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Abstract - In data-driven environments where datasets evolve over time, the challenge of maintaining consistent and high-
performing analytical models becomes increasingly critical. This paper investigates the impact of data versioning on the 

performance of longitudinal analytical models. We explore how changes in data over time, captured through systematic 

versioning, influence model accuracy, stability, and generalizability. Using real-world longitudinal datasets and a comparative 

modeling framework, we assess various data versioning strategies and their effects on predictive performance. Our findings reveal 

that integrating data versioning not only enhances reproducibility but also enables more robust handling of performance drift over 

time. This research offers practical insights for data scientists and engineers aiming to maintain the fidelity of analytical systems in 

dynamic environments. 
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1. Introduction 
1.1. Context: Importance of Data in Analytical Modeling 

In the realm of modern analytical modeling, data serves as the foundational asset driving insights, decision-making, and 

predictive capabilities. From healthcare and finance to manufacturing and climate science, analytical models depend heavily on the 

availability, quality, and consistency of data to function effectively. The value of data in these domains is magnified when the 

analysis spans across time capturing patterns, behaviors, and trends that unfold longitudinally. However, the dynamic nature of 

real-world environments means that data is rarely static. It is constantly evolving due to updates, corrections, schema changes, or 
newly acquired observations. As such, the ability to manage, trace, and analyze these changes becomes essential for ensuring that 

models remain accurate and reliable over time. 

 

1.2. Motivation: Why Data Versioning Matters in Longitudinal Analysis 

Longitudinal analysis inherently deals with temporal datasets records that accumulate and change over weeks, months, or even 

years. In these scenarios, the same dataset may be modified multiple times due to corrections, inclusion of late-arriving data, or 

feature enrichment. Without a robust system to track and version these changes, it becomes difficult to determine how or why a 

model's performance shifts over time. Data versioning, therefore, offers a structured way to manage these changes, providing 

transparency and accountability in data handling. It enables practitioners to recreate past data states, assess the impact of specific 

data modifications, and compare model performance across different dataset versions. This is particularly critical in regulated 

domains like healthcare, where traceability and reproducibility are non-negotiable. 
 

1.3. Problem Statement 

Despite the increasing use of machine learning and data analytics in longitudinal settings, there is a lack of systematic 

understanding regarding how data versioning influences model performance over time. Most analytical workflows treat data as a 

static input, failing to account for the iterative and mutable nature of real-world datasets. As a result, models are often trained and 

evaluated on data snapshots that may not reflect the full history of changes, potentially leading to inaccurate performance 

estimations, poor generalization, or undetected bias. This paper addresses the gap by evaluating the influence of various data 

versioning strategies on the predictive performance of longitudinal models, highlighting the risks of neglecting data evolution in 

model development and maintenance. 

 

1.4. Objectives of the Paper 

The primary objective of this study is to investigate how data versioning affects the performance and reliability of longitudinal 
analytical models. Specifically, the paper aims to (1) define and categorize the types of data versioning applicable to longitudinal 

datasets, (2) assess how changes in data versions influence the outcomes of predictive models, and (3) provide empirical evidence 
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on the benefits and limitations of versioned data in analytical pipelines. In doing so, the paper also aims to inform best practices for 

implementing data versioning strategies in real-world applications. 

 

1.5. Structure of the Paper 

The paper is organized into several key sections. Following the introduction, Section 2 provides background on longitudinal 

analytical modeling and data versioning technologies, as well as a review of related work on model drift and data management.  
Section 3 delves into the concept of data versioning in longitudinal contexts, discussing how data evolves over time and presenting 

illustrative scenarios. Section 4 outlines the methodology, including datasets, models, and performance metrics used in our 

experimental study. Section 5 presents the results and analysis, while Section 6 discusses the implications of the findings. The 

paper concludes in Section 7 with a summary of insights and recommendations for future work. 

 

2. Background and Related Work 
2.1. Overview of Longitudinal Analytical Models 

Longitudinal analytical models are designed to analyze data collected across multiple time points. These models are crucial in 

fields such as healthcare (e.g., tracking patient health progression), predictive maintenance (e.g., forecasting equipment failure), 

and finance (e.g., credit risk modeling). Unlike cross-sectional models that analyze a single snapshot, longitudinal models must 

account for temporal dependencies, recurring patterns, and evolving features. Techniques used include time-series models like 

ARIMA, deep learning architectures such as LSTM and Transformer networks, and survival models like the Cox Proportional 

Hazards model. These models are highly sensitive to the temporal structure of the data, making them particularly vulnerable to 

inconsistencies and changes in the dataset over time. 

 

2.2. Data Versioning Fundamentals 

Data versioning is the process of tracking and managing changes to datasets over time. Just as software version control (e.g., 

Git) allows developers to manage code changes, data versioning tools like DVC (Data Version Control), Delta Lake, and 
Pachyderm enable similar functionality for datasets. These tools allow users to snapshot datasets, branch versions, and revert to 

earlier states, often integrating seamlessly with machine learning workflows. Versioning can be implemented at the file level 

(storing entire datasets), row level (storing deltas), or metadata level (storing references to changes). The goal is to ensure 

reproducibility, traceability, and accountability in data-driven processes. In longitudinal studies, versioning is particularly 

important because even small changes to time-dependent features can have significant effects on model predictions. 

Table 1. Key Elements in Data Versioning Impact Analysis 

Element Description Example Tools  Techniques Relevance to Model 

Performance 

Data Versioning 

System 

Tracks changes to datasets over time DVC, LakeFS, Delta Lake Ensures reproducibility and 

traceability 

Model Type Longitudinal models that observe data 

across time points 

RNNs, LSTMs, Survival 

Models 

Sensitive to input data 

shifts 

Version Types Nature of data changes over time Feature drift, missing data, 

label corrections 

Impacts learning stability 

Performance Metrics Used to evaluate model consistency and 

generalization across versions 

MAE, RMSE, AUC, F1 

Score 

Quantifies impact of 

changes 

Version Management 
Strategy 

How versions are integrated, compared, or 
excluded 

Snapshotting, Differential 
Audits 

Helps isolate performance 
regressions 

Evaluation Methods Methodology to assess version impact Hold-out validation, Rolling 

Horizon 

Temporal alignment is 

critical 

 

2.3. Prior Research on Model Performance Drift and Data Management 

Model performance drift refers to the degradation of a model’s accuracy over time due to changes in the data distribution, 

target concept, or feature relationships. Several studies have explored performance drift in dynamic environments, proposing 

solutions such as continual learning, adaptive retraining, or drift detection algorithms. However, many of these approaches treat 

data change as an abstract phenomenon, without directly addressing the importance of managing historical data versions. Similarly, 

research on data management has focused on issues like data lineage, metadata tracking, and pipeline automation, often omitting 

explicit studies on how versioned datasets impact longitudinal model outcomes. This highlights a disconnect between data 

governance and modeling practices. 
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2.4. Gaps in the Current Literature 

Despite the critical role of data versioning in managing dynamic datasets, little empirical research has been done on its direct 

impact on longitudinal model performance. Most existing work treats data as static or assumes perfect temporal alignment between 

training and test data. There is a lack of benchmarks or frameworks that evaluate model robustness across evolving data versions. 

Moreover, no standardized methodology exists for integrating version control into longitudinal modeling pipelines. This paper 

seeks to fill this gap by offering a systematic exploration of how data versioning affects analytical outcomes over time. 
 

3. Data Versioning in Longitudinal Contexts 
In the context of modern data-driven systems, particularly those dealing with time-sensitive or sequential information, the 

concept of data versioning has become increasingly important. Longitudinal datasets, which involve repeated observations or 

evolving information over time, require robust mechanisms to manage changes and maintain traceability. Data versioning allows 

practitioners to systematically capture, track, and differentiate between various states or transformations of a dataset as it evolves. 

This capability is critical not only for ensuring consistency in model training and evaluation but also for enhancing transparency, 
reproducibility, and regulatory compliance across a wide range of applications such as healthcare, finance, industrial monitoring, 

and Internet of Things (IoT) environments. 

 

3.1. Definition and Types of Data Versioning 

Data versioning in longitudinal contexts refers to the structured approach of recording and managing different states or 

instances of a dataset as it changes over time. These changes can arise from data acquisition processes, transformations in data 

pipelines, schema modifications, or simply due to new incoming data in real-time systems. There are three primary methods by 

which data versioning can be implemented: snapshotting, branching, and timestamp-based versioning. Snapshotting involves 

capturing the complete dataset at a given point in time. This method is conceptually straightforward and makes it easy to restore a 

previous version or audit historical data. However, it is typically space-intensive, especially when datasets are large or updated 

frequently, as each snapshot consumes significant storage. Branching, on the other hand, creates parallel versions of a dataset to 
support experimentation or divergent processing.  

 

For instance, one branch of the data may be used for training a machine learning model with a particular feature set, while 

another branch could be used for testing with alternative preprocessing strategies. While branching supports flexibility and 

innovation, it introduces complexity in managing data lineage requiring clear documentation of how each branch was derived and 

how it relates to the original data. The third method, timestamp-based versioning, assigns temporal markers to data entries, 

enabling fine-grained tracking of data changes. This is particularly useful in streaming or append-only data environments such as 

sensor feeds, financial transaction logs, or web activity records. Timestamp-based versioning is efficient for tracking incremental 

updates but requires precise time synchronization and mechanisms to manage potential time-based inconsistencies. Each of these 

methods serves different needs, and the appropriate choice depends on the nature of the data, storage constraints, and the specific 

goals of the longitudinal analysis. 

 

3.2. How Data Evolves Over Time in Longitudinal Datasets 

Longitudinal datasets are inherently dynamic, meaning that their contents and structure tend to evolve continuously over time. 

This evolution may be driven by new data being added, existing records being updated, or the underlying data collection and 

processing protocols changing. In healthcare, for example, patient records are not static they are updated as new diagnoses are 

made, laboratory results are recorded, medications are prescribed, and treatments progress. These updates change the data context 

in meaningful ways, often influencing downstream analytical models used for diagnosis, risk prediction, or treatment 

recommendation. Similarly, in IoT-based systems, such as those involving smart cities or industrial monitoring, sensors 

continuously generate data. These sensors may be recalibrated, replaced, or moved, resulting in shifts in data quality or 

measurement scales. In financial systems, longitudinal data takes the form of constantly updating transactions, market indices, or 

portfolio values. Each update not only alters the data itself but also the statistical distribution and relationships within the dataset, 

potentially affecting any predictive models built on top of it. 
 

Moreover, changes in data pipelines such as different data cleaning strategies, revised feature engineering rules, or updated 

schema definitions can lead to new versions of what is logically the ―same‖ dataset. For instance, introducing new features or 

correcting previously mislabeled data points alters the training context for machine learning models. If these changes are not 

explicitly versioned and documented, it becomes nearly impossible to assess whether changes in model performance are due to 

improvements in the data or unintended side effects of pipeline adjustments. Therefore, understanding and managing the evolution 

of longitudinal data is essential for ensuring consistency, fairness, and reliability in long-term modeling and decision-making 

systems. 



Ishwarya / ICCSAIML-25, 482-491, 2025 

 

    485 

 
Fig 1. Accuracy Table 

 

3.3. Case Scenarios Where Data Changes Affect Model Outcomes 

To understand the practical importance of data versioning, it is helpful to consider specific scenarios where changes in data 

directly impact the performance and behavior of predictive models. One such example is a predictive maintenance system 

deployed in an industrial setting. Suppose this system uses sensor data from machines to predict potential failures. If, midway 

through the year, the sensors are recalibrated to improve measurement accuracy, the newly recorded data may not be directly 

comparable to the older sensor readings. A model trained on pre-calibration data might make inaccurate predictions when applied 

to post-calibration inputs, leading to increased false positives or negatives. Without data versioning to separate and document the 
pre- and post-calibration data, it becomes difficult to determine the source of the model's errors whether due to changes in data or 

flaws in the algorithm itself. 

 

Another scenario can be found in clinical predictive modeling within hospitals. Suppose a hospital updates its diagnostic 

criteria for a particular disease, such as diabetes or sepsis, based on new medical guidelines. This change alters how patients are 

labeled within the dataset. As a result, a model trained on historical data using old criteria might no longer be valid for predicting 

outcomes under the new standard. By employing data versioning, healthcare data teams can explicitly tag and manage data 

according to the diagnostic criteria version, allowing them to train models that are consistent with the current medical context or 

compare model performance before and after the change.These examples highlight the risks of ignoring data evolution. Without 

systematic versioning, analysts and engineers may misattribute model drift or degradation to algorithmic shortcomings rather than 

underlying data changes. Versioning provides the ability to trace, compare, and audit data changes, which in turn supports more 

robust and explainable model development, especially in high-stakes domains where decisions can have significant human, 
financial, or operational impacts. 

Table 2. Model Accuracy across Data Versions 

Data Version Accuracy (%) 

V1 (Original) 85 

V2 (Corrected Labels) 87 

V3 (Schema Update) 83 

V4 (Added Data Gaps) 78 

V5 (Rebalanced Classes) 86 

 

4. Methodology 
4.1. Datasets Used 

In this study, we utilize multiple real-world datasets that capture data over time, referred to as longitudinal datasets. These 

datasets are critical in understanding how data evolves and how that evolution impacts model performance. The three main types of 
data used are electronic health records (EHRs), industrial sensor data, and financial transaction logs. Each of these datasets presents 

distinct challenges, such as differing temporal granularity (how frequently data is updated), feature stability (whether the features 

remain consistent over time), and update frequency (how often the data is updated). The electronic health records track patient 

health data over time, the industrial sensor data focuses on predicting when machinery will need maintenance based on sensor 

readings, and the financial transaction logs track changes in financial activities for credit risk analysis. By using these diverse 

datasets, the study aims to observe how versioning impacts machine learning models across various fields. This multi-domain 

approach helps generalize findings, providing insights that are not limited to just one area but apply across multiple industries. 
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4.2. Experimental Setup 

The experimental setup simulates a comprehensive longitudinal modeling pipeline, incorporating data versioning at every 

stage. For each of the three datasets, we create multiple versions to reflect how the data evolves over time. These versions are 

generated by introducing various types of changes, such as temporal splits (dividing data into different time periods), feature 

updates (changing or adding new features), or simulated corrections (e.g., fixing errors or biases in the data). After creating these 

versions, models are trained and evaluated using time-aware cross-validation, which ensures that the evaluation process accounts 
for the time sequence of the data and avoids issues like data leakage from future time points. Data versioning tools track all 

changes, storing metadata such as the timestamp of the changes, the type of changes, and a unique version ID to facilitate 

traceability. This setup is fully automated using versioning and machine learning pipelines, ensuring reproducibility and scalability 

of the experiments. Additionally, the study includes baseline comparisons between versioned and non-versioned workflows, 

allowing us to see how versioning influences model performance by providing a clear contrast. 

 

4.3. Models Used 

The study employs a range of machine learning models to understand how different approaches react to evolving data. These 

include Long Short-Term Memory (LSTM) networks, Random Forests, and Cox Proportional Hazards models. The LSTM 

networks are used to capture the sequential nature of the data, which is especially important for time-series or longitudinal data that 

has inherent temporal dependencies. Random Forests, a robust ensemble learning method, are utilized for tabular data where 

features might change over time, offering a more classical approach to longitudinal data analysis. The Cox Proportional Hazards 
model is used for survival analysis, often used in medical or industrial applications to predict the time to a certain event (e.g., 

equipment failure, patient survival). Each of these models is trained on different versions of the datasets and evaluated on data that 

was held out for future time periods. By using a mix of deep learning (LSTM), ensemble learning (Random Forests), and classical 

statistical models (Cox models), the study explores how various types of models handle evolving data, thus providing a 

comprehensive view of model behavior across different machine learning approaches. 

 

4.4. Data Versioning Strategy 

The data versioning strategy adopted in this study is a combination of snapshotting and timestamp-based tracking. 

Snapshotting refers to capturing a full version of the dataset at specific points in time, such as after significant updates (e.g., new 

data added, corrections made). Timestamp-based tracking ensures that each change to the dataset is associated with a specific time, 

which allows for precise tracking of when a particular change occurred. For example, a version may be created after an update like 
a new policy change or after data cleaning steps. In addition to real-world updates, synthetic interventions are introduced, such as 

adding noise to the data or imputing missing values in different ways. Each version is assigned a unique identifier, allowing 

researchers to trace back every model's performance to a specific dataset version. This tracking is managed using Data Version 

Control (DVC) integrated with Git, which helps manage both data and code versioning. This ensures that every model is 

associated with the exact version of the dataset it was trained on. Moreover, to simulate real-world scenarios, the study also tests 

cases where models are retrained on outdated versions of the data, helping to understand drift (changes over time that negatively 

affect model performance) and degradation (the reduction in model performance due to evolving data). 
 

4.5. Performance Metrics 

To assess how well each model performs on the versioned datasets, a range of standard performance metrics is used. These 

include traditional regression metrics like Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), which measure the 

difference between predicted and actual values. For classification tasks, the ROC-AUC metric is used, which evaluates the model’s 

ability to distinguish between classes, and the Concordance Index is applied to survival models to assess how well the model ranks 

different survival times. Additionally, secondary metrics such as calibration curves (to evaluate how well predicted probabilities 

align with actual outcomes), precision-recall trade-offs, and feature importance stability are also monitored. These metrics provide 

a comprehensive view of model performance across different versions of the data, highlighting how stable or inconsistent models 

are when exposed to evolving data. The comparison of metrics across different versions is key to understanding the robustness of 

models when versioned datasets introduce new challenges or changes over time. 
 

4.6. Versioning Tools/Frameworks Applied 

The tools and frameworks used for data versioning and model tracking are crucial to the reproducibility and scalability of the 

study. Data Version Control (DVC) is used to handle the dataset management, enabling version control for large data files and 

ensuring that each dataset version is reproducible. DVC is integrated with Git, a popular version control system for code, which 

allows for the tracking of changes in both data and the underlying code simultaneously. For handling tabular data specifically, 

Delta Lake is used, which provides ACID transactions and versioning capabilities for data stored in data lakes, ensuring data 

integrity and consistency. Additionally, Pachyderm is leveraged for containerized pipeline execution, ensuring that the data 

processing and machine learning steps are fully reproducible and scalable. Together, these tools enable robust data management, 
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versioning, and model tracking, allowing the study to meticulously track every change to the datasets and models, making the 

entire process transparent and traceable. 

 

4.7. Baseline Comparison: With vs. Without Versioning 

In this section, the impact of data versioning on model performance is quantified by comparing two different modeling 

pipelines: one that incorporates full version control and one that treats the dataset as a static entity. In the non-versioned pipeline, 
the model is trained on a single, unchanging dataset, without any tracking of data evolution over time. In contrast, the versioned 

pipeline captures the evolution of the dataset and the models are retrained as new data versions are introduced. By comparing the 

performance of models trained under these two regimes, the study demonstrates how versioning can mitigate issues such as drift 

(where the model’s performance degrades as data evolves) and improve stability by ensuring that models are always aligned with 

the most current version of the data. The baseline comparison serves to emphasize the value of data versioning for improving 

model robustness and provides insights into best practices for managing longitudinal model development. This comparison is 

central to the study's conclusions, which advocate for incorporating version control as a foundational element of model 

management, especially when dealing with evolving, time-sensitive data. 

 

5. Impact of Different Versions on Model Training and Prediction 
In this section, we elaborate on how the version of data used during model development directly influences predictive 

performance. We found that models trained on older versions of a dataset often fail to generalize well when tested against newer 

data. This phenomenon arises because dataset updates such as evolving diagnosis codes or newly recorded patient attributes can 

shift the data distribution significantly. In our EHR experiments, for example, patient records captured more detailed diagnostic 

classifications and additional health measurements over time. Models trained on earlier data lacked exposure to these new patterns, 

resulting in poor performance on updated datasets. Conversely, when models were trained on the most recent data and tested on 

earlier versions, performance dropped much less severely. This suggests that newer data encompass a broader and richer set of 

relationships, enabling models to learn more generalizable patterns. The takeaway is clear: to maintain consistency in predictive 
performance, it is crucial to align model training and evaluation cycles with the latest available data. Whenever mismatches occur 

training on old data and testing on newer releases the model's assumptions no longer hold, and predictive accuracy suffers. 

 

5.1. Performance Drift across Time and Versions 

Performance drift refers to the gradual decline in model effectiveness as the underlying data evolves. To quantify this, we 

trained models on an initial data version and evaluated them across subsequent versions. We observed a consistent downward 

trend: as the elapsed time between the training dataset and the testing dataset increased, metrics like AUC, MAE, and c-index 

steadily diminished. A compelling example comes from the predictive maintenance dataset: a Random Forest model trained on 

Version 1 (January–March) achieved 88% accuracy on its contemporaneous test split. But when that same model was evaluated on 

Version 3 (July–September), accuracy plummeted to 74%. This 14-point drop underscores how swiftly models degrade when 

operating in dynamic environments without regular retraining. The takeaway: in fast-changing domains, training a model once and 

deploying it indefinitely is insufficient. Instead, adopting a strategy of periodic retraining ideally synchronized with data version 
updates is essential to sustain high prediction quality. 

 

5.2. Visualizations (Version-Performance Plots, Error Bars) 

Visual tools are invaluable for conveying how model performance evolves over time and across data versions. We generated 

line and bar charts that plot performance metrics along the version axis, complete with error bars representing confidence intervals 

derived from bootstrapping. In our version-performance plots, each line corresponds to a model trained on a specific data version, 

with the x-axis indicating the version used for testing. These plots consistently show downward slopes as the version gap widens, 

reinforcing the existence of performance drift. Beyond central tendency, the error bars reveal an additional insight: for more 

complex models like LSTMs, confidence intervals widen significantly on older or future versions, signaling increased variability 

and less reliability in predictions. Together, these visualizations offer both a quantitative and intuitive understanding of how 

prediction stability erodes over time and underscore the value of version-aware tracking in model maintenance workflows. 
 

5.3. Statistical Tests for Significance 

While observational trends in performance plots are enlightening, they must be substantiated statistically. To determine 

whether the observed differences across versions are due to chance or systematic drift, we applied two key statistical tests: paired t-

tests and Wilcoxon signed-rank tests. These tests assess whether the distribution of paired performance scores (e.g., AUC on 

Version 2 vs. Version 4) shows a meaningful significant difference. In most of our experiments, the results were compelling: p-

values were consistently below 0.05, confirming that model performance degradation with version mismatch is statistically 

significant. For instance, in our financial dataset, comparing AUCs from Version 2 and Version 4 via the Wilcoxon test yielded a 

p-value of 0.003 well below the typical threshold of 0.05. These findings provide rigorous validation that the performance shifts 
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aren’t flukes, but reflect real, systemic impacts caused by data version changes. By combining domain-aware visualizations with 

solid statistical evidence, this section underlines the necessity of proactive version management in predictive modeling pipelines. 

 
Fig 2. Performance Drift across Time and Versions 

 

6. Discussion 
6.1. Limitations of the Study 

While the study offers valuable insights, it has several limitations. First, we only examined a select number of datasets and 

domains, which may limit generalizability. Second, our experimental design primarily involved batch learning models; real-time 

streaming scenarios could present different challenges. Third, although we simulated some versioning scenarios, many changes in 

real-world datasets such as policy shifts or data entry behaviors are complex and harder to replicate in an experiment. Future 

studies could explore more diverse datasets and incorporate active learning or federated learning frameworks to build on our 

results. 

 

6.2. Key Insights and Implications 

Data versioning transcends being a mere procedural step it is foundational to ensuring sustained model performance over time. 

Our research clearly demonstrates that even minor dataset changes such as corrections, added features, or expanded records can 

meaningfully shift model behavior. This sensitivity underlines the power of versioning: it enables organizations to detect and 

attribute performance drift to specific dataset changes. With version-aware workflows, teams can maintain transparency, 

investigate the causes of decline, and take corrective action. Moreover, versioning supports post-hoc analyses providing an audit 

trail that clarifies, for instance, which data release was used in a high-stakes prediction. This not only aids debugging but also 

preserves reproducibility: any predictive output can be re-generated by referencing precise dataset versions. In sum, integrating 

data versioning into analytics pipelines empowers teams to better manage drift, ensure accountability, and uphold model reliability 

in dynamic environments. 

 

6.3. Challenges in Managing Evolving Data 

Despite its advantages, versioning introduces non-trivial operational and technical burdens. The most immediate challenge lies 

in storage maintaining multiple dataset snapshots, especially in high-frequency or large-scale domains, leads to increased 

infrastructure costs. Efficient strategies such as delta storage or diff-based versioning can alleviate this, but they add complexity. 

Beyond storage, managing metadata becomes equally critical and difficult. Teams must document schema changes, transformation 

logic, and feature updates for each version, which requires coordination across data engineering, analytics, and domain teams. 
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Finally, integrating versioned datasets with downstream tools such as model monitoring platforms or experiment tracking systems 

can be problematic, since many lack native support for non-static inputs. Together, these challenges emphasize the need for 

standardized protocols and tooling that balance traceability with performance and usability. 

 

6.4. Recommendations for Practitioners 

We strongly advise data science teams operating in longitudinal or fast-evolving domains such as healthcare, finance, or IoTto 
embed data versioning as a core component of their workflow. Solutions like DVC provide seamless integration with Git and cloud 

storage, enabling efficient snapshotting and experiment reproducibility. Delta Lake offers rigorous schema enforcement, ACID 

compliance, and ―time travel‖ capabilities making it ideal for large datasets where reliability is paramount. Practitioners should 

define clear versioning policies whether based on ingestion batches, schema changes, or preprocessing milestones—and couple 

them with automated performance monitoring that flags degradation. Embedding version metadata directly within model artifacts 

(e.g., including version tags in model metadata) enhances auditability and debugging capabilities. In sensitive domains, this 

structured approach is not optional it’s a necessity: it ensures traceable metadata lineage and mitigates compliance and operational 

risk. 

Table 3. Challenges in Managing Evolving Data 

Section & Focus Explanation 

Key Insights & 

Implications 

The analysis confirms that data versioning is more than just documentation—it’s essential for managing 

longitudinal model performance. Even minor updates (e.g., new records, corrected labels, added features) 

can significantly alter model behavior. Versioning enables organizations to detect performance shifts, 

explain their root causes, and mitigate drift through targeted interventions. Additionally, maintaining 
precise version histories enhances post-hoc analysis, auditability, and reproducibility in dynamic 

environments a key requirement in regulated domains like healthcare and finance. 

Challenges in 

Managing Evolving 

Data 

Implementing versioning introduces several technical and operational hurdles. Chief among them is 

storage overhead: every version must be stored, and without efficient delta mechanisms, costs can 

skyrocket especially with frequent updates or large datasets . Managing comprehensive metadata such as 

schema changes, feature updates, and transformation logic adds complexity, particularly across cross-

functional teams . Finally, few monitoring and model orchestration tools natively support evolving data 

versions, complicating integration and necessitating custom pipelines or manual intervention. | 

Recommendations for 

Practitioners 

Teams operating in fast-evolving domains should treat versioning as a first-class citizen. Practical steps 

include adopting tools like DVC which integrates metadata with Git and external storage for 

reproducible snapshots or Delta Lake, which enables ACID-compliant versioning and time-travel 

capabilities within big data pipelines Define clear versioning triggers such as batch ingest cycles or 

schema changes and automate version tagging in model metadata to ensure traceability. Regularly 
benchmark models against older and newer versions to detect drift early, and leverage version info for 

debugging or audits. These practices are particularly vital in high-stakes industries like finance and 

healthcare. 

 

7. Conclusion 
In conclusion, our study definitively demonstrates that data versioning is not a peripheral concern but a vital mechanism for 

sustaining the accuracy, reproducibility, and interpretability of predictive models over time; by systematically documenting dataset 

snapshots, practitioners can observe how even nuanced alterations such as added features, corrected entries, or shifts in code sets 
profoundly impact model behavior, thereby uncovering hidden sources of drift and preserving auditability. Crucially, we found that 

unversioned or misaligned data pipelines can lead to substantial model degradation, as evidenced by marked declines in 

performance metrics like AUC and MAE, underscoring the risks of temporal distributional shifts. Conversely, a disciplined 

versioning strategy lays the groundwork for dynamic model adaptation, wherein models are not statically retrained but 

continuously updated in response to version-tagged data changes and potential concept drift an emerging paradigm aligned with 

ongoing advances in continuous learning frameworks capable of processing drift in real time This leads naturally to 

near-automated retraining pipelines that trigger model updates when statistical checks signal distributional shifts between 

successive data versions.  

 

To facilitate adoption, we advocate for integrating tools such as DVC or Delta Lake into production workflows, embedding 

version metadata in model artifacts, and defining clear policies for version creation and performance monitoring. These measures 
streamline traceability, enable rigorous post-hoc analysis, and ensure that every prediction can be traced back to a specific dataset 

incarnation, which is critical in regulated areas like healthcare and finance. Looking forward, there is mathematical and engineering 

promise in constructing version-aware model ensembles where distinct learners trained on different versions are intelligently 
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combined, thus enhancing resilience to drift. Developing benchmarks and drift-detection tools that operate in tandem with 

versioned data systems would further accelerate progress, turning versioning from a best practice into a core capability for robust, 

adaptive analytics in dynamic environments. 
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