

International Journal of Emerging Trends in Computer Science and Information Technology

ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.IJETCSIT-V6I3P101

Eureka Vision Publication | Volume 6, Issue 3, 1-12, 2025

Case Study

Modern Approach to Kubernetes Traffic Management:

Migrating from Ingress to Gateway API

1Upendra Kanuru, 2Upendra Kumar Gurugubelli
1 Software Engineer, USA.

2 Software Engineer, Japan.

Received On: 16/05/2025 Revised On: 04/06/2025 Accepted On: 17/06/2025 Published On: 03/07/2025

Abstract - This paper presents a comprehensive analysis

of the migration from Kubernetes Ingress to the

emerging Gateway API for traffic management in cloud-

native environments. While Kubernetes Ingress has

served as a foundational component for exposing

services, its limitations in managing complex, multi-

tenant, and highly dynamic microservices architectures

have become increasingly apparent. The Kubernetes

Gateway API, designed with a role-oriented, portable,

expressive, and extensible model, offers a significant

evolution by decoupling infrastructure and application

concerns, providing richer routing capabilities, and

enhancing role-based access control. This study details

the motivations behind adopting the Gateway API,

outlines a practical migration methodology, including

architectural comparisons and the utility of tools like

ingress2gateway, and discusses the challenges

encountered. The observed improvements in operational

clarity, routing flexibility, scalability, and security post-

migration position the Gateway API as a future-forward

standard for robust and maintainable Kubernetes traffic

control.

Keywords - Kubernetes, Gateway API, Ingress, Traffic

Management, Cloud-Native, Microservices, Networking,

Migration, Enterprise Security.

1. Introduction
1.1. Background on Kubernetes and Cloud-Native

Architectures

Kubernetes (K8s) has solidified its position as the de

facto standard for container orchestration, fundamentally

transforming how applications are deployed, managed,

and scaled within cloud-native paradigms [5]. This

platform automates critical tasks such as the deployment,

scaling, and operational management of containerized

applications, thereby facilitating faster, more reliable

software updates and supporting modern DevOps

methodologies. The core functionality of Kubernetes is

intricately linked to its robust networking model, which

ensures seamless communication among containerized

workloads and facilitates external access to the cluster

[3].

The rapid adoption of Kubernetes and its

instrumental role in enabling complex microservices

architectures have significantly expanded the demands

placed on its initial networking constructs. The foundational

elements, including Services, Ingress, and DNS, were

initially conceived to address a certain level of complexity.

However, the escalating requirements of modern, distributed

applications, particularly in multi-tenant or highly dynamic

environments, have surpassed these original designs. This

progression highlights a continuous imperative for

Kubernetes' networking capabilities to evolve. The shift

extends beyond merely introducing new features; it

encompasses a fundamental re-architecture to support

sophisticated traffic management, enhanced security, and

granular policy enforcement, reflecting the increasing

maturity and inherent complexity of contemporary cloud-

native deployments.

1.2. Overview of Kubernetes Ingress as the Traditional

Solution
For an extended period, Kubernetes Ingress served as the

primary solution for managing external HTTP(S) access to

services within a Kubernetes cluster. It functioned as an

intelligent Layer 7 reverse proxy, directing incoming traffic

to internal services based on predefined rules such as

hostnames or URL paths [8]. This approach centralized

routing logic, which simplified initial traffic management

and reduced the need for individual services to expose public

IP addresses, thereby mitigating potential security risks [9].

While Ingress represented a substantial improvement

over direct service exposure via NodePort or LoadBalancer

services, it was primarily designed for more straightforward

HTTP/HTTPS routing scenarios. Its widespread adoption,

however, led to its application in use cases for which it was

not optimally designed, particularly in complex enterprise

environments. This situation illustrates a common pattern in

rapidly evolving technological landscapes: a solution initially

developed for a specific problem (basic external HTTP

routing) is often extended through ad-hoc mechanisms, such

as custom annotations, to accommodate more advanced

requirements. Over time, this stretching of the original design

reveals inherent limitations, ultimately necessitating the

development of a more purpose-built successor.

1.3. Problem Statement: Limitations and Growing

Challenges with Ingress
Despite its widespread utility, Ingress presented several

Upendra Kanuru and Upendra Kumar Gurugubelli / IJETCSIT, 6(3), 1-12, 2025

2

significant challenges for production workloads. These

included a tight coupling between routing rules and

underlying infrastructure details, which diminished

flexibility and complicated management as environments

scaled. Furthermore, managing multi-tenant workloads

became increasingly difficult, leading to complexities in

isolating and controlling traffic for disparate users or

teams. The demand for more granular routing policies

also frequently exceeded Ingress's native capabilities.

Additional limitations of Ingress included its

primary restriction to HTTP/HTTPS protocols, inherent

difficulties in extending its functionality, and the

prevalence of controller-specific behaviors. Advanced

features like header-based matching and traffic

weighting often relied on custom annotations, which

varied significantly across different Ingress controller

implementations. This reliance on custom annotations

and the tight coupling of routing logic resulted in a

significant accumulation of technical debt. Each Ingress

controller, such as NGINX, Traefik, or HAProxy,

implemented extended features through its own set of

proprietary annotations. This fragmentation of the

ecosystem hindered portability of configurations across

different environments or controllers and created a

substantial maintenance burden. It also increased the

learning curve for new teams and made it challenging to

switch between different Ingress controllers or cloud

providers. This situation underscores how ad-hoc

extensibility, while offering immediate expediency, can

lead to long-term operational complexities and impede

innovation by locking users into specific vendor

implementations. These challenges directly motivated

the Kubernetes community to pursue a more

standardized and flexible API.

1.4. Introduction to the Kubernetes Gateway API as an

Evolved Solution

The Kubernetes Gateway API represents a profound

evolution in traffic management within Kubernetes,

fundamentally rethinking how routing and traffic control

should operate in modern, scalable cloud-native

environments. It is designed as a more flexible,

powerful, and extensible alternative to the traditional

Ingress API. The Kubernetes community is actively

championing the Gateway API as the "eventual

successor to Ingress", signaling a clear strategic direction

for future development and adoption within the

ecosystem.

The development of the Gateway API by the

Kubernetes SIG-NETWORK group, coupled with its

progression towards general availability, reflects a strong

community consensus regarding the necessity for a

standardized, future-proof solution for traffic

management. This initiative transcends a mere feature

addition; it signifies a strategic architectural

reorientation. This community-led standardization effort

aims to mitigate vendor lock-in, enhance

interoperability, and deliver a consistent user experience

across diverse Kubernetes environments and controller

implementations. It demonstrates a maturing ecosystem

where foundational APIs are being refined to accommodate

increasingly complex and varied use cases, thereby ensuring

long-term sustainability and reducing operational friction for

organizations deploying cloud-native applications.

1.5. Paper Objective

This paper aims to provide a comprehensive analysis of

the motivations, practical implementation process, and

observed benefits associated with migrating from Kubernetes

Ingress to the Gateway API. It will serve as a detailed guide

for organizations contemplating or actively planning such a

transition, drawing upon real-world experiences and

incorporating academic insights into the broader Kubernetes

networking landscape.

2. Kubernetes Networking Landscape
2.1. Services, Pods, and Internal Communication

Within a Kubernetes cluster, Services provide stable and

consistent access points to Pods, which are inherently

ephemeral. This abstraction ensures that workloads remain

reachable irrespective of individual Pod failures or restarts.

Services are capable of load-balancing traffic across a group

of Pods that are identified by common labels. Kubernetes

offers several types of Services, each designed for specific

communication patterns: Cluster IP exposes the Service on a

cluster-internal IP address; NodePort exposes the Service on

a static port across all nodes; LoadBalancer provisions an

external IP address through integration with a cloud provider;

and External Name maps a Service to an external DNS name.

The fundamental problem Kubernetes addresses is the

management of volatile containers. Services are a critical

abstraction layer that provides stable network identities, such

as virtual IPs and DNS names, for highly dynamic Pods. This

design choice is paramount for microservices architectures,

where individual instances are frequently scaled up or down,

or restarted. This abstraction is foundational to Kubernetes'

resilience and scalability, allowing application developers to

concentrate on their service logic without being burdened by

the intricacies of the underlying Pod lifecycle. This promotes

a decoupled architecture where components can evolve

independently. However, this internal abstraction necessitates

an external entry point for traffic, which is precisely the role

fulfilled by Ingress and, subsequently, the Gateway API.

2.2. Kubernetes Ingress: Architecture, Capabilities, and

Use Cases
Kubernetes Ingress functions as an intelligent Layer 7

reverse proxy, specifically designed to route external

HTTP(S) traffic to internal services based on rules defined by

hostnames, URL paths, or other advanced criteria. To

operate, an Ingress resource requires an Ingress Controller,

such as NGINX, Traefik, or HAProxy, which interprets the

Ingress definitions and configures the actual routing

mechanisms.

The capabilities of Ingress include SSL termination for

secure traffic handling, URL rewriting, redirection, and basic

Upendra Kanuru and Upendra Kumar Gurugubelli / IJETCSIT, 6(3), 1-12, 2025

3

rate limiting or authentication, often implemented

through annotations. It proved particularly beneficial for

microservices architectures where multiple services

shared a common domain, as it consolidated routing

logic and reduced the need for individual services to

possess public IP addresses.

The Ingress resource itself defines the routing rules,

but the actual traffic handling and feature

implementation are delegated to an external Ingress

Controller. This design centralizes external traffic

management, but it also means that the effective features

available to users are dictated by the capabilities and

limitations of the specific controller in use. This

architectural characteristic, while simplifying initial

external exposure, inadvertently led to a fragmented

ecosystem. Each controller implemented advanced

features through its own set of custom, often proprietary,

annotations. This lack of standardization at the advanced

feature level meant that Ingress configurations were not

portable across different controller implementations,

resulting in tight coupling to a specific vendor's solution.

This ultimately emerged as a significant limitation,

underscoring the need for a more unified and extensible

API like the Gateway API.

2.3. DNS and Service Discovery in Kubernetes

Kubernetes automatically creates DNS records for

both Services and Pods, enabling workloads within the

cluster to discover and communicate with Services using

consistent DNS names rather than ephemeral IP

addresses (Kubernetes.io). The DNS system dynamically

updates these records to reflect the current state of

Services and Pods, thereby underpinning microservice

communication by simplifying service discovery and

facilitating dynamic scaling.

DNS, often an overlooked component, is

nevertheless fundamental to Kubernetes' dynamic nature.

The ability for services to locate each other by name,

rather than relying on potentially changing IP addresses,

is crucial for maintaining self-healing capabilities and

enabling seamless scaling operations. However, this

reliance on DNS also positions it as a critical single point

of failure or a potential performance bottleneck if

misconfigured, or if propagation issues arise during

changes. This highlights that while API changes are

important, fundamental network services like DNS

require meticulous planning. The importance of careful

DNS planning during significant network shifts, such as

migrating from Ingress to Gateway API, is therefore

paramount. Unforeseen DNS propagation delays can

cause substantial short-term disruptions, emphasizing

that even well-designed API changes necessitate careful

operational planning around underlying network

fundamentals. This underscores the need for robust DNS

management strategies in any Kubernetes deployment.

2.4. Container Network Interfaces (CNIs) and Network

Performance

The Kubernetes networking model is central to its

functionality, with Container Network Interfaces (CNIs)

playing a pivotal role in seamlessly connecting containerized

workloads. Popular CNI plugins include Cilium, Flannel,

Calico, and Antrea. These plugins assign each Pod a globally

unique virtual IP address, facilitating communication

between Pods located on the same node or across different

nodes within the cluster.

Each CNI plugin presents a unique set of trade-offs

concerning simplicity, security, throughput, and scalability.

For example, Cilium is noted for its high performance and

advanced security features, leveraging eBPF (extended

Berkeley Packet Filter) to often outperform other CNIs like

Calico in terms of latency and throughput in specific

scenarios. The selection of a CNI plugin is not a minor

configuration detail but a foundational decision that

significantly influences the performance, reliability, and

security characteristics of the entire Kubernetes cluster.

Different CNIs offer varying levels of capabilities, ranging

from basic overlay networking (e.g., Flannel) to sophisticated

policy enforcement and observability (e.g., Cilium, Calico).

This implies that while Ingress and Gateway API manage

external traffic, the efficiency and security of internal Pod-to-

Pod communication are heavily dependent on the chosen

CNI. A high-performing CNI can maximize the benefits

derived from advanced traffic management APIs by ensuring

that the underlying network fabric is robust and efficient.

This illustrates the layered nature of Kubernetes networking,

where each component contributes synergistically to the

overall system's capabilities.

3. Challenges with Traditional Kubernetes

Ingress
3.1. Tight Coupling and Lack of Role Separation

Ingress configurations frequently intertwine routing

logic with specific details of the underlying infrastructure,

resulting in a tight coupling between these layers. This

design characteristic renders configurations less flexible and

more challenging to manage effectively as the environment

scales. The tight coupling inherent in Ingress means that

infrastructure providers, who are responsible for managing

load balancers and network policies, and application

developers, who define routing rules for their services, often

operate on the same Ingress resource. This blurs the

traditional ownership boundaries between these distinct roles.

When changes are required, this interdependency necessitates

close coordination, which increases the potential for

misconfigurations or delays.

This architectural limitation directly translates into

operational friction, leading to slower deployment cycles and

reduced agility for development teams. It impedes the ability

to implement true GitOps principles or self-service models,

as infrastructure changes might inadvertently disrupt

application routing, and vice versa. The absence of clear role

separation thus becomes a significant impediment to scaling

operations efficiently within large organizations.

Upendra Kanuru and Upendra Kumar Gurugubelli / IJETCSIT, 6(3), 1-12, 2025

4

3.2. Limitations in Advanced Routing and Protocol

Support

The capabilities of Ingress for defining fine-grained

routing rules were often found to be insufficient,

necessitating the search for more powerful solutions.

Ingress was primarily designed to handle HTTP/HTTPS

(Layer 7) traffic, lacking native support for other

essential protocols such as TCP or UDP (Layer 4).

Furthermore, advanced features like header-based

matching and traffic weighting frequently required the

use of custom, non-standard annotations, which varied

across different Ingress controller implementations.

The core Ingress specification was intentionally

minimal, leaving advanced routing features to be

implemented by individual Ingress controllers through

proprietary annotations. While this approach fostered

rapid innovation among controller vendors, it

inadvertently created a fragmented landscape where

advanced routing capabilities were neither standardized

nor portable. This situation compelled users to adopt

vendor-specific workarounds for common advanced

routing scenarios, such as canary deployments or A/B

testing, thereby limiting their flexibility and increasing

the complexity of managing diverse traffic patterns. The

absence of native multi-protocol support further

constrained Ingress's utility for modern microservices

that increasingly rely on protocols like gRPC or other

Layer 4 communication.

3.3. Difficulties in Multi-Tenancy Management

In environments supporting multiple tenants, Ingress

proved cumbersome to manage, leading to significant

complexities in isolating and controlling traffic for

different users or teams. Ensuring strict separation of

data and resources within multi-tenant SaaS platforms is

paramount for security and performance, but Ingress's

design made achieving this challenging [2].

While Ingress did support domain-based multi-

tenancy, it lacked robust, built-in mechanisms for fine-

grained multi-tenant isolation and policy enforcement at

the routing layer. This often necessitated complex

manual configurations of network policies or reliance on

external tools to achieve adequate tenant separation.

Such an approach increased the risk of "noisy neighbor"

issues, where one tenant's resource consumption

negatively impacts others , or even data leakage if

configurations were erroneous. The inherent limitations

of Ingress for multi-tenancy translated into significant

security and performance risks for platform operators. It

required extensive custom tooling and operational

overhead to enforce isolation, making it less ideal for

building robust "routing-as-a-service" platforms for

internal product teams or external customers. This

directly highlighted the need for a more opinionated and

structured approach to multi-tenancy, which the

Gateway API aims to provide.

3.4. Operational Overhead and Extensibility Constraints

The fragmented nature of Ingress setups, characterized

by diverse controller implementations and custom

annotations, often created considerable operational

challenges. These included the burden of managing multiple

configurations and ensuring consistency across different

environments. Even conversion tools like ingress2gateway,

while helpful, frequently required post-editing of the

generated YAML configurations to align with specific load

balancer or controller nuances [6].

The fact that ingress2gateway serves as a "scaffold, not a

final product" and necessitates "post-editing" underscores a

critical aspect of complex system migrations. While

automation tools can significantly accelerate the initial

conversion, they cannot fully capture the intricacies of

existing custom configurations, specific vendor

implementations, or unique operational requirements. This

implies that human expertise and manual refinement remain

indispensable in such migrations. It further highlights that

even declarative APIs, while simplifying management, still

demand a deep understanding when transitioning from legacy

systems. The "last mile" of migration often involves bespoke

adjustments, emphasizing the continued value of skilled

engineers in an increasingly automated world. This situation

reflects the industry's continuous push towards more

declarative, automated, and standardized solutions in cloud-

native environments. The shortcomings of Ingress in this

regard provided a strong impetus for the Gateway API to be

designed with explicit extensibility points and a more unified

approach to traffic management, aiming to reduce manual

intervention and improve overall operational efficiency.

4. The Kubernetes Gateway API: Design and

Capabilities
4.1. Core Design Principles: Role-Oriented, Portable,

Expressive, Extensible
The Kubernetes Gateway API is fundamentally shaped by

four core design principles:

 Role-oriented: This principle models API kinds

after the distinct organizational roles responsible for

managing Kubernetes service networking: the

Infrastructure Provider, the Cluster Operator, and

the Application Developer. This design allows

shared network infrastructure to be utilized by

multiple, potentially non-coordinating teams while

maintaining centralized control and governance.

 Portable: Defined as Custom Resources (CRDs),

the Gateway API specifications ensure broad

support across a wide range of implementations.

This directly addresses the issue of vendor-specific

annotations that plagued Ingress, promoting greater

interoperability.

 Expressive: The API provides built-in functionality

for common and advanced traffic routing scenarios,

such as header-based matching and traffic

weighting. These capabilities previously required

custom Ingress annotations, making the Gateway

API more intuitive and powerful out-of-the-box.

Upendra Kanuru and Upendra Kumar Gurugubelli / IJETCSIT, 6(3), 1-12, 2025

5

 Extensible: The design allows for custom

resources to be linked at various layers of the

API, enabling granular customization at

appropriate points within the API structure.

The "role-oriented" principle represents a profound

architectural shift from Ingress. Instead of a single,

monolithic Ingress resource attempting to serve all

purposes, the Gateway API explicitly separates concerns

and responsibilities across different personas. This

extends beyond mere technical separation; it directly

influences organizational design and workflow. The

Infrastructure Provider defines the Gateway Class, which

specifies the type of gateway controller. The Cluster

Operator then deploys Gateways based on these classes

and establishes overarching policies. Finally, the

Application Developer defines Routes for their specific

services, linking them to the appropriate Gateways. This

design enables decentralized application development

and deployment, granting developers greater autonomy

over their routing configurations, while simultaneously

maintaining centralized governance and policy

enforcement through the operators' control over

gateways and policies. This architectural pattern directly

addresses the tight coupling and multi-tenancy

challenges faced with Ingress by providing clearer

ownership boundaries and a structured method for

managing shared infrastructure. Consequently, it fosters

greater agility, mitigates misconfiguration risks, and

scales more effectively with organizational growth,

aligning seamlessly with modern platform engineering

principles.

4.2. Key Resources: Gateway Class, Gateway, and

Route Types (e.g., HTTP Route)
The Gateway API is composed of three primary resource

types that work in concert to manage traffic:

 Gateway Class: This resource functions as a

blueprint or template for Gateways. It defines a

group of Gateways that share a common

configuration and are managed by a specific

controller, such as k8s.io/gateway-nginx.

 Gateway: This resource represents the actual

traffic handling infrastructure, acting as an entry

point to the cluster, often backed by a cloud load

balancer. It defines listeners for specific

protocols (e.g., HTTP) on particular ports and

hostnames.

 Route Types (e.g., HTTPRoute): These resources

define the rules for how traffic is routed from a

Gateway to backend services. HTTPRoute

specifically handles HTTP traffic, allowing for

sophisticated matching based on paths, headers,

and hosts. Beyond HTTP/HTTPS, the Gateway

API extends support to other protocols through

dedicated route types like TCPRoute, TLSRoute,

and UDPRoute.

The relationship between Gateway and Route

objects introduces a "bidirectional trust model". A

Gateway can explicitly filter which Routes are permitted to

attach to its listeners, and conversely, Routes reference

specific Gateways. This contrasts sharply with Ingress, where

any Ingress resource could potentially attach to an Ingress

Controller without explicit permission. This explicit

association and filtering mechanism significantly enhances

both security and control within the cluster. Cluster operators

can define stringent policies at the Gateway level, ensuring

that application developers can only attach routes that

conform to organizational security and networking policies.

This prevents unauthorized traffic exposure and

misconfigurations, making the system inherently more robust

and auditable, especially crucial in multi-tenant or highly

regulated environments.

4.3. Enhanced Traffic Management Features: Header

Matching, Traffic Splitting, Policy Attachment

The Gateway API provides a comprehensive suite of

rich routing capabilities, including advanced HTTP routing,

granular header matching, flexible path rewriting, and

sophisticated traffic splitting mechanisms. These features

offer a significantly greater degree of control and flexibility

over how traffic is directed within the Kubernetes

environment. The API natively supports advanced traffic

control requirements, such as implementing canary releases

and blue-green deployments, through features like weighted

routing. Furthermore, the Policy Attachment model allows

for the decoration of Gateway API objects with

implementation-specific Custom Resource Definitions

(CRDs) to apply cross-cutting concerns like security policies

and rate limiting.

The native inclusion of features such as header-based

matching and traffic weighting marks a substantial

improvement. These capabilities were previously complex or

non-standard with Ingress, often requiring cumbersome

workarounds. Their direct integration into the Gateway API

means that advanced deployment strategies like canary

releases and A/B testing can now be implemented directly

and portably within the Kubernetes API itself, rather than

relying on external tools or controller-specific annotations.

This development significantly streamlines DevOps

practices, enabling faster and safer software delivery. It

reduces the need for complex external orchestration for

common deployment patterns, making the Kubernetes

platform more self-sufficient and lowering the cognitive load

on development teams. The native support for these features

reflects a maturation of the API, designed to directly support

and facilitate modern software engineering methodologies.

5. Practical Migration from Ingress to Gateway

API
5.1. Pre-Migration Planning and Assessment of

Dependencies

Before embarking on a migration from Ingress to Gateway

API, a thorough assessment of several critical factors is

imperative:

 Ingress Controller Support: It is essential to

determine if the currently deployed Ingress

Upendra Kanuru and Upendra Kumar Gurugubelli / IJETCSIT, 6(3), 1-12, 2025

6

controllers are compatible with or supported by

the Gateway API.

 Migration Strategy: A strategic decision must

be made regarding the migration approach:

either a complete, one-time replacement of

Ingress or a phased transition where both

Ingress and Gateway API operate concurrently.

Experience suggests that a one-time conversion

for primary resources, followed by gradual

onboarding of other services, can be an

effective strategy.

 Custom Dependencies: Organizations must

meticulously identify any custom annotations,

BackendConfigs, or specific load balancer

features that the existing Ingress setup relies

upon. It is important to note that some Ingress

annotations may not have direct 1:1 mappings

in the Gateway API, necessitating alternative

solutions or equivalent controller support.

 DNS Management: A clear understanding of

the current DNS setup is crucial, with a detailed

plan for potential A record updates that may be

required if the new Gateway exposes a different

IP address.

 Certificate Management: The existing

certificate management approach (e.g., pre-

shared certificates, cert-manager, or cloud

provider-managed certificates) must be

reviewed, and a plan for its seamless integration

with the Gateway API should be developed.

The planning considerations underscore that

migration is not merely a YAML conversion but a

complex process that impacts multiple layers of the

infrastructure, including DNS, certificates, and custom

configurations. The challenge of non-1:1 annotation mapping

highlights that unique, controller-specific Ingress features

might require re-architecting or finding new solutions within

the Gateway API, rather than a direct translation. This

reveals the inherent costs and complexities of transitioning

from a less standardized API, such as Ingress with its

numerous annotations, to a more standardized one. It

necessitates a holistic assessment of the entire networking

stack and its dependencies, extending beyond just the Ingress

resources themselves. A thorough pre-migration audit is

therefore critical to identify potential friction points and

avoid unexpected disruptions, emphasizing that technical

migrations are often as much about meticulous operational

planning as they are about code changes.

5.2. Architectural Comparison: Ingress-Based vs. Gateway

API-Based Deployments
The architectural shift from an Ingress-based setup to a

Gateway API-based deployment represents a significant

evolution in how traffic is managed within Kubernetes.

5.2.1. Before (Ingress-Based):

In a traditional Ingress setup, external traffic flows

through an External Load Balancer, which then directs

requests to an Ingress Controller. This controller, in turn,

routes traffic to the appropriate Kubernetes Service, which

finally distributes it among the backend Pods. DNS A

records typically point to the Ingress IP, and BackendConfig

resources are often used for specific load balancer features or

timeouts.

Figure 1. Traffic Flow

A key architectural characteristic of this model is its

monolithic nature. The Ingress resource itself conflates

concerns from different operational roles. It defines both

infrastructure-level configuration (the logical entry point

for traffic) and application-level routing rules (path-

based routing to services). This often leads to conflicts

and a lack of clear ownership. Furthermore, to

implement advanced features such as TLS configuration,

timeouts, or weighted traffic splitting, the Ingress

specification relies heavily on non-standard, vendor-

specific annotations or Custom Resource Definitions

(CRDs) like Backend Config. This results in a lack of

portability and a fragmented user experience across

different Kubernetes environments.

5.2.2. After (Gateway API-Based):

With the Gateway API, the flow is more granular. An

External Load Balancer directs traffic to a Gateway resource.

The Gateway then uses HTTP Route (or other Route types)

to define how traffic is forwarded to the Service, which

ultimately reaches the Pods. DNS A records are updated to

point to the Gateway's IP, and certificate management is

integrated at the Gateway level. Additional configurations

like Backend Config and Gateway policies can be applied.

5.2.3. Certificate Management:

The following table provides a side-by-side comparison of

the architectural components:

Table 1. Architectural Components: Ingress vs. Gateway API

Component Type Ingress-Based Deployment Gateway API-Based Deployment

External Load

Balancer

External LB External LB

Controller Ingress Controller Gateway (managed by a GatewayClass controller)

Routing Resource Ingress HTTPRoute (or other Route types like TCPRoute,

External
Client

External Load
Balancer

Ingress
Controller

Kubernetes
Service

Pods

Upendra Kanuru and Upendra Kumar Gurugubelli / IJETCSIT, 6(3), 1-12, 2025

7

TLS Route)

Backend Service Service Service

DNS DNS A Record (pointing to Ingress IP) DNS A Record (pointing to Gateway IP)

Certificate

Management

Often external or via Ingress annotations Integrated via Gateway annotations or cert-manager

Policy/Config Backend Config (controller-specific

annotations)

Backend Config / Gateway Policy (explicit

resources/CRDs)

This table offers a clear, side-by-side visual

representation of the architectural transformation, aiding

in a quick understanding of the shift in responsibility and

component interaction. By explicitly mapping

components, it clarifies how familiar concepts are re-

represented or replaced in the new API, facilitating a

deeper comprehension of the conceptual transition

beyond mere YAML changes.

The architectural comparison clearly illustrates a

decomposition of the Ingress Controller's responsibilities

into distinct Gateway API resources (Gateway Class,

Gateway, HTTP Route). The Ingress Controller often

bundled the load balancer logic, routing rules, and policy

enforcement into a single entity. In contrast, the Gateway

API explicitly separates these concerns. This decoupling

enables greater modularity and independent evolution of

components. Infrastructure providers can manage the

underlying Gateways, cluster operators can enforce

policies on them, and application developers can define

their specific routes, all with clearer boundaries of

responsibility. This modularity is fundamental to scaling

traffic management effectively in large, complex

organizations, as it reduces inter-team dependencies and

allows for more specialized tooling and expertise at each

layer.

5.3. Leveraging Migration Tools: The Role and

Limitations of ingress2gateway

The ingress2gateway CLI tool is designed to assist

in the migration process by converting existing Ingress

resources into the Gateway API format. This tool can

serve as a valuable starting point for organizations

undertaking the transition. However, its utility has

specific limitations: it currently supports only the

ingress-nginx provider, which restricts its universal

applicability. Furthermore, the tool often requires

subsequent manual editing of the generated YAML

configurations to precisely align with the nuances of

specific load balancers or controller implementations.

The observation that ingress2gateway functions as a

"scaffold, not a final product" and necessitates "post-

editing" highlights a crucial aspect of complex system

migrations. While automation tools can significantly

accelerate the initial phase of conversion, they are

inherently limited in their ability to fully capture the

intricacies of existing custom configurations, specific

vendor implementations, or unique operational

requirements. This implies that human expertise and

manual refinement remain indispensable throughout

such migrations. It underscores that declarative APIs,

while simplifying ongoing management, still demand a deep

understanding and hands-on intervention when transitioning

from legacy systems. The "last mile" of migration frequently

involves bespoke adjustments, emphasizing the enduring

value of skilled engineers in an increasingly automated

technological landscape.

5.4. Step-by-Step Migration Walkthrough with

Configuration Examples

To illustrate the practical migration process, consider a

common original setup and the corresponding steps to

transition to the Gateway API.

5.4.1. Original Setup Example:

A typical Ingress setup might involve an Ingress

resource exposed via an external load balancer. A DNS A

record points to the Ingress Controller's IP address. Backend

Config resources are defined for specific cloud provider

features like Cloud Armor or custom timeouts. The backend

application runs within a Deployment and Pods, exposed via

a Kubernetes Service of type NodePort or Cluster IP on a

specific port, such as 8080.

Migration Process Steps:

1. Create a Gateway Class: This resource defines the

controller responsible for implementing the

Gateway. For instance, if using an NGINX-based

gateway controller, the controller Name would

specify k8s.io/gateway-nginx.

YAML

apiVersion: gateway.networking.k8s.io/v1

kind: GatewayClass

metadata:

 name: external-gateway

spec:

 controllerName: k8s.io/gateway-nginx

2. Define a Gateway: This resource represents the

actual entry point for traffic, such as a cloud load

balancer. It specifies listeners for particular

protocols (e.g., HTTP) on designated ports (e.g., 80)

and hostnames (e.g., "example.com").

YAML

apiVersion: gateway.networking.k8s.io/v1

kind: Gateway

metadata:

 name: my-gateway

 namespace: default

spec:

 gatewayClassName: external-gateway

 listeners:

 - name: http

Upendra Kanuru and Upendra Kumar Gurugubelli / IJETCSIT, 6(3), 1-12, 2025

8

 port: 80

 protocol: HTTP

 hostname: "example.com"

3. Replace Ingress with HTTP Route: The HTTP

Route resource defines the specific routing rules

for HTTP traffic, effectively replacing the

functionality of the legacy Ingress resource. It

specifies how incoming requests, based on

criteria like path prefixes, should be directed to

backend services.

YAML

apiVersion: gateway.networking.k8s.io/v1

kind: HTTPRoute

metadata:

 name: my-app-route

 namespace: default

spec:

 parentRefs:

 - name: my-gateway

 rules:

 - matches:

 - path:

 type: PathPrefix

 value: "/"

 backendRefs:

 - name: my-service

 port: 8080

The step-by-step process illustrates how the

Gateway API achieves its flexibility and power through

the composition of multiple, smaller, and role-specific

resources (Gateway Class, Gateway, HTTP Route). This

contrasts with the more monolithic nature of the Ingress

resource. This compositional approach significantly

enhances clarity, auditability, and the ability to delegate

management responsibilities. Each resource can be

managed by a different team or automated process,

allowing for more granular control and reducing the blast

radius of changes. This embodies the core Kubernetes

philosophy of declarative configuration, but applied with

a more refined and modular design, ultimately leading to

a more maintainable and scalable system.

5.5. Addressing Common Migration Challenges: DNS,

Certificate Management, and Annotation

Equivalencies
During the migration to Gateway API, several

common challenges typically arise, requiring careful

planning and execution.

 DNS Consideration: If the newly created

Gateway exposes a new external load balancer

IP address, it is imperative to update the

corresponding A record in the DNS system to

point to this new IP. DNS propagation during

this switch can introduce short-term disruptions

if not meticulously planned. It is advisable to

adjust the Time-To-Live (TTL) settings for

DNS records accordingly to minimize potential

downtime.

 Certificates: The Gateway API facilitates a

transition towards more streamlined certificate

management. Organizations can now leverage

managed certificates through tools like cert-manager

or directly utilize cloud provider-managed

certificates via Gateway annotations or controller-

specific configurations. Centralizing TLS

termination at the Gateway simplifies certificate

management and enhances overall security for

HTTPS traffic across applications.

 Backend Config and Gateway Policy: The Gateway

API supports the creation of equivalent Backend

Config and other Gateway policies for various

configurations, such as SSL settings, health checks,

and other required parameters. However, a notable

challenge is that some annotations from the legacy

Ingress API, such as

backendConfig.cloud.google.com, may not have

direct 1:1 mappings in the Gateway API. This

necessitates ensuring that the chosen Gateway API

controller provides equivalent functionality or

requires re-architecting the specific feature.

The challenges highlighted, including DNS propagation,

certificate management, and annotation equivalencies,

demonstrate that a seemingly "simple" API migration can

have ripple effects across the entire cloud-native stack. DNS

is critical for service reachability, certificates are

fundamental for security, and annotations provide custom

features. A change in one layer, specifically the traffic

management API, necessitates careful consideration and

potential adjustments in other interconnected components.

This reinforces the concept that cloud-native systems are

inherently highly interconnected. Successful migrations

require not only a thorough understanding of the new API

but also a deep knowledge of the existing infrastructure, its

dependencies, and how various components (e.g., DNS, cert-

manager, cloud load balancers) interact. This

interconnectedness emphasizes the critical need for

comprehensive testing and robust rollback strategies that

account for the potential ripple effects throughout the entire

system.

5.6 Migration Execution: A Strategy for Monitoring and

Validation
While Section 5.5 outlined the static challenges inherent

in the migration, the dynamic execution phase requires a

robust strategy to ensure service continuity and validate

success. This section details a phased methodology for

executing the migration, monitoring its progress in real-time,

and formally asserting its successful completion [1].

5.6.1. Phased Rollout and Live Traffic Shaping

A direct, "big bang" cutover from Ingress to Gateway is

fraught with risk. A more prudent, industry-standard

approach involves a parallel deployment and a gradual traffic

shift, often referred to as a canary or blue-green deployment

strategy [7].

 Parallel Deployment: The first step is to deploy the

new Gateway API resources (Gateway,

Upendra Kanuru and Upendra Kumar Gurugubelli / IJETCSIT, 6(3), 1-12, 2025

9

HTTPRoute, GatewayClass, and associated

policies) in parallel with the existing Ingress

and BackendConfig resources. At this stage, the

new Gateway will be provisioned with a

distinct external IP address, but no production

traffic will be directed to it. This allows for

internal validation of the new configuration

against a non-production endpoint.

 DNS-Based Traffic Shaping: The transition of

live traffic is most effectively managed at the

DNS layer. By utilizing weighted DNS records

(e.g., AWS Route 53 Weighted Routing,

Google Cloud DNS Weighted Round Robin),

an operator can precisely control the percentage

of traffic directed to the legacy Ingress IP

versus the new Gateway IP. A typical rollout

schedule proceeds as follows:

o Phase 1 (1-5% Traffic): A small fraction of

traffic is shifted to the Gateway API

endpoint. This phase is critical for

observing the new stack under real-world

load without significant user impact.

o Phase 2 (10-50% Traffic): As confidence in

the new stack grows, the traffic percentage

is incrementally increased. Continuous

monitoring is essential during this phase.

o Phase 3 (100% Traffic): Once all metrics

indicate stability, 100% of traffic is

directed to the Gateway. The legacy

Ingress remains operational as a rapid

rollback path.

This phased approach provides a crucial safety

mechanism; any detected anomaly can trigger an

immediate rollback by reverting the DNS weights to

favor the legacy Ingress IP, minimizing the mean time to

recovery (MTTR).

5.6.2. Multi-Layered Monitoring During Transition

Effective monitoring during the migration requires

observing telemetry from multiple layers of the stack to

gain a holistic view of system health.

 Infrastructure-Level Metrics: Monitor the cloud

provider's load balancer metrics for both the old

and new endpoints. Key Performance Indicators

(KPIs) include:

o Request Count: Should decrease on the

legacy load balancer and proportionally

increase on the new one.

o End-to-End Latency (p50, p90, p99): Must

remain within or below established

baselines

o HTTP Error Rates: Server-side 5xx and

client-side 4xx error rates should not

increase. A spike in 5xx errors on the new

endpoint is a critical signal for immediate

rollback.

 Controller-Level Metrics: The Gateway and

Ingress controllers themselves expose vital

Prometheus metrics. Monitor the request

throughput, configuration reloads successes/failures,

and processing latency for both controllers to ensure

they are functioning as expected.

 Application-Level Metrics: The ultimate source of

truth is the application itself. Monitor application-

specific dashboards for business-critical metrics,

such as user transaction success rates, application

error logs, and internal service-to-service

communication latency. Any degradation here

indicates a potential issue with the new traffic

routing configuration.

5.6.3. Asserting Migration Success and Decommissioning

The migration cannot be considered complete until its

success is formally verified and legacy artifacts are retired.

 Defining Success Criteria: Success should be

measured against a pre-defined set of criteria: A

typical rollout schedule proceeds as follows:

o Sustained Stability: The new Gateway API

stack has handled 100% of production traffic

for a sustained observation period (e.g., 24-72

hours) without any degradation in the KPIs

mentioned above(5.6.2).

o Functional Parity Verification: A

comprehensive suite of automated end-to-end

and integration tests must be executed and

passed against the new endpoint. This confirms

that all required functionality previously

managed by Ingress annotations or

BackendConfig (e.g., custom timeouts, health

check configurations, security policies) is

correctly implemented in the Gateway API

configuration.

o Observability Confirmation: All monitoring

dashboards, logging queries, and alerting rules

have been successfully migrated to target the

new Gateway resources and are confirmed to be

reporting accurately.

 Decommissioning Legacy Resources: Once all

success criteria are met, the final step is to

decommission the legacy resources to reduce

complexity and cost. This involves the systematic

deletion of the Ingress and BackendConfig

resources, followed by the release of the associated

external load balancer and its IP address. This final

act formally concludes the migration project.

6. Results and Discussion
6.1. Observed Improvements in Separation of Concerns and

Operational Clarity

The adoption of the Gateway API demonstrably

improves the separation of concerns, leading to a cleaner

decoupling of infrastructure and application layer routing.

This architectural refinement significantly enhances

maintainability and empowers different teams to manage

their respective domains more independently. Consequently,

clearer ownership boundaries are established, which in turn

reduces cross-team friction and improves the clarity of

Responsible, Accountable, Consulted, and Informed (RACI)

charts within an organization.

Upendra Kanuru and Upendra Kumar Gurugubelli / IJETCSIT, 6(3), 1-12, 2025

10

The "separation of concerns" and "clearer ownership

boundaries" are not merely technical benefits; they

directly translate into improved organizational efficiency

and a reduction in inter-team conflicts. By aligning API

resources with distinct organizational roles -

Infrastructure Provider, Cluster Operator, and

Application Developer - the Gateway API facilitates a

more streamlined and efficient workflow. This highlights

that architectural decisions in cloud-native environments

have profound organizational impacts. A well-designed

API can significantly reduce communication overhead,

empower teams with greater autonomy over their

specific domain, and ultimately accelerate software

delivery cycles. This demonstrates how technical

elegance can lead to operational excellence and foster

better team collaboration, effectively illustrating

Conway's Law in action.

6.2. Analysis of Enhanced Routing Flexibility and

Scalability

The Gateway API provides a robust set of rich

routing capabilities, including advanced HTTP routing,

header matching, path rewriting, and sophisticated traffic

splitting. These advanced features offer significantly

greater control and flexibility over how traffic is directed

within the cluster. A key improvement over Ingress is its

support for multi-protocol traffic, encompassing HTTP,

HTTPS, TCP, UDP, and TLS, thereby addressing a

critical limitation of its predecessor. Furthermore, the

API enables the scaling of routing logic independently

per team or environment without interference, which

promotes superior scalability across diverse teams and

multiple clusters.

The native support for advanced routing features

such as traffic splitting and header matching directly

enables more sophisticated deployment strategies,

including canary releases and A/B testing, to be

implemented consistently across an organization. These

strategies were previously cumbersome or non-standard

with Ingress. This significantly streamlines DevOps

practices, leading to faster and safer software delivery. It

reduces the reliance on complex external tooling or

custom scripts, simplifying the CI/CD pipeline and

enhancing the overall reliability of application updates.

This positions the traffic management layer as a crucial

enabler for continuous delivery and experimentation

within cloud-native environments [4].

6.3. Impact on Role-Based Access Control and Security

Post-Migration

The Gateway API significantly improves Role-

Based Access Control (RBAC) through the

establishment of clear resource boundaries among

Gateway, Gateway Class, and HTTP Route objects. This

structured approach allows for more precise control over

which roles can define and manage different aspects of

traffic routing. Policies within the Gateway API further

aid in enforcing security and access controls, enabling

functionalities such as limiting traffic to specific IP

addresses or applying rate limiting policies. Additionally,

centralizing TLS termination at the Gateway simplifies

certificate management and enhances the overall security

posture by ensuring consistent HTTPS enforcement across

applications.

The enhanced RBAC and policy attachment capabilities

of the Gateway API facilitate a "shift-left" approach to

security and governance. Instead of security being an

afterthought or applied inconsistently, policies can be defined

and enforced at the Gateway and Route levels by cluster

operators, providing a centralized control point for ingress

traffic. This leads to a more secure and compliant posture for

cloud-native applications. By embedding security and access

control directly into the API definition and enforcing it

through explicit resource boundaries, organizations can

effectively reduce the attack surface, ensure consistent policy

application, and simplify auditing processes. This move

towards declarative security policies at the network edge is

critical for managing risk effectively in dynamic

microservices environments.

6.4. Future-Proofing Infrastructure with Gateway API

The Gateway API is explicitly designed to support future

advancements in cloud-native networking, including

protocols like gRPC, mesh-style routing, and other advanced

features. This forward-looking design positions it as a more

sustainable long-term solution for traffic management. The

Kubernetes community's active promotion of the Gateway

API as the successor to Ingress clearly indicates its strategic

importance, ensuring that infrastructure adopting it is

prepared for upcoming developments in the ecosystem. The

API integrates seamlessly with Kubernetes' native resources

and is designed to work effectively with service meshes such

as Istio and Linkerd.

The explicit design for "future-ready extensibility" and

its strong alignment with the Kubernetes SIG-NETWORK

roadmap signifies that adopting the Gateway API is not

merely a tactical migration but a strategic investment. It

positions an organization's infrastructure to seamlessly

integrate with evolving cloud-native patterns like service

meshes and new protocols (e.g., gRPC). This provides a

compelling argument for early adoption, as it reduces future

technical debt and ensures compatibility with upcoming

ecosystem advancements. Organizations that migrate now

will be better equipped to leverage emerging technologies

and respond effectively to changing business requirements,

demonstrating foresight and a commitment to modern cloud-

native practices.

 6.5. Comparison of Practical Outcomes Against

Theoretical Advantages
The practical outcomes observed during real-world

migrations largely validate the theoretical advantages

attributed to the Gateway API. The benefits of separation of

concerns, rich routing capabilities, enhanced RBAC, and

future-readiness, as detailed in the API's design principles,

are indeed realized in operational environments. While

challenges such as DNS propagation during transitions and

Upendra Kanuru and Upendra Kumar Gurugubelli / IJETCSIT, 6(3), 1-12, 2025

11

the mapping of legacy Ingress annotations to Gateway

API equivalents exist, these can be effectively mitigated

through meticulous planning and careful post-editing of

tool-generated configurations. Despite the upfront effort

required for migration, the long-term benefits in terms of

maintainability, scalability, and enhanced security are

consistently deemed worthwhile. The following table

provides a direct, comparative summary of the two APIs'

capabilities, reinforcing the central argument of this paper.

This table serves as a concise, comparative summary of the

two APIs' capabilities. It allows for a quick identification of

the specific areas where the Gateway API offers significant

improvements over Ingress, thereby reinforcing the central

argument of this paper. It also provides a valuable reference

point for decision-makers evaluating the benefits of

migration.

Table 2. Comparison of Kubernetes Ingress vs. Gateway API Features

Feature Kubernetes Ingress Kubernetes Gateway API

Protocol Support Primarily HTTP/HTTPS HTTP/HTTPS, TCP, UDP, TLS, gRPC

Extensibility Model Annotation-based, controller-specific Explicit API extension points (CRDs)

Role Separation Limited/Implicit Explicit (Role-Oriented: Infra, Operator,

Developer)

Multi-Tenancy Support Challenging, often requires external

tooling

Built-in, robust via role separation and

policy attachment

Advanced Routing Limited (via annotations) Native, declarative (header matching,

traffic splitting)

Policy Enforcement Limited (via annotations) Native, declarative (via Policy Attachment)

Community Adoption/Future-

Proofing

Legacy, successor planned Future-forward, community-backed, active

development

Configuration Complexity Higher for advanced use cases due to ad-

hoc extensions

Lower for advanced use cases due to

structured design

7. Conclusion
The migration from Kubernetes Ingress to the

Gateway API represents a pivotal advancement in

Kubernetes traffic management, marking a strategic shift

from simple HTTP routing to a more sophisticated,

extensible, and role-oriented paradigm. This paper has

detailed the inherent limitations of traditional Ingress,

particularly its tight coupling of configuration, restricted

routing capabilities, and challenges in managing multi-

tenant environments. In stark contrast, the Gateway API

offers a robust and forward-looking solution through its

principled design, clearly defined and composable

resources (Gateway Class, Gateway, Route), and native

support for advanced traffic management features.

While the practical aspects of migration involve

careful planning, meticulous attention to DNS

considerations and necessary refinements of tool-

generated configurations, the observed benefits

unequivocally justify the transition. The enhanced

operational clarity, superior routing flexibility, improved

security posture through refined RBAC and policy

enforcement, and the inherent future-proofing of

infrastructure collectively demonstrate the significant

value proposition of the Gateway API. As the

Kubernetes community continues to champion the

Gateway API as the future standard for ingress and

service mesh functionalities, its adoption becomes

crucial for organizations striving to build resilient,

scalable, and maintainable cloud-native applications that

can adapt to evolving demands and technological

landscapes.

References
[1] Adusumilli, L. V. P. (2025). Serverless Kubernetes: The

Evolution of Container Orchestration. European Journal

of Computer Science and Information Technology,

13(30), 20-36.DOI:

10.37745/ejcsit.2013/vol13n302036.

[2] Al-Dhuraibi, M., Al-Khawlani, M., & Al-Hakimi, A.

(2025). Kubernetes Security: A Comprehensive

Analysis of Architectural Hardening, Access Control,

and Compliance. MDPI.

https://doi.org/10.3390/jcp5020030

[3] Chippagiri, S., Ravula, P., & Gangwani, D. (2024).

Optimizing Kubernetes Network Performance: A Study

of Container Network Interfaces and System Tuning

Profiles. European Journal of Theoretical and Applied

Sciences, 2(6), 651-668. DOI:

10.59324/ejtas.2024.2(6).58.

[4] Egbuna, J. (2025). The Evolution and Impact of

Kubernetes in Modern Software Engineering: A

Review. International Journal of Academic and Applied

Research (IJAAR), 9(4), 56-63. Retrieved from

http://ijeais.org/wp-

content/uploads/2025/4/IJAAR250406.pdf

[5] Gudelli, V. R. (2021). Kubernetes-based orchestration

for scalable cloud solutions. International Journal of

Novel Research and Development (IJNRD), 6(9), 36-

40. https://ijnrd.org/papers/IJNRD2109006.pdf

[6] Kubernetes Gateway API. (n.d.). https://gateway-

api.sigs.k8s.io

[7] O'Dwyer, N., & O'Sullivan, B. (2025). Continuous

Deployment: A Review of Current Practices and Future

Directions. arXiv preprint arXiv:2501.07204. Retrieved

from https://arxiv.org/pdf/2501.07204

[8] Ogunrinde, V., Mehra, A., & Martin, O. (2025).

Understanding Kubernetes Networking: A Practical

https://doi.org/10.3390/jcp5020030
http://ijeais.org/wp-content/uploads/2025/4/IJAAR250406.pdf
http://ijeais.org/wp-content/uploads/2025/4/IJAAR250406.pdf
https://ijnrd.org/papers/IJNRD2109006.pdf
https://gateway-api.sigs.k8s.io/
https://gateway-api.sigs.k8s.io/
https://arxiv.org/pdf/2501.07204

Upendra Kanuru and Upendra Kumar Gurugubelli / IJETCSIT, 6(3), 1-12, 2025

12

Guide to Architecture, Implementation, and Best

Practices. DOI: 10.34218/IJRCAIT_08_01_234

[9] Upendra, Kanuru. (2025). Enterprise Security

Strategy Framework for Electronic Health Record

Organizations. International Journal of Advanced

Research in Computer and Communication

Engineering, 14(5), 1-8.

https://doi.org/10.17148/IJARCCE.2025.1450 1

https://www.google.com/search?q=https://doi.org/10.17148/IJARCCE.2025.14501
https://www.google.com/search?q=https://doi.org/10.17148/IJARCCE.2025.14501
https://doi.org/10.17148/IJARCCE.2025.1450%201

