkedIn. Retrieved from

https://www.linkedin.com/pulse/microservices-

architecture-event-driven-data-vaibhav-kashyap

[8] Suman Chintala, "Next - Gen BI: Leveraging AI for

Competitive Advantage", International Journal of Science

and Research (IJSR), Volume 13 Issue 7, July 2024, pp.

972-977,

https://www.ijsr.net/getabstract.php?paperid=SR24720093

619, DOI: https://www.doi.org/10.21275/SR24720093619

[9] Akamai. (n.d.). What is an event-driven microservices

architecture? Retrieved from

https://www.akamai.com/blog/edge/what-is-an-event-

driven-microservices-architecture

[10] AWS. (n.d.). Event-driven architecture on AWS.

Retrieved from https://aws.amazon.com/event-driven-

architecture/

[11] ScyllaDB. (n.d.). Event-driven architecture fundamentals.

Retrieved from https://www.scylladb.com/glossary/event-

driven-architecture/

[12] Suman Chintala, Vikramrajkumar Thiyagarajan, 2023.

"Harnessing AI for Transformative Business Intelligence

Strategies", ESP International Journal of Advancements in

Computational Technology (ESP-IJACT) Volume 1, Issue

3: 81-96.

[13] Solace. (n.d.). What is event-driven architecture?

Retrieved from https://solace.com/what-is-event-driven-

architecture/

[14] Birlasoft. (n.d.). Embracing event-driven architecture:

Core principles, patterns, and best practices. Retrieved

from https://www.birlasoft.com/articles/embracing-event-

driven-architecture-core-principles-patterns-and-best-

practices

[15] Confluent. (n.d.). Understanding event-driven architecture.

Retrieved from https://www.confluent.io/learn/event-

driven-architecture/

[16] Orkes. (n.d.). Change data capture (CDC) in event-driven

microservices. Retrieved from

https://orkes.io/blog/change-data-capture-cdc-in-event-

driven-microservices/

[17] Debezium. (2020). Event sourcing vs. change data capture

(CDC). Retrieved from

https://debezium.io/blog/2020/02/10/event-sourcing-vs-

cdc/

[18] Hevo Data. (n.d.). Kafka, Debezium, and event sourcing

setup. Retrieved from https://hevodata.com/learn/kafka-

debezium-event-sourcing-setup/

[19] Suman, Chintala (2024). Evolving BI Architectures:

Integrating Big Data for Smarter Decision-Making.

American Journal of Engineering, Mechanics and

Architecture, 2 (8). pp. 72-79. ISSN 2993-2637

[20] InfoQ. (n.d.). CDC and microservices: Challenges and

solutions. Retrieved from

https://www.infoq.com/presentations/cdc-microservices/

[21] Daily.dev. (n.d.). 10 methods to ensure data consistency in

microservices. Retrieved from https://daily.dev/blog/10-

methods-to-ensure-data-consistency-in-microservices

[22] SayOne Tech. (n.d.). Managing data consistency in

microservice architecture. Retrieved from

https://www.sayonetech.com/blog/managing-data-

consistency-microservice-architecture/

[23] GeeksforGeeks. (n.d.). Event-driven APIs in microservice

architectures. Retrieved from

https://www.geeksforgeeks.org/event-driven-apis-in-

microservice-architectures/

[24] Confluent. (n.d.). Schema evolution in microservices.

Retrieved from

https://docs.confluent.io/platform/current/schema-

registry/fundamentals/schema-evolution.html

[25] Akamai. (n.d.). Event-driven data management in

microservices. Retrieved from

https://www.akamai.com/blog/edge/what-is-an-event-

driven-microservices-architecture

[26] DZone. (n.d.). Event-driven microservices explained.

Retrieved from https://dzone.com/articles/event-driven-

microservices-1

[27] Nexocode. (n.d.). Event-driven architecture in logistics: A

case study. Retrieved from

https://nexocode.com/blog/posts/event-driven-

architecture-in-logistics-case-study/

[28] xCubelabs. (n.d.). The future of microservices architecture

and emerging trends. Retrieved from

https://www.xcubelabs.com/blog/the-future-of-

microservices-architecture-and-emerging-trends/

[29] Charter Global. (n.d.). Microservices trends and future

directions. Retrieved from

https://www.charterglobal.com/microservices-trends/

[30] Blazeclan. (n.d.). The trend of event-driven microservices

architecture. Retrieved from

https://blazeclan.com/india/blog/the-trend-of-event-driven-

microservices-architecture/

[31] Contentstack. The future of microservices: Software trends

in 2024. Retrieved from

https://www.contentstack.com/blog/composable/the-

future-of-microservices-software-trends-in-2024

[32] Optit. (n.d.). Microservices and their promising future in

software development. Retrieved from

https://optit.in/microservices-and-their-promising-future-

in-the-world-of-software-development/

[33] Nilesh Charankar, Dileep Kumar Pandiya, 2024,

“Enhancing Efficiency and Scalability in Microservices

Via Event Sourcing”, INTERNATIONAL JOURNAL OF

ENGINEERING RESEARCH & TECHNOLOGY

(IJERT) Volume 13, Issue 04 (April 2024).

https://www.ijsr.net/getabstract.php?paperid=SR24902235715
https://www.ijsr.net/getabstract.php?paperid=SR24902235715
https://www.doi.org/10.21275/SR24902235715
https://www.linkedin.com/pulse/microservices-architecture-event-driven-data-vaibhav-kashyap
https://www.linkedin.com/pulse/microservices-architecture-event-driven-data-vaibhav-kashyap
https://www.ijsr.net/getabstract.php?paperid=SR24720093619
https://www.ijsr.net/getabstract.php?paperid=SR24720093619
https://www.doi.org/10.21275/SR24720093619
https://www.scylladb.com/glossary/event-driven-architecture/
https://www.scylladb.com/glossary/event-driven-architecture/
https://hevodata.com/learn/kafka-debezium-event-sourcing-setup/
https://hevodata.com/learn/kafka-debezium-event-sourcing-setup/
https://optit.in/microservices-and-their-promising-future-in-the-world-of-software-development/
https://optit.in/microservices-and-their-promising-future-in-the-world-of-software-development/

Karthikeyan Muthusamy / IJETCSIT, 6(1), 35-42, 2025

 42

[34] Vikramrajkumar Thiyagarajan, 2024. “Predictive

Modeling for Revenue Forecasting in Oracle EPBCS: A

Machine Learning Perspective”, International Journal of

Innovative Research of science, Engineering and

technology (IJIRSET), Volume 13, Issue 4.

