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Abstract - The influx of applications of Artificial Intelligence (AI) and Machine Learning (ML) in data-intensive environments 

introduces a need for scalable, efficient and cost-effective data processing architectures. The lingering monolithic systems are 

making way for distributed, cloud-native and serverless systems. The current paper gives a thorough architectural 

optimization of serverless big data pipelines to execute AI workloads in Google Cloud Platform (GCP) services, specifically, 

Google Cloud Functions and Managed Spark (Dataproc). This architecture is able to solve the main challenges of scalability, 

fault tolerance, data latency and cost optimization through utilizing a modular and event-driven approach. The pattern couples 

storage, compute and orchestration layers in a dynamically decoupled manner to achieve maximum efficiency of resources and 

flexibility in operations. Training and deployment of AI/ML data pipelines: In our proposed model, ingestion, transformation, 

model training, and deployment are performed. Elaborate performance analyses show how operation overhead, compute idle 

time, and latency in the processing have been drastically reduced while sustaining great accuracy in model results. In 

addition, the paper presents specific architectural patterns, deployment strategies, and optimization strategies for serverless 

and Spark-native conceptions. Comparisons with more traditional pipeline models indicate up to a 35 percent efficiency gain 

on execution efficiency and a 45 percent decrease in the cost. The insights can play a decisive role in data engineers and AI 

practitioners who create a next-generation data system. 

 

Keywords - Cloud Functions, Managed Spark, Dataproc, GCP, Serverless, Big Data, AI Workloads. 

 

1. Introduction 

 
Figure 1. Key Challenges in Modern Data Pipeline Design 

 

The emergence of big data and Artificial Intelligence (AI) technologies has changed the face of the contemporary 

computational workloads development radically. [1-4] As AI models encroach upon ever more complex complexity and 

explosively increasing data volumes, the needs of real-time performance and scaling, as well as the distributed calculation 

services, are no longer manageable using traditional monolithic systems. In this regard, a dynamic data pipeline architecture 

that is adaptable to scalability (so that it can flexibly handle events and consumption of cloud-native services) has been in 

increasing demand. As solutions to such challenges, cloud platforms have presented a new category of serverless computing, 

which allows abstraction of a solution over infrastructure management, providing scale elasticity and event-driven automation. 

Among other technologies, Google Cloud Platform (GCP) is unique in the industry because of the rich provision of serverless 

and big data. One of them is Cloud Functions, which is essentially a lightweight service that allows event-driven coding 

execution and Managed Spark over Dataproc that offers a fully-managed and scalable system to process large sets of data by 

using Apache Spark. Through this composability, developers and data engineers can develop effective, scalable, and auto-
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scaled data pipelines with the capacity to live up to the stringent expectations of AI workloads. The shift in this paradigm is not 

only efficient in terms of processing and cost-effective, but it also accelerates cycle times of experimentation and deployment, 

which are super essential in the high-velocity world of machine learning and data analytics. 

 

1.1. Importance of Architectural Optimization of Serverless Big Data 
With organizations growingly using cloud-based platforms to process the massive amount of data and executing AI 

workloads, the architecture design of serverless big data pipelines make the difference to the performance, scalability and cost-

efficiency of the solutions. Although the serverless computing provides flexibility and simplicity of implementation, the 

underlying architecture is also important to enjoy all of these in production scales. 

 
Figure 2. Importance of Architectural Optimization of Serverless Big Data 

 

 Management of performance and Latency: Event-driven and stateless Serverless architectures are the default. 

Although this offers scalability, it may become the cause of latency on cold starts or complex workflow orchestration. 

Execution latency can be reduced by optimising the architecture, such as pre-warming functions, using lightweight 

runtimes, and employing a lazy evaluation strategy. This is particularly helpful in real-time processes, such as 

detecting fraud, making recommendations / or identifying anomalies, where speed of processing is essential. 

 Cost Effectiveness by Tuning Resources: The pay-as-you-go pricing model is one of the key features of serverless 

infrastructure. Nevertheless, architectural decisions, such as the selection of the proper memory configuration to 

allocate to functions, the optimization of Spark jobs, the utilization of preemptible VMs, and so forth, can easily drive 

the costs through the roof unless handled with care. With optimized resource utilization and the addition of auto-

scaling capabilities, organizations can spend less and still perform well because costs lost in optimized resource 

utilization can be saved by automation. 

 Variable workload Scaling: Even the demand drivers of big data workloads are usually volatile, particularly with 

streaming or batch processing use scenarios. The architecture put in place incorporates auto-scaling of clusters, 

asynchronous triggering, and modular pipeline design so that the system is able to cope with the abrupt increase or 

decrease in the data volume automatically, without the need for human intervention and without a decrease in 

performance. 

 Reliability and Fault Tolerance: Fault tolerance is required in distributed systems, and particularly in distributed 

systems dealing with massive data pipelines. The strategies of architectural optimization involve implementing retries, 

managed services that provide resilience out-of-the-box (such as Dataproc), and decoupling components in order to 

isolate failure. This enhances all-around reliability in systems, and it makes sure that data processing is consistent 

even in unfavourable conditions. 

 Enhanced Model Deployment and Model Iteration: The process of developing as well as deployment of AI 

models, once optimized with the help of serverless architectures, goes at an accelerated pace. Data scientists are able 

to build models more often with shorter tenures and effective orchestration. This produces improved model tuning, 

accelerated experimentation, and an overall accuracy increase of deployed AI solutions. 

 

1.2. GCP Cloud Functions and Managed Spark  

Google Cloud Platform (GCP) provides a powerful suite of products that allows developers to create new, modern, 

scalable, and serverless data processing pipelines. Cloud Functions and Managed Spark on Dataproc are two of the most potent 

elements of this ecosystem, which, as a combination, present an efficient model to deal with big data workloads and AI 

solutions. [5,6] Cloud Functions Cloud Functions is a serverless compute service that enables developers to run code in 

response to a wide variety of events, like changes in Cloud Storage, messages in Cloud Pub/Sub or HTTP requests, without 

provisioning or managing any servers. This is what makes it a good fit to develop reactive data pipelines where certain actions 

are automatically started when certain data or system events occur. This is complemented by Dataproc, which is the managed 
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Apache Spark and Hadoop service by GCP. Dataproc takes care of the complexity of cluster provisioning and system 

management so that users can access the ability to run the distributed data tasks on demand. It offers auto-scaling and 

preemptive virtual machines and compatibility with other GCP services, including BigQuery and Cloud Storage. Such aspects 

make it highly appropriate for compute-intensive processes, such as ETL (Extract, Transform, Load), data aggregation, and 

training of machine learning models with Spark MLlib or embedded libraries.  Designed to work with Dataproc, Cloud 

Functions allow developers to build serverless data pipelines with Cloud Functions providing the orchestration layer, and 

executing Spark jobs based on real-time information. With this strategy, it does not need to have running servers or schedule 

jobs manually. It is also modular, scalable, and cost-effective. As an example, uploading a file to the bucket in Cloud Storage 

can be used to generate a Cloud Function that starts a Spark job to process the data and save output into BigQuery. Not only 

does such integration make pipeline maintenance easy, but it is also event-driven and elastically scales out compute resources, 

which makes it a perfect fit for AI workflows and large-scale data processing in the cloud. 

 

2. Literature Survey 
2.1 Development of Serverless Computing 

Serverless computing has drastically changed the development of cloud applications through the abstraction of 

infrastructure management. The evolution started with the Platform-as-a-Service (PaaS), which provided a less complicated 

environment to the developers, but it also needed a certain amount of server management. It further developed to Function-as-

a-Service (FaaS), allowing individual functions to be deployed in a granular fashion, and those functions handle particular 

events. [7-10] Such big players in this sphere as AWS Lambda, Azure Functions, and Google Cloud Functions become the 

leading platforms. They have their characteristics in the functionality of cold start performance, language support, and native 

integration. As an example, AWS Lambda offers decent cold start times and excellent integration with the AWS ecosystem. In 

contrast, Azure Functions and GCP Cloud Functions offer the lowest cold start times and exclusive integration with cloud 

services themselves. 

 

2.2. Big Data Frameworks in Cloud  

Managed services such as Google Cloud Dataproc have transformed Big Data processing in the cloud to scale Apache 

Spark and Hadoop applications in its managed environment. Such frameworks allow even large quantities of structured and 

unstructured data to be processed without the administrative overhead of configuring a manual cluster. The Dataproc is 

particularly relevant to AI and machine learning cases since it allows dynamically assigning resources and is easily combined 

with other GCP services such as BigQuery and AI Platform. This enables efficient workflows that serve to ingest, process and 

analyse information at scale. 

 

2.3. Pipelines using Serverless and AI 

The latest studies have paid more attention to the implementation of AI models based on a cloud-native and serverless 

basis. These research works emphasize the advantages of the simplicity of infrastructure and cost-efficient scaling to inference 

tasks. Nevertheless, integration with large data tools, including Spark, is still a complicated task. Although serverless 

architectures provide the capability of reactive and event-driven execution models, they do not directly support stateful and 

long-running jobs that are most often needed in AI training pipelines. Due to this, the synergy between serverless compute and 

data-intensive AI workflows continues to require novel orchestration and data management solutions. 

 

2.4. Suppositions of Current Literature 

Although the serverless AI systems are becoming the focus of attention, there are still gaps in the prevailing literature. On 

the one hand, architecture-level optimization solutions that deal with performance and resource optimization in hybrid 

serverless-big data settings are currently conspicuously absent. Second, the empirical assessment delivered by many studies is 

scarce, and it is hard to apply findings to various applications and workloads. Third, this scenario lacks best practices or 

extensive documentation for integrating serverless (e.g. Cloud Functions) into big data (e.g. Spark) and vice versa, which 

makes it more difficult to adopt and reproduce proposed solutions in practice. 

 

3. Methodology 
3.1. Architectural Overview 

The suggested implementation concept of serverless computing with big data and AI workflows is divided into four layers. 

[11-14] All the layers additionally have a specific purpose and play a role in scalability, flexibility, and automation of the 

entire pipeline. 

 Ingestion Layer: The Ingestion Layer will have the role of gathering the data from different origins: IoT devices, 

Web applications, APIs, or streaming channels, e.g., Apache Kafka and Pub/Sub. This tier serves as an entry point to 

the pipeline, and it guarantees the data collection in either a real-time or a periodical manner. Data formats can be 

structured logs, JSON files or raw binary, and they are commonly placed in cloud storage or message queues to 

process. This layer should be strong and error-resistant to manage the velocity and variety of data. 

 Trigger Layer: The Trigger Layer acts as the engine of automation that monitors the ingestion layer changes or 

events and creates the relevant functions in the serverless layer. For instance, with cloud storage bucketing, a cloud 
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function or Lambda is triggered in response to a new inflow of data uploaded to a cloud storage bucket with an 

appropriate triggering event, such as an HTTP request, a storage request, or an event. This layer guarantees the event-

based processing and eliminates the necessity of permanent resource assignments, contributing to the system's 

efficiency and cost resources. 

 
Figure 3. Architectural Overview 

 

 Processing Layer: The core computation and change are done in the Processing Layer. It may range from data 

preprocessing, filtering, enrichment, and even AI model inference. The layer could involve serverless functions to do 

light tasks or connect with big data engines such as Apache Spark (through Dataproc or EMR) to scale loads of batch 

or stream tasks. This layer is parallel, runnable, scalable, and can chain (flexibly) functions together as a complex 

workflow since it is modular. 

 Storage Layer and Output Layer: The Storage & Output Layer deals with persistence and access of processed data. 

It saves cleansed, transformed, or analyzed data in cloud storage systems, data warehouses, like BigQuery, or NoSQL 

database types such as Firestore or DynamoDB. Furthermore, this layer can contain channels for visualization, APIs, 

dashboards or alerts, and thus the data can be easily consumed by downstream systems or users. It makes the results 

long-lasting, queryable and safe to access. 

 

3.2. Workflow Description 

The suggested workflow embraces both a mix of serverless and big data technologies to design an efficient, scalable, and 

cloud unique data processing pipeline. It uses Google Cloud services like Pub/Sub, Cloud Functions, Dataproc, and BigQuery 

or Cloud Storage to complete all the ends of processing data and machine learning tasks. 

 
Figure 4. Workflow Description 

 

 Data can be added through Cloud Pub/Sub (Event-based Trigger): The data inside the pipeline starts in the 

Google Cloud Pub/Sub, which is a messaging service that works with streaming real-time events. Information that has 

been obtained across multiple sources (user interactions, sensor outputs or application logs) is published to a Pub/Sub 

topic. Such a technique permits out-of-sync, non-coupled messaging between the processors and those performing the 

tasks. It provides strong message delivery guarantees and high throughput, and thus it is suitable to consume 

streaming or event-based data on a mass scale. 
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 Cloud Function triggers the Dataproc Spark job: A Cloud Function is triggered when new messages appear in a 

Pub/Sub topic. This serverless capability is a lightweight trigger that starts additional processing without continuously 

running a server. The function logs into Google Cloud and uploads a Spark job in Dataproc, a managed big data 

processing cluster. Such an orchestration of serverless is dynamic and cost-effective since, only when required, the 

Spark clusters are triggered. Spark Performs ETL and ML Tasks. When the job is launched, Apache Spark on 

Dataproc is used to perform the main data processing operations. This contains ETL (Extract, Transform, Load) 

activities of data cleaning, formatting and feature extraction. On AI workloads, Spark can be employed to perform 

machine learning models, both pre-trained and created with MLlib or a 3rd-party integrated framework such as 

TensorFlow OnSpark. Spark is distributed and can therefore handle huge amounts of data with ease and perform 

parallel calculations, thereby drastically cutting down on the amount of time needed to complete a task. 

 The output of GCP is propagated to BigQuery/Cloud Storage, where the outcome is written to the cloud 

storage systems after processing. Structured or aggregated data is usually saved in BigQuery, where it needs to be 

queried via SQL to be introduced to an analytics solution or a dashboard. Additional output (e.g. raw results or files in 

the middle of the processing) can be stored in buckets of Cloud Storage. This last step guarantees that processed data 

are securely stored and accessible in a convenient manner to subsequent applications and available to additional 

analysis or visualization. 

 

3.3. Key Optimization Techniques 

A number of optimization methods are adapted to the performance and efficiency improvement of the suggested 

architecture of serverless-big data. [15-18] They are aimed at minimizing latency, efficient utilization of compute resources, as 

well as elimination of extraneous data processing tasks. 

 
Figure 5. Key Optimization Techniques 

 

 Cold Start Reducing: The cold start is one of the main problems of the serverless environment; it is the lag in time 

when a cloud invokes a function for the first time or after inactivity invokes a function. As a mitigation measure, 

lightweight runtimes (like Node.js or Go) and warm-up of functions by occasionally including them on the call path 

are used, or functions are made smaller, or dependencies are reduced. The strategies aid in minimizing the latency in 

initiating Spark jobs and in achieving faster response times in real-time data processing applications. 

 Spark Clusters Spark Auto-Scaling: Dynamic data loading requires efficient management of the available 

resources. Auto-scaling Spark clusters on services such as Dataproc enables the system to scale the worker nodes 

according to demand on an on-demand basis. Not only does it enhance performance during high volumes of 

processing, but it also reduces costs in times of reduced workload. By utilizing the autoscaling policies, it is possible 

to guarantee that the Spark job is provided with the largest throughput possible without any manual polices or 

assigning excessive resources. 

 Lazy loading and Partition Pruning: At the data processing layer, the performance might also be improved greatly 

with the help of lazy loading and partition pruning. With lazy loading, only the data that is needed is read and 

processed, and this process relieves unnecessary computation. On the contrary, Partition pruning constrains the 

execution of queries to prior known sets of information through filter qualifications. The techniques are beneficial, 

especially in large data sets, since they minimize the I/O activity and accelerate the ETL and machine learning tasks in 

Spark jobs. 

 

3.4. Pseudocode Snippet for Trigger Function  
The given pseudocode is the implementation of a Cloud Function that will initiate a Spark job on Google Cloud Dataproc. 

This role is essential to the automation of the processing pipeline, in which it responds to events (messages in Cloud Pub/Sub 

or files in Cloud Storage) and launches compute-intensive tasks such as ETL and machine learning with Apache Spark. The 

first part of the function is to import the following libraries to handle authentication and create a service object to work with 
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the API of valuable information: google. Auth to handle authentication and googleapiclient.discovery.build to make a service 

object to actually communicate with the API of Dataproc. When the execution of the function is event-driven, the Dataproc 

client is initialized using the build() method to be version v1. The function is programmatically enabled to submit jobs to 

Dataproc clusters with this client. The job_details dictionary sets the arguments of the Spark job to be run. The key placement 

under the function indicates where the job is to be executed, that is, in a given cluster (my-cluster). Inside the sparkJob, it 

refers to the primary Python script ('ml.task.py') in a Google Cloud Storage bucket ('gs://my-bucket/scripts/'). The ETL logic or 

machine learning activity is in this script to be performed within the Spark environment. The task of submitting the job is done 

by accessing the dataproc.projects(). .regions(). The .jobs().submit() method requires sending the projectId, region, and job 

body. On successful submission, the function will return the result of the execution, which will usually comprise job metadata, 

job ID, job status, and timestamps. In this pseudocode, the idea is made clear that serverless functions are lightweight 

orchestration tools to deploy scalable, distributed computing tasks on demand. It removes the necessity to deal with the 

provisioning of jobs or clusters manually and allows truly event-driven and fully automated architecture, which is suitable for 

such data and AI pipelines that modern architectures require. 

 

4. Results and Discussion 
4.1. Benchmarking Setup 

 Traditional Setup: The typical hub scenario was characterized by a manually launched Apache Spark cluster on 

Google Compute Engine (GCE) virtual machine instances. This was a resource allocation environment where the 

compute instances needed to be pre-provisioned and kept at all times, whether they were being actively utilized. The 

Spark cluster was implemented in a way that made it possible to operate on fixed-size nodes, which has made 

flexibility under different job loads difficult. This will set up takes inspiration from traditional on-premise or fixed 

cloud cluster systems and will be used as a baseline to compare to see the advantages of a modern serverless 

architecture. 

 Optimised Serverless Configuration: The optimized platform used a serverless, event-driven design that used 

Google Cloud Functions to submit Apache Spark jobs to Dataproc. In this case, events of data ingestion, i.e., 

messages sent by Cloud Pub/Sub, automatically instantiate job runs in Spark. In this configuration, the Dataproc 

clusters were enabled to auto-scale their various robot nodes according to their job demand. Moreover, preemptible 

virtual machines (short-lived, inexpensive instances) were utilized, which contributed greatly to the fact that 

operational costs were considerably decreased, but execution reliability remained at a high level. Notably, the same 

Spark job, which entailed the same ETL and machine learning logic, was executed on both environments to compare 

them fairly and within the degree of control. 

 

4.2. Metrics Considered 

Table 1: Comparative Performance Improvement 

Metric Improvement (%) 

Job Duration 35.56%  

Cost per Job 40.00%  

Utilization 41.54%  

Accuracy 1.15%  

 

 
Figure 6. Graph representing Comparative Performance Improvement  

 

 Job Duration - 35.56% Betterment: Job duration is the overall time used to accomplish the Spark job inaccuracy. 

The serverless installation shortened the execution time of the jobs by about 35.56 percent when compared to the 
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traditional VM-based Spark environment. The reason behind this significant increase can be partially explained by the 

accelerated delivery of resources, automatic load adjustment by cluster, and a smaller amount of idle time caused by 

the optimal serverless architecture. This allowed the completion of data processing and machine learning tasks to be 

completed much quicker, allowing a shorter turnaround time in an iterative workflow. 

 Cost per Job – 40.00% Reduction: The cost per job indicates that the total cloud spend on all Spark workloads will 

be the cost to run each job. There will be running compute, storing, and orchestration costs. The cost has already 

decreased by 40 percent; it was due to preemptible VMs usage, which is significantly cheaper than regular instances. 

In addition, auto-scaling assisted in making sure that compute resources were only accessible when required and that 

there would be no more over-provisioning or unnecessary cost during runtime. This is what makes the serverless 

model not only faster but also more economical when it comes to periodical or fluctuating workloads. 

 Cluster Utilization – 41.54% Improvement: Gauge of cluster usage- cluster usage is considered to gauge how well 

the resources of computation are utilized in processing a job. An improvement of 41.54 in utilization thus refers to the 

fact that serverless configuration, and especially with Datapro's side auto-scaling, and event triggers to jobs, used a lot 

more resources on average. Conversely, provisioning was usually fixed, which meant idle resources in the traditional 

setting. Significant usage directly means increased performance dollar per dollar and less wastage of computing 

resources. 

 Model Accuracy – 1.15% Improvement: This is an improvement of 1.15%, even though it is small, the advance 

might imply that the quicker, more responsive setting of the serverless configuration enabled the order to tune and 

reiterate machine learning models more frequently. Faster turnaround of execution cycles, however, allows models to 

be retrained and tested more frequently, and this may result in a generalisation of models as well as an overall better 

performance. Small improvements in accuracy might make the difference in areas such as finance, healthcare or 

suggestion systems. 

 

4.3. Analysis  

The benchmarking aspect has firmly shown that the serverless-optimised architecture was effective in enhancing the 

performance and cost-effective delivery, that is, compared to a traditional Spark system. The use of auto-scaling clusters on 

Google Cloud Dataproc is thus shown to be valuable since one of the most notable effects associated with it was a decrease in 

the time it took to execute the jobs by ~35%. In contrast to traditional clusters, which are based on fixed access of resources, 

meaning that compute nodes are most likely to remain idle, the serverless configuration provides dynamic allocation of 

resources depending on the volume of work. This elasticity makes sure that resources are used only when they are required and 

are decommissioned when they are idle to increase the speed of completion of jobs and to enable better utilization of resources. 

The second major benefit of the optimized architecture is that it is cost-saving by 40 per job over the on-demand instance due 

to the adoption of preemptible virtual machines as the greatest factor responsible. These are cheaper cases that the Google 

Cloud can reclaim at any point in time. 

 

Nevertheless, Dataproc's fault-tolerant design and the availability of checkpointing functionality for jobs will ensure that 

such disruptions have no impact on the overall job execution. The affordability of the preemptible VMs, along with event-

driven provision of compute resources, which is especially applicable to periodic or non-continuous workloads using Cloud 

Functions, makes the serverless model incredibly expensive. Such enhanced efficiency of the system is further supported by 

the fact that the cluster utilization rate increased by more than 25 percent, resulting in a rate of 92 percent. This is an 

improvement to the resource scheduling and a reduction in idle time due to effective coordination of event triggering and 

executions of jobs. The serverless nature of Spark triggers the deployment of a Spark cluster in the background only on the 

server as needed, rather than maintaining constant overhead. Interestingly, the system also made a statistically significant but 

generously small improvement in model accuracy, which was upped by 88 percent out of 87. This is partly due to an increased 

iteration rate, so it is possible to train models and perform hyperparameter search more often during a certain time span. With 

the data-driven applications, any 1 percent increase in accuracy can be turned into significant improvements in the user 

experience or the business performance. 

 

5. Conclusion 
This paper describes a full-fledged solution to serverless big data pipeline design and testing based on AI specifics using 

the central facilities of the Google Cloud Platform, in particular, through the use of Cloud Functions as an event-driven 

orchestration tool and Managed Spark (Dataproc) as a scalable data processing and machine learning solution. The new 

architecture was compared with a traditional Spark running on virtual machines, which model showed evident strengths in 

execution time, cost-effectiveness, and resource consumption. In particular, the serverless deployment managed to reduce job 

time and cost per job by ~35% and 40%, respectively, and significantly boosted cluster utilization, moving it up to 92% 

(compared to 65% on the baseline), without affecting the quality of the generated machine learning results, and even slightly 

improved model accuracy, rising by 1% to 88%. 

 

Due to the described findings, a few practical pieces of advice can be considered by practitioners and organizations that 

intend to revise their AI data pipelines. To begin with, asynchronous data events that require automation through serverless 
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triggers (Cloud Functions or AWS Lambda) allow you to implement a scalable and reactive architecture. Second, the technique 

of Spark optimization, which embraces the data caching, partition pruning and parallel computation, should be integrated into 

the pipeline to minimize run-time and enhance processing throughput. Third, cost-saving capabilities, such as preemptible 

virtual machines, should be seriously considered in non-critical or fault-tolerant jobs as they can considerably reduce the 

infrastructure bill compared to running in unmanaged environments without compromising performance when running in a 

managed environment, in this case, Dataproc. 

 

In future, there are a number of directions toward which this architecture can be extended and improved. The first path can 

be towards integrating Kubernetes through Google Kubernetes Engine (GKE) in a more advanced level of usage, like model 

serving, which provides containerized, scalable, and customizable deployments of AI inference. The second promising 

direction is the creation of a cross-cloud structure, which uses such platforms as GCP and AWS Lambda, to enhance resilience, 

inter-cloud arbitration, and multi-cloud agility. The inclusion of real-time anomaly detection models into the serverless 

pipeline may bring opportunities in areas like cybersecurity, IoT, and finance, where detecting and responding to outliers as 

quickly as possible is pertinent. In general, it concludes that serverless big data pipelines are not only possible, but also 

considerably beneficial to the current AI workloads, as it represents an attractive combination of flexibility, optimization and 

automation. 
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