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Abstract - This paper presents a comprehensive analysis 

of the migration from Kubernetes Ingress to the 

emerging Gateway API for traffic management in cloud-

native environments. While Kubernetes Ingress has 

served as a foundational component for exposing 

services, its limitations in managing complex, multi-

tenant, and highly dynamic microservices architectures 

have become increasingly apparent. The Kubernetes 

Gateway API, designed with a role-oriented, portable, 

expressive, and extensible model, offers a significant 

evolution by decoupling infrastructure and application 

concerns, providing richer routing capabilities, and 

enhancing role-based access control. This study details 

the motivations behind adopting the Gateway API, 

outlines a practical migration methodology, including 

architectural comparisons and the utility of tools like 

ingress2gateway, and discusses the challenges 

encountered. The observed improvements in operational 

clarity, routing flexibility, scalability, and security post-

migration position the Gateway API as a future-forward 

standard for robust and maintainable Kubernetes traffic 

control. 
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1. Introduction 
1.1. Background on Kubernetes and Cloud-Native 

Architectures 

Kubernetes (K8s) has solidified its position as the de 

facto standard for container orchestration, fundamentally 

transforming how applications are deployed, managed, 

and scaled within cloud-native paradigms [5]. This 

platform automates critical tasks such as the deployment, 

scaling, and operational management of containerized 

applications, thereby facilitating faster, more reliable 

software updates and supporting modern DevOps 

methodologies. The core functionality of Kubernetes is 

intricately linked to its robust networking model, which 

ensures seamless communication among containerized 

workloads and facilitates external access to the cluster 

[3]. 

 

The rapid adoption of Kubernetes and its 

instrumental role in enabling complex microservices 

architectures have significantly expanded the demands 

placed on its initial networking constructs. The foundational 

elements, including Services, Ingress, and DNS, were 

initially conceived to address a certain level of complexity. 

However, the escalating requirements of modern, distributed 

applications, particularly in multi-tenant or highly dynamic 

environments, have surpassed these original designs. This 

progression highlights a continuous imperative for 

Kubernetes' networking capabilities to evolve. The shift 

extends beyond merely introducing new features; it 

encompasses a fundamental re-architecture to support 

sophisticated traffic management, enhanced security, and 

granular policy enforcement, reflecting the increasing 

maturity and inherent complexity of contemporary cloud-

native deployments. 

 

1.2. Overview of Kubernetes Ingress as the Traditional 

Solution 
For an extended period, Kubernetes Ingress served as the 

primary solution for managing external HTTP(S) access to 

services within a Kubernetes cluster. It functioned as an 

intelligent Layer 7 reverse proxy, directing incoming traffic 

to internal services based on predefined rules such as 

hostnames or URL paths [8]. This approach centralized 

routing logic, which simplified initial traffic management 

and reduced the need for individual services to expose public 

IP addresses, thereby mitigating potential security risks [9]. 

 

While Ingress represented a substantial improvement 

over direct service exposure via NodePort or LoadBalancer 

services, it was primarily designed for more straightforward 

HTTP/HTTPS routing scenarios. Its widespread adoption, 

however, led to its application in use cases for which it was 

not optimally designed, particularly in complex enterprise 

environments. This situation illustrates a common pattern in 

rapidly evolving technological landscapes: a solution initially 

developed for a specific problem (basic external HTTP 

routing) is often extended through ad-hoc mechanisms, such 

as custom annotations, to accommodate more advanced 

requirements. Over time, this stretching of the original design 

reveals inherent limitations, ultimately necessitating the 

development of a more purpose-built successor. 

 

1.3. Problem Statement: Limitations and Growing 

Challenges with Ingress 
Despite its widespread utility, Ingress presented several 
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significant challenges for production workloads. These 

included a tight coupling between routing rules and 

underlying infrastructure details, which diminished 

flexibility and complicated management as environments 

scaled. Furthermore, managing multi-tenant workloads 

became increasingly difficult, leading to complexities in 

isolating and controlling traffic for disparate users or 

teams. The demand for more granular routing policies 

also frequently exceeded Ingress's native capabilities. 

 

Additional limitations of Ingress included its 

primary restriction to HTTP/HTTPS protocols, inherent 

difficulties in extending its functionality, and the 

prevalence of controller-specific behaviors. Advanced 

features like header-based matching and traffic 

weighting often relied on custom annotations, which 

varied significantly across different Ingress controller 

implementations. This reliance on custom annotations 

and the tight coupling of routing logic resulted in a 

significant accumulation of technical debt. Each Ingress 

controller, such as NGINX, Traefik, or HAProxy, 

implemented extended features through its own set of 

proprietary annotations. This fragmentation of the 

ecosystem hindered portability of configurations across 

different environments or controllers and created a 

substantial maintenance burden. It also increased the 

learning curve for new teams and made it challenging to 

switch between different Ingress controllers or cloud 

providers. This situation underscores how ad-hoc 

extensibility, while offering immediate expediency, can 

lead to long-term operational complexities and impede 

innovation by locking users into specific vendor 

implementations. These challenges directly motivated 

the Kubernetes community to pursue a more 

standardized and flexible API. 

 

1.4. Introduction to the Kubernetes Gateway API as an 

Evolved Solution 

The Kubernetes Gateway API represents a profound 

evolution in traffic management within Kubernetes, 

fundamentally rethinking how routing and traffic control 

should operate in modern, scalable cloud-native 

environments. It is designed as a more flexible, 

powerful, and extensible alternative to the traditional 

Ingress API. The Kubernetes community is actively 

championing the Gateway API as the "eventual 

successor to Ingress", signaling a clear strategic direction 

for future development and adoption within the 

ecosystem. 

 

The development of the Gateway API by the 

Kubernetes SIG-NETWORK group, coupled with its 

progression towards general availability, reflects a strong 

community consensus regarding the necessity for a 

standardized, future-proof solution for traffic 

management. This initiative transcends a mere feature 

addition; it signifies a strategic architectural 

reorientation. This community-led standardization effort 

aims to mitigate vendor lock-in, enhance 

interoperability, and deliver a consistent user experience 

across diverse Kubernetes environments and controller 

implementations. It demonstrates a maturing ecosystem 

where foundational APIs are being refined to accommodate 

increasingly complex and varied use cases, thereby ensuring 

long-term sustainability and reducing operational friction for 

organizations deploying cloud-native applications. 

 

1.5. Paper Objective 

This paper aims to provide a comprehensive analysis of 

the motivations, practical implementation process, and 

observed benefits associated with migrating from Kubernetes 

Ingress to the Gateway API. It will serve as a detailed guide 

for organizations contemplating or actively planning such a 

transition, drawing upon real-world experiences and 

incorporating academic insights into the broader Kubernetes 

networking landscape. 

 

2. Kubernetes Networking Landscape 
2.1. Services, Pods, and Internal Communication 

Within a Kubernetes cluster, Services provide stable and 

consistent access points to Pods, which are inherently 

ephemeral. This abstraction ensures that workloads remain 

reachable irrespective of individual Pod failures or restarts. 

Services are capable of load-balancing traffic across a group 

of Pods that are identified by common labels. Kubernetes 

offers several types of Services, each designed for specific 

communication patterns: Cluster IP exposes the Service on a 

cluster-internal IP address; NodePort exposes the Service on 

a static port across all nodes; LoadBalancer provisions an 

external IP address through integration with a cloud provider; 

and External Name maps a Service to an external DNS name. 

 

The fundamental problem Kubernetes addresses is the 

management of volatile containers. Services are a critical 

abstraction layer that provides stable network identities, such 

as virtual IPs and DNS names, for highly dynamic Pods. This 

design choice is paramount for microservices architectures, 

where individual instances are frequently scaled up or down, 

or restarted. This abstraction is foundational to Kubernetes' 

resilience and scalability, allowing application developers to 

concentrate on their service logic without being burdened by 

the intricacies of the underlying Pod lifecycle. This promotes 

a decoupled architecture where components can evolve 

independently. However, this internal abstraction necessitates 

an external entry point for traffic, which is precisely the role 

fulfilled by Ingress and, subsequently, the Gateway API. 

 

2.2. Kubernetes Ingress: Architecture, Capabilities, and 

Use Cases 
Kubernetes Ingress functions as an intelligent Layer 7 

reverse proxy, specifically designed to route external 

HTTP(S) traffic to internal services based on rules defined by 

hostnames, URL paths, or other advanced criteria. To 

operate, an Ingress resource requires an Ingress Controller, 

such as NGINX, Traefik, or HAProxy, which interprets the 

Ingress definitions and configures the actual routing 

mechanisms. 

 

The capabilities of Ingress include SSL termination for 

secure traffic handling, URL rewriting, redirection, and basic 
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rate limiting or authentication, often implemented 

through annotations. It proved particularly beneficial for 

microservices architectures where multiple services 

shared a common domain, as it consolidated routing 

logic and reduced the need for individual services to 

possess public IP addresses. 

 

The Ingress resource itself defines the routing rules, 

but the actual traffic handling and feature 

implementation are delegated to an external Ingress 

Controller. This design centralizes external traffic 

management, but it also means that the effective features 

available to users are dictated by the capabilities and 

limitations of the specific controller in use. This 

architectural characteristic, while simplifying initial 

external exposure, inadvertently led to a fragmented 

ecosystem. Each controller implemented advanced 

features through its own set of custom, often proprietary, 

annotations. This lack of standardization at the advanced 

feature level meant that Ingress configurations were not 

portable across different controller implementations, 

resulting in tight coupling to a specific vendor's solution. 

This ultimately emerged as a significant limitation, 

underscoring the need for a more unified and extensible 

API like the Gateway API. 

 

2.3. DNS and Service Discovery in Kubernetes 

Kubernetes automatically creates DNS records for 

both Services and Pods, enabling workloads within the 

cluster to discover and communicate with Services using 

consistent DNS names rather than ephemeral IP 

addresses (Kubernetes.io). The DNS system dynamically 

updates these records to reflect the current state of 

Services and Pods, thereby underpinning microservice 

communication by simplifying service discovery and 

facilitating dynamic scaling. 

 

DNS, often an overlooked component, is 

nevertheless fundamental to Kubernetes' dynamic nature. 

The ability for services to locate each other by name, 

rather than relying on potentially changing IP addresses, 

is crucial for maintaining self-healing capabilities and 

enabling seamless scaling operations. However, this 

reliance on DNS also positions it as a critical single point 

of failure or a potential performance bottleneck if 

misconfigured, or if propagation issues arise during 

changes. This highlights that while API changes are 

important, fundamental network services like DNS 

require meticulous planning. The importance of careful 

DNS planning during significant network shifts, such as 

migrating from Ingress to Gateway API, is therefore 

paramount. Unforeseen DNS propagation delays can 

cause substantial short-term disruptions, emphasizing 

that even well-designed API changes necessitate careful 

operational planning around underlying network 

fundamentals. This underscores the need for robust DNS 

management strategies in any Kubernetes deployment. 

 

 

 

2.4. Container Network Interfaces (CNIs) and Network 

Performance 

The Kubernetes networking model is central to its 

functionality, with Container Network Interfaces (CNIs) 

playing a pivotal role in seamlessly connecting containerized 

workloads. Popular CNI plugins include Cilium, Flannel, 

Calico, and Antrea. These plugins assign each Pod a globally 

unique virtual IP address, facilitating communication 

between Pods located on the same node or across different 

nodes within the cluster. 

 

Each CNI plugin presents a unique set of trade-offs 

concerning simplicity, security, throughput, and scalability. 

For example, Cilium is noted for its high performance and 

advanced security features, leveraging eBPF (extended 

Berkeley Packet Filter) to often outperform other CNIs like 

Calico in terms of latency and throughput in specific 

scenarios. The selection of a CNI plugin is not a minor 

configuration detail but a foundational decision that 

significantly influences the performance, reliability, and 

security characteristics of the entire Kubernetes cluster. 

Different CNIs offer varying levels of capabilities, ranging 

from basic overlay networking (e.g., Flannel) to sophisticated 

policy enforcement and observability (e.g., Cilium, Calico). 

This implies that while Ingress and Gateway API manage 

external traffic, the efficiency and security of internal Pod-to-

Pod communication are heavily dependent on the chosen 

CNI. A high-performing CNI can maximize the benefits 

derived from advanced traffic management APIs by ensuring 

that the underlying network fabric is robust and efficient. 

This illustrates the layered nature of Kubernetes networking, 

where each component contributes synergistically to the 

overall system's capabilities. 

 

3. Challenges with Traditional Kubernetes 

Ingress 
3.1. Tight Coupling and Lack of Role Separation 

Ingress configurations frequently intertwine routing 

logic with specific details of the underlying infrastructure, 

resulting in a tight coupling between these layers. This 

design characteristic renders configurations less flexible and 

more challenging to manage effectively as the environment 

scales. The tight coupling inherent in Ingress means that 

infrastructure providers, who are responsible for managing 

load balancers and network policies, and application 

developers, who define routing rules for their services, often 

operate on the same Ingress resource. This blurs the 

traditional ownership boundaries between these distinct roles. 

When changes are required, this interdependency necessitates 

close coordination, which increases the potential for 

misconfigurations or delays. 

 

This architectural limitation directly translates into 

operational friction, leading to slower deployment cycles and 

reduced agility for development teams. It impedes the ability 

to implement true GitOps principles or self-service models, 

as infrastructure changes might inadvertently disrupt 

application routing, and vice versa. The absence of clear role 

separation thus becomes a significant impediment to scaling 

operations efficiently within large organizations. 
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3.2. Limitations in Advanced Routing and Protocol 

Support  

The capabilities of Ingress for defining fine-grained 

routing rules were often found to be insufficient, 

necessitating the search for more powerful solutions. 

Ingress was primarily designed to handle HTTP/HTTPS 

(Layer 7) traffic, lacking native support for other 

essential protocols such as TCP or UDP (Layer 4). 

Furthermore, advanced features like header-based 

matching and traffic weighting frequently required the 

use of custom, non-standard annotations, which varied 

across different Ingress controller implementations. 

 

The core Ingress specification was intentionally 

minimal, leaving advanced routing features to be 

implemented by individual Ingress controllers through 

proprietary annotations. While this approach fostered 

rapid innovation among controller vendors, it 

inadvertently created a fragmented landscape where 

advanced routing capabilities were neither standardized 

nor portable. This situation compelled users to adopt 

vendor-specific workarounds for common advanced 

routing scenarios, such as canary deployments or A/B 

testing, thereby limiting their flexibility and increasing 

the complexity of managing diverse traffic patterns. The 

absence of native multi-protocol support further 

constrained Ingress's utility for modern microservices 

that increasingly rely on protocols like gRPC or other 

Layer 4 communication. 

 

3.3. Difficulties in Multi-Tenancy Management 

In environments supporting multiple tenants, Ingress 

proved cumbersome to manage, leading to significant 

complexities in isolating and controlling traffic for 

different users or teams. Ensuring strict separation of 

data and resources within multi-tenant SaaS platforms is 

paramount for security and performance, but Ingress's 

design made achieving this challenging [2]. 

 

While Ingress did support domain-based multi-

tenancy, it lacked robust, built-in mechanisms for fine-

grained multi-tenant isolation and policy enforcement at 

the routing layer. This often necessitated complex 

manual configurations of network policies or reliance on 

external tools to achieve adequate tenant separation. 

Such an approach increased the risk of "noisy neighbor" 

issues, where one tenant's resource consumption 

negatively impacts others , or even data leakage if 

configurations were erroneous. The inherent limitations 

of Ingress for multi-tenancy translated into significant 

security and performance risks for platform operators. It 

required extensive custom tooling and operational 

overhead to enforce isolation, making it less ideal for 

building robust "routing-as-a-service" platforms for 

internal product teams or external customers. This 

directly highlighted the need for a more opinionated and 

structured approach to multi-tenancy, which the 

Gateway API aims to provide. 

 

 

3.4. Operational Overhead and Extensibility Constraints 

The fragmented nature of Ingress setups, characterized 

by diverse controller implementations and custom 

annotations, often created considerable operational 

challenges. These included the burden of managing multiple 

configurations and ensuring consistency across different 

environments. Even conversion tools like ingress2gateway, 

while helpful, frequently required post-editing of the 

generated YAML configurations to align with specific load 

balancer or controller nuances [6]. 

 

The fact that ingress2gateway serves as a "scaffold, not a 

final product" and necessitates "post-editing" underscores a 

critical aspect of complex system migrations. While 

automation tools can significantly accelerate the initial 

conversion, they cannot fully capture the intricacies of 

existing custom configurations, specific vendor 

implementations, or unique operational requirements. This 

implies that human expertise and manual refinement remain 

indispensable in such migrations. It further highlights that 

even declarative APIs, while simplifying management, still 

demand a deep understanding when transitioning from legacy 

systems. The "last mile" of migration often involves bespoke 

adjustments, emphasizing the continued value of skilled 

engineers in an increasingly automated world. This situation 

reflects the industry's continuous push towards more 

declarative, automated, and standardized solutions in cloud-

native environments. The shortcomings of Ingress in this 

regard provided a strong impetus for the Gateway API to be 

designed with explicit extensibility points and a more unified 

approach to traffic management, aiming to reduce manual 

intervention and improve overall operational efficiency. 

 

4. The Kubernetes Gateway API: Design and 

Capabilities 
4.1. Core Design Principles: Role-Oriented, Portable, 

Expressive, Extensible 
The Kubernetes Gateway API is fundamentally shaped by 

four core design principles: 

 Role-oriented: This principle models API kinds 

after the distinct organizational roles responsible for 

managing Kubernetes service networking: the 

Infrastructure Provider, the Cluster Operator, and 

the Application Developer. This design allows 

shared network infrastructure to be utilized by 

multiple, potentially non-coordinating teams while 

maintaining centralized control and governance. 

 Portable: Defined as Custom Resources (CRDs), 

the Gateway API specifications ensure broad 

support across a wide range of implementations. 

This directly addresses the issue of vendor-specific 

annotations that plagued Ingress, promoting greater 

interoperability. 

 Expressive: The API provides built-in functionality 

for common and advanced traffic routing scenarios, 

such as header-based matching and traffic 

weighting. These capabilities previously required 

custom Ingress annotations, making the Gateway 

API more intuitive and powerful out-of-the-box. 
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 Extensible: The design allows for custom 

resources to be linked at various layers of the 

API, enabling granular customization at 

appropriate points within the API structure. 

 

The "role-oriented" principle represents a profound 

architectural shift from Ingress. Instead of a single, 

monolithic Ingress resource attempting to serve all 

purposes, the Gateway API explicitly separates concerns 

and responsibilities across different personas. This 

extends beyond mere technical separation; it directly 

influences organizational design and workflow. The 

Infrastructure Provider defines the Gateway Class, which 

specifies the type of gateway controller. The Cluster 

Operator then deploys Gateways based on these classes 

and establishes overarching policies. Finally, the 

Application Developer defines Routes for their specific 

services, linking them to the appropriate Gateways. This 

design enables decentralized application development 

and deployment, granting developers greater autonomy 

over their routing configurations, while simultaneously 

maintaining centralized governance and policy 

enforcement through the operators' control over 

gateways and policies. This architectural pattern directly 

addresses the tight coupling and multi-tenancy 

challenges faced with Ingress by providing clearer 

ownership boundaries and a structured method for 

managing shared infrastructure. Consequently, it fosters 

greater agility, mitigates misconfiguration risks, and 

scales more effectively with organizational growth, 

aligning seamlessly with modern platform engineering 

principles. 

 

4.2. Key Resources: Gateway Class, Gateway, and 

Route Types (e.g., HTTP Route) 
The Gateway API is composed of three primary resource 

types that work in concert to manage traffic: 

 Gateway Class: This resource functions as a 

blueprint or template for Gateways. It defines a 

group of Gateways that share a common 

configuration and are managed by a specific 

controller, such as k8s.io/gateway-nginx. 

 Gateway: This resource represents the actual 

traffic handling infrastructure, acting as an entry 

point to the cluster, often backed by a cloud load 

balancer. It defines listeners for specific 

protocols (e.g., HTTP) on particular ports and 

hostnames. 

 Route Types (e.g., HTTPRoute): These resources 

define the rules for how traffic is routed from a 

Gateway to backend services. HTTPRoute 

specifically handles HTTP traffic, allowing for 

sophisticated matching based on paths, headers, 

and hosts. Beyond HTTP/HTTPS, the Gateway 

API extends support to other protocols through 

dedicated route types like TCPRoute, TLSRoute, 

and UDPRoute. 

 

The relationship between Gateway and Route 

objects introduces a "bidirectional trust model". A 

Gateway can explicitly filter which Routes are permitted to 

attach to its listeners, and conversely, Routes reference 

specific Gateways. This contrasts sharply with Ingress, where 

any Ingress resource could potentially attach to an Ingress 

Controller without explicit permission. This explicit 

association and filtering mechanism significantly enhances 

both security and control within the cluster. Cluster operators 

can define stringent policies at the Gateway level, ensuring 

that application developers can only attach routes that 

conform to organizational security and networking policies. 

This prevents unauthorized traffic exposure and 

misconfigurations, making the system inherently more robust 

and auditable, especially crucial in multi-tenant or highly 

regulated environments. 

 

4.3. Enhanced Traffic Management Features: Header 

Matching, Traffic Splitting, Policy Attachment 

The Gateway API provides a comprehensive suite of 

rich routing capabilities, including advanced HTTP routing, 

granular header matching, flexible path rewriting, and 

sophisticated traffic splitting mechanisms. These features 

offer a significantly greater degree of control and flexibility 

over how traffic is directed within the Kubernetes 

environment. The API natively supports advanced traffic 

control requirements, such as implementing canary releases 

and blue-green deployments, through features like weighted 

routing. Furthermore, the Policy Attachment model allows 

for the decoration of Gateway API objects with 

implementation-specific Custom Resource Definitions 

(CRDs) to apply cross-cutting concerns like security policies 

and rate limiting. 

 

The native inclusion of features such as header-based 

matching and traffic weighting marks a substantial 

improvement. These capabilities were previously complex or 

non-standard with Ingress, often requiring cumbersome 

workarounds. Their direct integration into the Gateway API 

means that advanced deployment strategies like canary 

releases and A/B testing can now be implemented directly 

and portably within the Kubernetes API itself, rather than 

relying on external tools or controller-specific annotations. 

This development significantly streamlines DevOps 

practices, enabling faster and safer software delivery. It 

reduces the need for complex external orchestration for 

common deployment patterns, making the Kubernetes 

platform more self-sufficient and lowering the cognitive load 

on development teams. The native support for these features 

reflects a maturation of the API, designed to directly support 

and facilitate modern software engineering methodologies. 

 

5. Practical Migration from Ingress to Gateway 

API  
5.1. Pre-Migration Planning and Assessment of 

Dependencies 

Before embarking on a migration from Ingress to Gateway 

API, a thorough assessment of several critical factors is 

imperative: 

 Ingress Controller Support: It is essential to 

determine if the currently deployed Ingress 
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controllers are compatible with or supported by 

the Gateway API. 

 Migration Strategy: A strategic decision must 

be made regarding the migration approach: 

either a complete, one-time replacement of 

Ingress or a phased transition where both 

Ingress and Gateway API operate concurrently. 

Experience suggests that a one-time conversion 

for primary resources, followed by gradual 

onboarding of other services, can be an 

effective strategy. 

 Custom Dependencies: Organizations must 

meticulously identify any custom annotations, 

BackendConfigs, or specific load balancer 

features that the existing Ingress setup relies 

upon. It is important to note that some Ingress 

annotations may not have direct 1:1 mappings 

in the Gateway API, necessitating alternative 

solutions or equivalent controller support. 

 DNS Management: A clear understanding of 

the current DNS setup is crucial, with a detailed 

plan for potential A record updates that may be 

required if the new Gateway exposes a different 

IP address. 

 Certificate Management: The existing 

certificate management approach (e.g., pre-

shared certificates, cert-manager, or cloud 

provider-managed certificates) must be 

reviewed, and a plan for its seamless integration 

with the Gateway API should be developed. 

 

The planning considerations underscore that 

migration is not merely a YAML conversion but a 

complex process that impacts multiple layers of the 

infrastructure, including DNS, certificates, and custom 

configurations. The challenge of non-1:1 annotation mapping 

highlights that unique, controller-specific Ingress features 

might require re-architecting or finding new solutions within 

the Gateway API, rather than a direct translation. This 

reveals the inherent costs and complexities of transitioning 

from a less standardized API, such as Ingress with its 

numerous annotations, to a more standardized one. It 

necessitates a holistic assessment of the entire networking 

stack and its dependencies, extending beyond just the Ingress 

resources themselves. A thorough pre-migration audit is 

therefore critical to identify potential friction points and 

avoid unexpected disruptions, emphasizing that technical 

migrations are often as much about meticulous operational 

planning as they are about code changes. 

 

5.2. Architectural Comparison: Ingress-Based vs. Gateway 

API-Based Deployments 
The architectural shift from an Ingress-based setup to a 

Gateway API-based deployment represents a significant 

evolution in how traffic is managed within Kubernetes. 

 

5.2.1. Before (Ingress-Based): 

In a traditional Ingress setup, external traffic flows 

through an External Load Balancer, which then directs 

requests to an Ingress Controller. This controller, in turn, 

routes traffic to the appropriate Kubernetes Service, which 

finally distributes it among the backend Pods. DNS A 

records typically point to the Ingress IP, and BackendConfig 

resources are often used for specific load balancer features or 

timeouts. 

 

 
Figure 1. Traffic Flow 

 

A key architectural characteristic of this model is its 

monolithic nature. The Ingress resource itself conflates 

concerns from different operational roles. It defines both 

infrastructure-level configuration (the logical entry point 

for traffic) and application-level routing rules (path-

based routing to services). This often leads to conflicts 

and a lack of clear ownership. Furthermore, to 

implement advanced features such as TLS configuration, 

timeouts, or weighted traffic splitting, the Ingress 

specification relies heavily on non-standard, vendor-

specific annotations or Custom Resource Definitions 

(CRDs) like Backend Config. This results in a lack of 

portability and a fragmented user experience across 

different Kubernetes environments. 

5.2.2. After (Gateway API-Based): 

With the Gateway API, the flow is more granular. An 

External Load Balancer directs traffic to a Gateway resource. 

The Gateway then uses HTTP Route (or other Route types) 

to define how traffic is forwarded to the Service, which 

ultimately reaches the Pods. DNS A records are updated to 

point to the Gateway's IP, and certificate management is 

integrated at the Gateway level. Additional configurations 

like Backend Config and Gateway policies can be applied. 

 

5.2.3. Certificate Management: 

The following table provides a side-by-side comparison of 

the architectural components: 

 

Table 1.  Architectural Components: Ingress vs. Gateway API 

Component Type Ingress-Based Deployment Gateway API-Based Deployment 

External Load 

Balancer 

External LB External LB 

Controller Ingress Controller Gateway (managed by a GatewayClass controller) 

Routing Resource Ingress HTTPRoute (or other Route types like TCPRoute, 

External 
Client 

External Load 
Balancer 

Ingress 
Controller 

Kubernetes 
Service 

Pods 
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TLS Route) 

Backend Service Service Service 

DNS DNS A Record (pointing to Ingress IP) DNS A Record (pointing to Gateway IP) 

Certificate 

Management 

Often external or via Ingress annotations Integrated via Gateway annotations or cert-manager 

Policy/Config Backend Config (controller-specific 

annotations) 

Backend Config / Gateway Policy (explicit 

resources/CRDs) 

 

This table offers a clear, side-by-side visual 

representation of the architectural transformation, aiding 

in a quick understanding of the shift in responsibility and 

component interaction. By explicitly mapping 

components, it clarifies how familiar concepts are re-

represented or replaced in the new API, facilitating a 

deeper comprehension of the conceptual transition 

beyond mere YAML changes. 

 

The architectural comparison clearly illustrates a 

decomposition of the Ingress Controller's responsibilities 

into distinct Gateway API resources (Gateway Class, 

Gateway, HTTP Route). The Ingress Controller often 

bundled the load balancer logic, routing rules, and policy 

enforcement into a single entity. In contrast, the Gateway 

API explicitly separates these concerns. This decoupling 

enables greater modularity and independent evolution of 

components. Infrastructure providers can manage the 

underlying Gateways, cluster operators can enforce 

policies on them, and application developers can define 

their specific routes, all with clearer boundaries of 

responsibility. This modularity is fundamental to scaling 

traffic management effectively in large, complex 

organizations, as it reduces inter-team dependencies and 

allows for more specialized tooling and expertise at each 

layer. 

 

5.3. Leveraging Migration Tools: The Role and 

Limitations of ingress2gateway 

The ingress2gateway CLI tool is designed to assist 

in the migration process by converting existing Ingress 

resources into the Gateway API format. This tool can 

serve as a valuable starting point for organizations 

undertaking the transition. However, its utility has 

specific limitations: it currently supports only the 

ingress-nginx provider, which restricts its universal 

applicability. Furthermore, the tool often requires 

subsequent manual editing of the generated YAML 

configurations to precisely align with the nuances of 

specific load balancers or controller implementations. 

 

The observation that ingress2gateway functions as a 

"scaffold, not a final product" and necessitates "post-

editing" highlights a crucial aspect of complex system 

migrations. While automation tools can significantly 

accelerate the initial phase of conversion, they are 

inherently limited in their ability to fully capture the 

intricacies of existing custom configurations, specific 

vendor implementations, or unique operational 

requirements. This implies that human expertise and 

manual refinement remain indispensable throughout 

such migrations. It underscores that declarative APIs, 

while simplifying ongoing management, still demand a deep 

understanding and hands-on intervention when transitioning 

from legacy systems. The "last mile" of migration frequently 

involves bespoke adjustments, emphasizing the enduring 

value of skilled engineers in an increasingly automated 

technological landscape. 

 

5.4. Step-by-Step Migration Walkthrough with 

Configuration Examples  

To illustrate the practical migration process, consider a 

common original setup and the corresponding steps to 

transition to the Gateway API. 

 

5.4.1. Original Setup Example: 

A typical Ingress setup might involve an Ingress 

resource exposed via an external load balancer. A DNS A 

record points to the Ingress Controller's IP address. Backend 

Config resources are defined for specific cloud provider 

features like Cloud Armor or custom timeouts. The backend 

application runs within a Deployment and Pods, exposed via 

a Kubernetes Service of type NodePort or Cluster IP on a 

specific port, such as 8080. 

 

Migration Process Steps: 

1. Create a Gateway Class: This resource defines the 

controller responsible for implementing the 

Gateway. For instance, if using an NGINX-based 

gateway controller, the controller Name would 

specify k8s.io/gateway-nginx. 

YAML 

apiVersion: gateway.networking.k8s.io/v1 

kind: GatewayClass 

metadata: 

  name: external-gateway 

spec: 

  controllerName: k8s.io/gateway-nginx 

 

2. Define a Gateway: This resource represents the 

actual entry point for traffic, such as a cloud load 

balancer. It specifies listeners for particular 

protocols (e.g., HTTP) on designated ports (e.g., 80) 

and hostnames (e.g., "example.com"). 

YAML 

apiVersion: gateway.networking.k8s.io/v1 

kind: Gateway 

metadata: 

  name: my-gateway 

  namespace: default 

spec: 

  gatewayClassName: external-gateway 

  listeners: 

  - name: http 
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    port: 80 

    protocol: HTTP 

    hostname: "example.com" 

 

3. Replace Ingress with HTTP Route: The HTTP 

Route resource defines the specific routing rules 

for HTTP traffic, effectively replacing the 

functionality of the legacy Ingress resource. It 

specifies how incoming requests, based on 

criteria like path prefixes, should be directed to 

backend services. 

YAML 

apiVersion: gateway.networking.k8s.io/v1 

kind: HTTPRoute 

metadata: 

  name: my-app-route 

  namespace: default 

spec: 

  parentRefs: 

  - name: my-gateway 

  rules: 

  - matches: 

    - path: 

        type: PathPrefix 

        value: "/" 

    backendRefs: 

    - name: my-service 

      port: 8080 

 

The step-by-step process illustrates how the 

Gateway API achieves its flexibility and power through 

the composition of multiple, smaller, and role-specific 

resources (Gateway Class, Gateway, HTTP Route). This 

contrasts with the more monolithic nature of the Ingress 

resource. This compositional approach significantly 

enhances clarity, auditability, and the ability to delegate 

management responsibilities. Each resource can be 

managed by a different team or automated process, 

allowing for more granular control and reducing the blast 

radius of changes. This embodies the core Kubernetes 

philosophy of declarative configuration, but applied with 

a more refined and modular design, ultimately leading to 

a more maintainable and scalable system. 

 

5.5. Addressing Common Migration Challenges: DNS, 

Certificate Management, and Annotation 

Equivalencies 
During the migration to Gateway API, several 

common challenges typically arise, requiring careful 

planning and execution. 

 DNS Consideration: If the newly created 

Gateway exposes a new external load balancer 

IP address, it is imperative to update the 

corresponding A record in the DNS system to 

point to this new IP. DNS propagation during 

this switch can introduce short-term disruptions 

if not meticulously planned. It is advisable to 

adjust the Time-To-Live (TTL) settings for 

DNS records accordingly to minimize potential 

downtime. 

 Certificates: The Gateway API facilitates a 

transition towards more streamlined certificate 

management. Organizations can now leverage 

managed certificates through tools like cert-manager 

or directly utilize cloud provider-managed 

certificates via Gateway annotations or controller-

specific configurations. Centralizing TLS 

termination at the Gateway simplifies certificate 

management and enhances overall security for 

HTTPS traffic across applications. 

 Backend Config and Gateway Policy: The Gateway 

API supports the creation of equivalent Backend 

Config and other Gateway policies for various 

configurations, such as SSL settings, health checks, 

and other required parameters. However, a notable 

challenge is that some annotations from the legacy 

Ingress API, such as 

backendConfig.cloud.google.com, may not have 

direct 1:1 mappings in the Gateway API. This 

necessitates ensuring that the chosen Gateway API 

controller provides equivalent functionality or 

requires re-architecting the specific feature. 

 

The challenges highlighted, including DNS propagation, 

certificate management, and annotation equivalencies, 

demonstrate that a seemingly "simple" API migration can 

have ripple effects across the entire cloud-native stack. DNS 

is critical for service reachability, certificates are 

fundamental for security, and annotations provide custom 

features. A change in one layer, specifically the traffic 

management API, necessitates careful consideration and 

potential adjustments in other interconnected components. 

This reinforces the concept that cloud-native systems are 

inherently highly interconnected. Successful migrations 

require not only a thorough understanding of the new API 

but also a deep knowledge of the existing infrastructure, its 

dependencies, and how various components (e.g., DNS, cert-

manager, cloud load balancers) interact. This 

interconnectedness emphasizes the critical need for 

comprehensive testing and robust rollback strategies that 

account for the potential ripple effects throughout the entire 

system. 

 

5.6 Migration Execution: A Strategy for Monitoring and 

Validation 
While Section 5.5 outlined the static challenges inherent 

in the migration, the dynamic execution phase requires a 

robust strategy to ensure service continuity and validate 

success. This section details a phased methodology for 

executing the migration, monitoring its progress in real-time, 

and formally asserting its successful completion [1]. 

 

5.6.1. Phased Rollout and Live Traffic Shaping 

A direct, "big bang" cutover from Ingress to Gateway is 

fraught with risk. A more prudent, industry-standard 

approach involves a parallel deployment and a gradual traffic 

shift, often referred to as a canary or blue-green deployment 

strategy [7]. 

 Parallel Deployment: The first step is to deploy the 

new Gateway API resources (Gateway, 
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HTTPRoute, GatewayClass, and associated 

policies) in parallel with the existing Ingress 

and BackendConfig resources. At this stage, the 

new Gateway will be provisioned with a 

distinct external IP address, but no production 

traffic will be directed to it. This allows for 

internal validation of the new configuration 

against a non-production endpoint. 

 DNS-Based Traffic Shaping: The transition of 

live traffic is most effectively managed at the 

DNS layer. By utilizing weighted DNS records 

(e.g., AWS Route 53 Weighted Routing, 

Google Cloud DNS Weighted Round Robin), 

an operator can precisely control the percentage 

of traffic directed to the legacy Ingress IP 

versus the new Gateway IP. A typical rollout 

schedule proceeds as follows: 

o Phase 1 (1-5% Traffic): A small fraction of 

traffic is shifted to the Gateway API 

endpoint. This phase is critical for 

observing the new stack under real-world 

load without significant user impact. 

o Phase 2 (10-50% Traffic): As confidence in 

the new stack grows, the traffic percentage 

is incrementally increased. Continuous 

monitoring is essential during this phase. 

o Phase 3 (100% Traffic): Once all metrics 

indicate stability, 100% of traffic is 

directed to the Gateway. The legacy 

Ingress remains operational as a rapid 

rollback path. 

 

This phased approach provides a crucial safety 

mechanism; any detected anomaly can trigger an 

immediate rollback by reverting the DNS weights to 

favor the legacy Ingress IP, minimizing the mean time to 

recovery (MTTR). 

 

5.6.2. Multi-Layered Monitoring During Transition 

Effective monitoring during the migration requires 

observing telemetry from multiple layers of the stack to 

gain a holistic view of system health. 

 Infrastructure-Level Metrics: Monitor the cloud 

provider's load balancer metrics for both the old 

and new endpoints. Key Performance Indicators 

(KPIs) include: 

o Request Count: Should decrease on the 

legacy load balancer and proportionally 

increase on the new one. 

o End-to-End Latency (p50, p90, p99): Must 

remain within or below established 

baselines 

o HTTP Error Rates: Server-side 5xx and 

client-side 4xx error rates should not 

increase. A spike in 5xx errors on the new 

endpoint is a critical signal for immediate 

rollback. 

 Controller-Level Metrics: The Gateway and 

Ingress controllers themselves expose vital 

Prometheus metrics. Monitor the request 

throughput, configuration reloads successes/failures, 

and processing latency for both controllers to ensure 

they are functioning as expected. 

 Application-Level Metrics: The ultimate source of 

truth is the application itself. Monitor application-

specific dashboards for business-critical metrics, 

such as user transaction success rates, application 

error logs, and internal service-to-service 

communication latency. Any degradation here 

indicates a potential issue with the new traffic 

routing configuration. 

 

5.6.3. Asserting Migration Success and Decommissioning 

The migration cannot be considered complete until its 

success is formally verified and legacy artifacts are retired.  

 Defining Success Criteria: Success should be 

measured against a pre-defined set of criteria: A 

typical rollout schedule proceeds as follows: 

o Sustained Stability: The new Gateway API 

stack has handled 100% of production traffic 

for a sustained observation period (e.g., 24-72 

hours) without any degradation in the KPIs 

mentioned above(5.6.2). 

o Functional Parity Verification: A 

comprehensive suite of automated end-to-end 

and integration tests must be executed and 

passed against the new endpoint. This confirms 

that all required functionality previously 

managed by Ingress annotations or 

BackendConfig (e.g., custom timeouts, health 

check configurations, security policies) is 

correctly implemented in the Gateway API 

configuration. 

o Observability Confirmation: All monitoring 

dashboards, logging queries, and alerting rules 

have been successfully migrated to target the 

new Gateway resources and are confirmed to be 

reporting accurately. 

 Decommissioning Legacy Resources: Once all 

success criteria are met, the final step is to 

decommission the legacy resources to reduce 

complexity and cost. This involves the systematic 

deletion of the Ingress and BackendConfig 

resources, followed by the release of the associated 

external load balancer and its IP address. This final 

act formally concludes the migration project. 

  

6. Results and Discussion 
6.1. Observed Improvements in Separation of Concerns and 

Operational Clarity  

The adoption of the Gateway API demonstrably 

improves the separation of concerns, leading to a cleaner 

decoupling of infrastructure and application layer routing. 

This architectural refinement significantly enhances 

maintainability and empowers different teams to manage 

their respective domains more independently. Consequently, 

clearer ownership boundaries are established, which in turn 

reduces cross-team friction and improves the clarity of 

Responsible, Accountable, Consulted, and Informed (RACI) 

charts within an organization. 
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The "separation of concerns" and "clearer ownership 

boundaries" are not merely technical benefits; they 

directly translate into improved organizational efficiency 

and a reduction in inter-team conflicts. By aligning API 

resources with distinct organizational roles - 

Infrastructure Provider, Cluster Operator, and 

Application Developer - the Gateway API facilitates a 

more streamlined and efficient workflow. This highlights 

that architectural decisions in cloud-native environments 

have profound organizational impacts. A well-designed 

API can significantly reduce communication overhead, 

empower teams with greater autonomy over their 

specific domain, and ultimately accelerate software 

delivery cycles. This demonstrates how technical 

elegance can lead to operational excellence and foster 

better team collaboration, effectively illustrating 

Conway's Law in action. 

 

6.2. Analysis of Enhanced Routing Flexibility and 

Scalability  

The Gateway API provides a robust set of rich 

routing capabilities, including advanced HTTP routing, 

header matching, path rewriting, and sophisticated traffic 

splitting. These advanced features offer significantly 

greater control and flexibility over how traffic is directed 

within the cluster. A key improvement over Ingress is its 

support for multi-protocol traffic, encompassing HTTP, 

HTTPS, TCP, UDP, and TLS, thereby addressing a 

critical limitation of its predecessor. Furthermore, the 

API enables the scaling of routing logic independently 

per team or environment without interference, which 

promotes superior scalability across diverse teams and 

multiple clusters. 

 

The native support for advanced routing features 

such as traffic splitting and header matching directly 

enables more sophisticated deployment strategies, 

including canary releases and A/B testing, to be 

implemented consistently across an organization. These 

strategies were previously cumbersome or non-standard 

with Ingress. This significantly streamlines DevOps 

practices, leading to faster and safer software delivery. It 

reduces the reliance on complex external tooling or 

custom scripts, simplifying the CI/CD pipeline and 

enhancing the overall reliability of application updates. 

This positions the traffic management layer as a crucial 

enabler for continuous delivery and experimentation 

within cloud-native environments [4]. 

 

6.3. Impact on Role-Based Access Control and Security 

Post-Migration 

The Gateway API significantly improves Role-

Based Access Control (RBAC) through the 

establishment of clear resource boundaries among 

Gateway, Gateway Class, and HTTP Route objects. This 

structured approach allows for more precise control over 

which roles can define and manage different aspects of 

traffic routing. Policies within the Gateway API further 

aid in enforcing security and access controls, enabling 

functionalities such as limiting traffic to specific IP 

addresses or applying rate limiting policies. Additionally, 

centralizing TLS termination at the Gateway simplifies 

certificate management and enhances the overall security 

posture by ensuring consistent HTTPS enforcement across 

applications. 

 

The enhanced RBAC and policy attachment capabilities 

of the Gateway API facilitate a "shift-left" approach to 

security and governance. Instead of security being an 

afterthought or applied inconsistently, policies can be defined 

and enforced at the Gateway and Route levels by cluster 

operators, providing a centralized control point for ingress 

traffic. This leads to a more secure and compliant posture for 

cloud-native applications. By embedding security and access 

control directly into the API definition and enforcing it 

through explicit resource boundaries, organizations can 

effectively reduce the attack surface, ensure consistent policy 

application, and simplify auditing processes. This move 

towards declarative security policies at the network edge is 

critical for managing risk effectively in dynamic 

microservices environments. 

 

6.4. Future-Proofing Infrastructure with Gateway API 

The Gateway API is explicitly designed to support future 

advancements in cloud-native networking, including 

protocols like gRPC, mesh-style routing, and other advanced 

features. This forward-looking design positions it as a more 

sustainable long-term solution for traffic management. The 

Kubernetes community's active promotion of the Gateway 

API as the successor to Ingress clearly indicates its strategic 

importance, ensuring that infrastructure adopting it is 

prepared for upcoming developments in the ecosystem. The 

API integrates seamlessly with Kubernetes' native resources 

and is designed to work effectively with service meshes such 

as Istio and Linkerd. 

 

The explicit design for "future-ready extensibility" and 

its strong alignment with the Kubernetes SIG-NETWORK 

roadmap signifies that adopting the Gateway API is not 

merely a tactical migration but a strategic investment. It 

positions an organization's infrastructure to seamlessly 

integrate with evolving cloud-native patterns like service 

meshes and new protocols (e.g., gRPC). This provides a 

compelling argument for early adoption, as it reduces future 

technical debt and ensures compatibility with upcoming 

ecosystem advancements. Organizations that migrate now 

will be better equipped to leverage emerging technologies 

and respond effectively to changing business requirements, 

demonstrating foresight and a commitment to modern cloud-

native practices. 

 

 6.5. Comparison of Practical Outcomes Against 

Theoretical Advantages 
The practical outcomes observed during real-world 

migrations largely validate the theoretical advantages 

attributed to the Gateway API. The benefits of separation of 

concerns, rich routing capabilities, enhanced RBAC, and 

future-readiness, as detailed in the API's design principles, 

are indeed realized in operational environments. While 

challenges such as DNS propagation during transitions and 
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the mapping of legacy Ingress annotations to Gateway 

API equivalents exist, these can be effectively mitigated 

through meticulous planning and careful post-editing of 

tool-generated configurations. Despite the upfront effort 

required for migration, the long-term benefits in terms of 

maintainability, scalability, and enhanced security are 

consistently deemed worthwhile. The following table 

provides a direct, comparative summary of the two APIs' 

capabilities, reinforcing the central argument of this paper. 

This table serves as a concise, comparative summary of the 

two APIs' capabilities. It allows for a quick identification of 

the specific areas where the Gateway API offers significant 

improvements over Ingress, thereby reinforcing the central 

argument of this paper. It also provides a valuable reference 

point for decision-makers evaluating the benefits of 

migration. 

 

Table 2. Comparison of Kubernetes Ingress vs. Gateway API Features 

Feature Kubernetes Ingress Kubernetes Gateway API 

Protocol Support Primarily HTTP/HTTPS HTTP/HTTPS, TCP, UDP, TLS, gRPC 

Extensibility Model Annotation-based, controller-specific Explicit API extension points (CRDs) 

Role Separation Limited/Implicit Explicit (Role-Oriented: Infra, Operator, 

Developer) 

Multi-Tenancy Support Challenging, often requires external 

tooling 

Built-in, robust via role separation and 

policy attachment 

Advanced Routing Limited (via annotations) Native, declarative (header matching, 

traffic splitting) 

Policy Enforcement Limited (via annotations) Native, declarative (via Policy Attachment) 

Community Adoption/Future-

Proofing 

Legacy, successor planned Future-forward, community-backed, active 

development 

Configuration Complexity Higher for advanced use cases due to ad-

hoc extensions 

Lower for advanced use cases due to 

structured design 

 

7. Conclusion  
The migration from Kubernetes Ingress to the 

Gateway API represents a pivotal advancement in 

Kubernetes traffic management, marking a strategic shift 

from simple HTTP routing to a more sophisticated, 

extensible, and role-oriented paradigm. This paper has 

detailed the inherent limitations of traditional Ingress, 

particularly its tight coupling of configuration, restricted 

routing capabilities, and challenges in managing multi-

tenant environments. In stark contrast, the Gateway API 

offers a robust and forward-looking solution through its 

principled design, clearly defined and composable 

resources (Gateway Class, Gateway, Route), and native 

support for advanced traffic management features. 

 

While the practical aspects of migration involve 

careful planning, meticulous attention to DNS 

considerations and necessary refinements of tool-

generated configurations, the observed benefits 

unequivocally justify the transition. The enhanced 

operational clarity, superior routing flexibility, improved 

security posture through refined RBAC and policy 

enforcement, and the inherent future-proofing of 

infrastructure collectively demonstrate the significant 

value proposition of the Gateway API. As the 

Kubernetes community continues to champion the 

Gateway API as the future standard for ingress and 

service mesh functionalities, its adoption becomes 

crucial for organizations striving to build resilient, 

scalable, and maintainable cloud-native applications that 

can adapt to evolving demands and technological 

landscapes. 
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