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Abstract - The dynamic nature of global financial markets 

necessitates robust methodologies for credit risk 

classification, particularly as credit portfolios diversify 

across sectors and geographies. This study presents an 

empirical investigation into the efficacy of various deep 

learning (DL) architectures-including Convolutional Neural 

Networks (CNNs), Recurrent Neural Networks (RNNs), and 

Transformer-based models-for classifying credit risk across 

heterogeneous financial environments. Leveraging a large-

scale, multi-country credit dataset, we benchmark the 

performance of DL models against traditional machine 

learning algorithms. The study introduces an integrated 

feature engineering pipeline tailored for financial time-series 

data and accounts for market heterogeneity through sectoral 

and geographic stratification. Our findings demonstrate that 

Transformer-based architectures consistently outperform 

other models in predictive accuracy and generalizability 

across market segments. We further explore model 

explainability and interpretability using SHAP values. The 

proposed framework can inform regulators, financial 

institutions, and investors in adopting data-driven risk 

management practices. 
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1. Introduction 
The accurate assessment of credit risk remains a 

foundational pillar in modern financial systems, directly 

influencing lending decisions, regulatory compliance, and 

the stability of banking institutions. Credit risk refers to the 

potential that a borrower may default on debt obligations, 

posing a direct financial threat to lenders. Traditional risk 

classification methods, often based on logistic regression and 

linear discriminant analysis, have proven effective in 

relatively homogeneous financial environments. However, 

these techniques fall short when applied to the complexities 

of today’s heterogeneous financial markets, which are 

characterized by rapid globalization, market volatility, and 

region-specific financial regulations. These limitations 

highlight the necessity for more sophisticated, adaptive, and 

scalable modeling frameworks that can account for high-

dimensional, nonlinear, and dynamic relationships in credit 

data. 

 

Heterogeneous financial markets pose unique challenges 

in credit risk classification due to variations in borrower 

behavior, credit instrument structures, and macroeconomic 

factors across regions and sectors. For instance, 

creditworthiness indicators such as income levels, 

employment patterns, or debt structures differ significantly 

between developed and emerging markets. Similarly, sectoral 

risk exposure-such as retail, manufacturing, or technology-

varies in terms of default probabilities and recovery rates. 

These cross-sectional and temporal variations introduce 

statistical heterogeneity that undermines the performance of 

one-size-fits-all models. Moreover, the increasing use of 

alternative data sources (e.g., mobile transaction histories, 

digital banking footprints) further complicates model 

development, requiring approaches capable of integrating 

diverse modalities and time-dependent patterns. 

 

In response to these complexities, deep learning (DL) 

models have emerged as promising tools in credit risk 

analytics. Unlike traditional machine learning (ML) models 

that often require manual feature selection and suffer from 

scalability issues, DL architectures can automatically learn 

hierarchical representations from raw or minimally processed 

data. Architectures such as Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs) have been 

successfully applied to financial datasets, extracting latent 

structures that are otherwise difficult to identify. More 

recently, Transformer-based models-which rely on attention 

mechanisms rather than recurrence have demonstrated 

superior performance in handling long-range dependencies in 

time-series data, making them highly suitable for financial 

sequence modeling. 

 

Despite these advancements, empirical evaluations of 

DL architectures for credit risk classification across 

heterogeneous financial markets remain scarce. Most 

existing studies are either narrowly focused on a specific 

geographic region or apply generic models without adapting 

to market-specific variations. This gap in the literature 

creates a critical need for comparative, data-driven 

investigations that benchmark different DL architectures 

within diverse financial contexts. Such analyses are essential 
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not only for improving model performance but also for 

informing practitioners and regulators about the conditions 

under which certain models generalize better or fail. 

 

Another challenge in adopting DL models in finance is 

explainability. The ―black-box‖ nature of these models raises 

concerns about transparency, regulatory compliance, and 

user trust. Financial institutions must be able to justify 

lending decisions to stakeholders and regulators, particularly 

under frameworks such as the Basel III accords or the Fair 

Lending Act. Hence, interpretability tools-such as SHAP 

(SHapley Additive exPlanations) values-are critical to 

understanding model decisions, especially when deployed 

across populations with varying socio-economic and 

demographic characteristics. Without such tools, the risk of 

algorithmic bias and unfair treatment of borrowers becomes 

significantly heightened. 

 

In, real-world deployment of DL models in 

heterogeneous markets requires careful consideration of data 

engineering workflows, model robustness, and cross-border 

generalizability. Issues such as class imbalance, missing data, 

and evolving borrower behavior must be addressed through 

robust data preprocessing and continuous model retraining. 

Further, differences in financial reporting standards, currency 

fluctuations, and geopolitical risks across countries must be 

reflected in the model design and evaluation strategy. These 

factors necessitate a holistic, empirically grounded approach 

to DL-based credit risk modeling. 

 

2. Literature Review 
2.1. Explainable Ensemble Technique for Enhancing 

Credit Risk Prediction 

Pavitha and Sugave (2024) aim to enhance credit risk 

prediction through an explainable ensemble method that 

balances predictive power with transparency. This paper 

presents a novel ensemble learning approach that integrates 

explainability techniques (e.g., SHAP values or LIME) into 

an ensemble model composed of decision trees, logistic 

regression, and deep neural networks. The authors emphasize 

model interpretability, a growing concern in financial AI 

applications, to help credit officers understand decision 

rationales. The proposed method outperforms single-model 

baselines in terms of AUC and F1-score, and provides visual 

explanations that clarify the influence of key credit features 

(e.g., income, loan history). It supports compliance with 

regulatory standards such as GDPR and Basel guidelines. 

 

2.2. Predicting Credit Risk in Peer-to-Peer Lending: A 

Neural Network Approach 

Byanjankar et al. (2015) investigate whether neural 

networks can effectively predict default in P2P lending 

platforms, which differ significantly from traditional banking 

contexts. Using real P2P lending datasets, the authors train a 

multilayer perceptron (MLP) model to classify loans as high 

or low risk. They demonstrate the viability of neural 

networks in this relatively new credit environment, achieving 

satisfactory performance despite sparse and noisy borrower 

information. The study provides early evidence of deep 

learning's utility in non-traditional credit systems. It also sets 

the groundwork for more complex architectures like LSTM 

and GNNs in later research. 

 

2.3. Two-Stage Consumer Credit Risk Modelling Using 

Heterogeneous Ensemble Learning 

Papouskova and Hajek (2019) aim to improve the 

accuracy and robustness of consumer credit risk prediction 

by combining multiple heterogeneous models in a two-stage 

ensemble framework. This study introduces a two-stage 

modeling approach: the first stage uses base learners (e.g., 

SVM, random forest, logistic regression) to generate initial 

predictions, while the second stage combines these 

predictions via a meta-learner (typically gradient boosting or 

stacking). This heterogeneous ensemble strategy captures 

diverse aspects of borrower behavior. The method 

significantly outperforms homogeneous ensembles and 

standalone models, especially in cases of imbalanced 

datasets. It confirms the value of stacking and model 

diversity in financial prediction contexts. 

 

2.4. Attention-Based Logistic-CNN-BiLSTM Hybrid Neural 

Network for Credit Risk Prediction 

Zhang et al. (2024) propose a hybrid model that 

combines logistic regression, CNNs, and BiLSTM layers 

with attention mechanisms to improve the prediction of 

credit risk in listed real estate enterprises. The authors 

construct a composite model that processes structured 

financial indicators through logistic layers, extracts spatial 

patterns via CNNs, and captures temporal dependencies with 

BiLSTMs. Attention layers prioritize critical time steps or 

financial variables contributing most to risk. This 

architecture integrates explainability and multiscale pattern 

recognition, demonstrating superior performance over 

traditional machine learning methods. It's tailored for high-

stakes financial sectors like real estate, where temporal 

volatility is pronounced. 

 

2.5. Benchmarking State-of-the-Art Classification 

Algorithms for Credit Scoring 

Baesens et al. (2003) benchmark the predictive 

performance of classical and advanced machine learning 

models for credit scoring, including decision trees, neural 

networks, and support vector machines. This foundational 

work systematically compares models on multiple datasets 

from European financial institutions. It emphasizes proper 

validation, overfitting control, and model interpretability, 

offering a reference point for later developments in credit 

scoring. Neural networks and SVMs outperformed linear 

models like logistic regression in most cases, but required 

careful tuning. The study also introduced the idea that 

ensemble approaches could further enhance predictive 

robustness—a notion expanded upon in later works. 

 

3. Data Description and Preprocessing 
A robust and representative dataset is foundational to the 

development of effective credit risk classification models. 

For this study, we compiled a comprehensive, multi-national 

dataset comprising anonymized borrower records from three 

major credit bureaus and two lending platforms operating 

across North America, Europe, and Asia. The dataset spans a 
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period from 2010 to 2023 and includes over 3.6 million 

credit accounts, allowing for a wide variety of borrower 

behaviors and loan conditions. Each record includes 

borrower demographic information, financial history, credit 

scores, loan performance, and sectoral identifiers. The 

diversity in market structures, socio-economic backgrounds, 

and borrower profiles across countries presents both an 

opportunity and a challenge: the opportunity to assess model 

generalizability and the challenge of managing 

heterogeneity. 

 

The dataset features over 50 variables, including both 

static attributes (e.g., age, employment status, education 

level) and dynamic variables (e.g., monthly payment history, 

credit utilization, debt-to-income ratio). Additionally, 

macroeconomic indicators-such as local GDP growth, 

inflation rate, and interest rate environment-are aligned with 

borrower data on a quarterly basis to capture market-level 

fluctuations affecting credit behavior. To reflect sectoral 

diversity, loans are also categorized by industry (e.g., 

manufacturing, services, agriculture) and by purpose (e.g., 

mortgage, auto, small business, personal). Such granularity 

facilitates model stratification and enhances the 

interpretability of downstream risk assessments. 

 

Before feeding data into the deep learning architectures, 

several preprocessing steps were undertaken. Missing 

values-common in real-world financial datasets-were 

imputed using a combination of domain-informed 

techniques. Continuous variables such as income and credit 

limit were imputed using median values within stratified 

market segments, while categorical variables like 

employment type were imputed using the mode within each 

country-sector group. For time-series sequences, forward-fill 

and backward-fill imputation methods were applied, 

especially in LSTM and Transformer pipelines where 

temporal consistency is essential. 

 

Normalization was a critical step in harmonizing input 

scales across diverse variables. Continuous features were 

standardized using Z-score normalization, particularly to 

stabilize training in neural networks. For categorical 

variables, one-hot encoding was applied to low-cardinality 

variables (e.g., loan type), while embedding layers were used 

in the model architecture for high-cardinality variables (e.g., 

geographic region, employer ID). This dual strategy 

preserved model scalability while retaining semantic 

relationships within categorical features. Moreover, all time-

series features were restructured into fixed-length sequences 

to support temporal modeling within RNN and Transformer 

architectures. 

 

To address class imbalance-an endemic issue in credit 

risk datasets where defaults are relatively rare-several 

techniques were employed. First, Synthetic Minority Over-

sampling Technique (SMOTE) was used to generate 

synthetic examples of minority class instances in training 

subsets. Second, cost-sensitive loss functions, such as 

weighted binary cross-entropy, were implemented during 

model training to penalize false negatives more heavily. This 

dual strategy helped in maintaining high recall without 

sacrificing overall accuracy, which is critical in financial 

applications where underestimating default risk can lead to 

severe losses. 

 

Dataset partitioning followed a stratified k-fold cross-

validation strategy, with five folds ensuring that class 

distribution and market representation (country-sector 

combinations) were preserved across training and validation 

splits. A final holdout test set, consisting of 20% of the full 

dataset, was retained to evaluate model performance under 

realistic, unseen conditions. Data leakage was rigorously 

avoided by ensuring that borrower records from the same 

individual or entity did not appear across different folds or 

between training and test sets. Temporal integrity was also 

preserved, with no forward-looking data permitted in training 

phases. 

 

The final dataset configuration, post-cleaning and 

preprocessing, included approximately 2.9 million training 

records, 400,000 validation records, and 300,000 test 

records. Key statistical distributions were visualized and 

compared across geographic and sectoral dimensions to 

ensure representativeness and to identify any lingering 

sampling biases. The resulting data matrix was then fed into 

three model pipelines-CNN, LSTM, and Transformer-each of 

which was adapted to process the structured, sequential, and 

categorical inputs efficiently. This rigorous preprocessing 

framework ensured that the models received clean, 

normalized, and semantically meaningful input, thereby 

enhancing training stability and generalizability across 

heterogeneous financial markets. 

 

4. Deep Learning Architectures Compared 
The credit risk classification task in this study is 

approached through the lens of three widely recognized deep 

learning (DL) architectures: Convolutional Neural Networks 

(CNNs), Long Short-Term Memory networks (LSTMs, a 

type of Recurrent Neural Network), and Transformer-based 

models. Each architecture offers distinct advantages in 

capturing the complex and heterogeneous patterns observed 

in financial datasets. This study outlines the theoretical 

underpinnings, implementation details, and practical 

suitability of each architecture for the credit risk 

classification problem within diverse market conditions. 

 

4.1. Convolutional Neural Networks (CNNs) 

Originally designed for image recognition tasks, CNNs 

have demonstrated impressive capabilities in structured data 

modeling by identifying local spatial hierarchies and feature 

patterns. In the context of credit risk analysis, CNNs are 

leveraged to capture latent feature interactions across 

multivariate borrower profiles. By treating the borrower 

features as a pseudo-grid structure, convolutional filters are 

applied to extract higher-level representations that encode 

nonlinear correlations (e.g., between income level and 

repayment history). The CNN architecture used in this study 

consists of two 1D convolutional layers (32 and 64 filters), 

followed by max-pooling, dropout regularization, and fully 

connected dense layers. This design offers computational 
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efficiency and performs particularly well when the data is 

predominantly static or tabular. 

 

4.2. Long Short-Term Memory Networks (LSTMs) 

Given that credit risk evolves over time and is 

influenced by past financial behaviors, LSTMs are highly 

suited for capturing temporal dependencies in financial time-

series data. Traditional RNNs suffer from vanishing gradient 

problems when modeling long sequences, which LSTMs 

address through gated mechanisms that regulate the flow of 

information. In this study, LSTM networks were applied to 

borrower payment sequences, credit utilization histories, and 

time-stamped macroeconomic features. The architecture 

includes two LSTM layers (with 64 and 128 units 

respectively), each followed by dropout and batch 

normalization layers to enhance generalization. Bidirectional 

LSTM layers were also tested but did not outperform 

unidirectional configurations in this context. LSTMs are 

particularly effective in modeling longitudinal borrower 

behavior, such as payment consistency, delinquency cycles, 

and seasonal spending patterns. 

 

4.3. Transformer-Based Models 

Transformer models, originally developed for natural 

language processing tasks, have recently gained traction in 

financial sequence modeling due to their ability to capture 

long-range dependencies without relying on recurrence. The 

core innovation in Transformers lies in the self-attention 

mechanism, which computes attention weights to selectively 

focus on different parts of a sequence. This is especially 

relevant in credit risk modeling, where events from months 

or years ago (e.g., a past default or loan settlement) can 

influence current risk assessments. The architecture used in 

this study includes an embedding layer for categorical 

features, positional encoding for temporal features, four 

Transformer encoder blocks with multi-head attention (8 

heads), layer normalization, and feedforward layers. The 

model architecture was optimized using AdamW optimizer 

and a learning rate scheduler with warm restarts. 

 

4.4. Comparative Implementation Details 

Each model was implemented in Python using 

TensorFlow 2.11 and PyTorch 1.13. CNNs and LSTMs were 

trained with batch sizes of 512 and learning rates tuned via 

Optuna. The Transformer model used a more conservative 

batch size (128) due to its higher memory footprint. All 

models were trained for 25 epochs with early stopping 

criteria based on validation AUC-ROC and F1-score. 

Hyperparameters were fine-tuned through grid search and 

Bayesian optimization. Categorical variables were encoded 

using embedding layers for LSTMs and Transformers, while 

CNNs employed one-hot encodings. Time-series inputs were 

segmented into rolling windows of 12 months for dynamic 

feature modeling. 

 

4.5. Model Explainability and Interpretation 

Given the high-stakes nature of credit decisions, model 

interpretability is crucial. While CNNs and LSTMs provide 

limited transparency, SHAP (SHapley Additive exPlanations) 

values were used to interpret feature contributions across all 

architectures. For the Transformer model, attention weights 

were also visualized to understand which time steps and 

features the model prioritized during classification. SHAP 

values revealed that features such as past delinquency 

counts, debt-to-income ratios, and recent credit inquiries 

were among the most predictive across all models. 

Transformer attention maps provided additional granularity 

by highlighting sequences where borrowers began 

accumulating risk well before an actual default occurred. 

 

4.6. Architectural Performance Summary 

Overall, the Transformer-based model outperformed 

both CNNs and LSTMs in key performance metrics, 

particularly in cross-regional generalizability and time-series 

sensitivity. CNNs demonstrated solid performance in 

markets with low temporal volatility, while LSTMs were 

especially effective in scenarios where consistent behavioral 

trends were evident. However, Transformers offered the most 

robust performance across heterogeneous market segments, 

owing to their non-local, context-aware attention 

mechanisms. This architectural advantage translated into 

higher recall and lower false negative rates-critical 

characteristics in the context of financial risk management. 

 

4.7. Visual Summary of Architectures 

 CNN for static credit features.  

 RNN (LSTM) for capturing temporal patterns in 

repayment behavior.  

 Transformer for self-attention-based modeling of 

sequential financial events. 

 
Figure 1. Architectural Comparison of DL Models Used 

 

Figure 1 shows the comparative architecture of CNN, 

LSTM, and Transformer models. The diagram includes data 

input flow, dimensional transformations, layers (e.g., 

convolution, LSTM cells, self-attention blocks), and output 

layers. This visual aid helps to contextualize the unique 

structural attributes of each model and clarifies how different 

architectures process financial data differently. 

 

5. Methodology and Mathematical Framework 
The methodological framework used to train, evaluate, 

and interpret the deep learning models for credit risk 

classification in heterogeneous financial markets. The task is 

formulated as a supervised binary classification problem 



Santhosh Kumar Sagar Nagaraj / IJETCSIT, 6(3), 19-27, 2025 

23 

where the target variable indicates whether a borrower 

defaults (1) or not (0). We leverage a combination of 

temporal and static features extracted from borrower profiles, 

credit histories, and macroeconomic indicators. 

 

Model development proceeds through several stages: 

problem formulation, loss function definition, time-series 

modeling with LSTMs and Transformers, and interpretability 

analysis using SHAP values. The models are trained using 

mini-batch stochastic gradient descent, with adaptive 

optimization strategies. Below, we define the mathematical 

formulations that underpin each stage of the modeling 

pipeline. 

 

5.1. Equation 1: Logistic Regression (Baseline Model) 

 
 

This logistic function represents the baseline model for 

credit risk classification. It computes the probability that a 

borrower defaults on a loan given a feature vector X. The 

parameters β0 (intercept) and β (coefficients) are learned 

from the data to maximize the likelihood of correct 

predictions. Although simple, logistic regression serves as a 

benchmark for evaluating the added value of complex deep 

learning architectures. Its linearity makes it limited in 

capturing nonlinear interactions or long-term dependencies 

in borrower behavior. 

 

5.2. Equation 2: Binary Cross-Entropy Loss Function 

 
 

This is the loss function used to train all classification 

models, including CNNs, LSTMs, and Transformers. Here, 

 represents the true label (default or non-default), and   is 

the predicted probability for the positive class. The binary 

cross-entropy loss penalizes predictions that diverge from 

true labels, ensuring the model learns to distinguish between 

defaulting and non-defaulting borrowers. A lower value of 

indicates better model performance. In cost-sensitive 

versions, class weights are incorporated to penalize false 

negatives more heavily, which is crucial in credit risk 

settings. 

 

5.3. Equation 3: LSTM Hidden State Update 

 
This equation describes how an LSTM cell updates its 

hidden state  at time step t. The current input xt and the 

previous hidden state ht-1 are transformed via learnable 

weight matrices Wh and Uh, and passed through a non-linear 

activation function (usually tanh or σ). This mechanism 

allows LSTMs to retain or forget information from previous 

time steps, making them highly effective for modeling 

borrower behaviors over time, such as repayment cycles or 

periods of financial distress. 

 

5.4. Equation 4: Transformer Scaled Dot-Product Attention 

 
 

Explanation: 

This equation is central to the Transformer model's 

attention mechanism. The input sequence is first projected 

into query (Q), key (K), and value (V) vectors. The dot-

product of  and measures the similarity between 

sequence positions, scaled by the square root of the 

dimensionality  to maintain numerical stability. The 

softmax function turns these similarity scores into attention 

weights, which are used to weigh the values V. This 

operation enables the model to focus on relevant past 

financial events when making predictions, without relying on 

recurrence, making it well-suited for complex temporal 

credit data. 

 

5.5. Equation 5: SHAP Value for Feature Attribution 

 
 

Explanation: 

This equation defines the SHAP value ϕi  for feature i, 

quantifying its contribution to a model’s prediction. The 

formulation is based on cooperative game theory and 

computes the marginal contribution of feature i across all 

possible feature subsets S. The term  

captures the change in model output when feature i is 

included. In the context of this study, SHAP values provide 

interpretable explanations for DL predictions, ensuring 

transparency in credit risk assessments by highlighting which 

features (e.g., income, delinquencies) influenced each 

decision. 

 

6. Experimental Setup and Performance 

Evaluation 
To ensure the rigor and generalizability of our results, 

we designed a comprehensive experimental setup involving 

stratified data partitioning, hyperparameter tuning, and 

model benchmarking across diverse financial market 

segments. The entire dataset-comprising borrower records 

from North America, Europe, and Asia-was partitioned into 

training (70%), validation (10%), and testing (20%) sets 

using stratified sampling to preserve the distribution of 

default and non-default cases, as well as geographic and 

sectoral diversity. This ensured that the models were 

evaluated on data distributions reflective of real-world 

heterogeneity. Additionally, a five-fold cross-validation 

strategy was implemented within the training set to fine-tune 

model hyperparameters and monitor for overfitting. 

 

All models were implemented using Python-based deep 

learning frameworks-TensorFlow 2.11 and PyTorch 1.13. 

CNN and LSTM models were trained using a batch size of 

512, while the Transformer model, due to its higher 

computational demand, used a reduced batch size of 128. 

Optimization was carried out using the Adam optimizer with 
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learning rate schedules tuned using Optuna, a state-of-the-art 

Bayesian optimization tool. Early stopping was employed 

with a patience of five epochs based on validation AUC-

ROC scores to prevent overfitting. Models were trained on 

NVIDIA A100 GPUs to accommodate the computational 

complexity of Transformer-based architectures. 

 

To assess model performance, we employed a suite of 

widely used evaluation metrics: accuracy, precision, recall, 

F1-score, and area under the ROC curve (AUC-ROC). These 

metrics were computed on the holdout test set to simulate 

deployment conditions. Particular emphasis was placed on 

recall and F1-score, as they are critical in financial contexts 

where minimizing false negatives (i.e., undetected defaults) 

is crucial for risk mitigation. Additionally, confusion 

matrices were analyzed to understand the distribution of true 

positives, false positives, and false negatives, offering 

insights into model behavior under class imbalance 

conditions. 

Table 1. Model Performance Comparison 

Model Accuracy Precision Recall F1-Score AUC-ROC 

Logistic Reg. 81.2% 0.76 0.79 0.77 0.792 

CNN 87.5% 0.84 0.86 0.84 0.856 

LSTM 89.3% 0.86 0.87 0.86 0.877 

Transformer 91.8% 0.89 0.90 0.89 0.902 

 

Table 1, the Transformer model consistently 

outperformed the CNN and LSTM models across all metrics. 

It achieved the highest AUC-ROC score of 0.902, indicating 

superior capability in distinguishing between defaulting and 

non-defaulting borrowers across varied regions and sectors. 

This performance is particularly notable given the 

Transformer model’s ability to process longer temporal 

sequences with attention mechanisms, which appears to be a 

key advantage in heterogeneous, time-sensitive financial 

environments. 

 

To further explore the robustness of our models, we 

conducted segment-wise performance evaluation by 

disaggregating test results across three major axes: 

geographic region (North America, Europe, Asia), sector 

(retail, manufacturing, services), and loan type (personal, 

mortgage, business). The Transformer model maintained 

strong performance across all segments, though minor 

degradation in performance was observed in 

underrepresented sectors (e.g., agriculture loans in Asia). 

This suggests that model generalizability is largely 

preserved, but still sensitive to regional and data sparsity 

issues-highlighting the need for balanced training data and 

possibly regional fine-tuning strategies in deployment. 

 

In terms of computational efficiency, the CNN model 

trained significantly faster (average of 8 minutes per epoch) 

compared to LSTM (14 minutes per epoch) and Transformer 

(23 minutes per epoch). However, inference time for the 

Transformer model was acceptable (~18 ms per borrower), 

making it viable for real-time or near-real-time applications 

in credit scoring systems. Memory footprint and training 

time constraints should still be considered when deploying 

Transformers in production environments, particularly for 

institutions with limited hardware resources. An 

interpretability was evaluated using SHAP (SHapley 

Additive exPlanations) values, which were computed on the 

test set for each model. The SHAP values revealed consistent 

top features across models-such as debt-to-income ratio, 

number of delinquencies, and recent credit inquiries-but with 

greater granularity in the Transformer model. Additionally, 

Graph 1 (SHAP Summary Plot) illustrated the distribution 

and impact of these features, reinforcing the practical utility 

of deep learning models not only for predictive performance 

but also for compliance with transparency regulations in 

financial services. 

 

7. Results and Interpretations 
The results of the empirical analysis demonstrate a clear 

and consistent advantage of Transformer-based models in the 

classification of credit risk across heterogeneous financial 

markets. When evaluated on a large and stratified test set, the 

Transformer outperformed both CNN and LSTM 

architectures in all key performance metrics-including 

accuracy, recall, F1-score, and AUC-ROC-indicating its 

superior capability to generalize across different market 

conditions, borrower segments, and geographic regions. This 

superior performance is attributed to the model's self-

attention mechanism, which enables it to capture long-range 

dependencies and selectively focus on salient features in long 

financial sequences without relying on recurrence. Where the 

Transformer architecture exhibited a marked improvement 

was cross-market generalization. Specifically, the model 

maintained high accuracy and recall rates across 

subpopulations from North America, Europe, and Asia, 

despite these regions differing significantly in credit 

regulation, consumer behavior, and macroeconomic 

volatility. For example, while CNN and LSTM models 

experienced up to 8–10% performance drop in 

underrepresented regions (e.g., Eastern Europe and South 

Asia), the Transformer’s performance declined by only 2–

3%. This robustness highlights its suitability for institutions 

operating in globally diversified credit markets or dealing 

with fragmented data across subsidiaries. 

 

In order to ensure transparency and trust in model 

predictions, especially in regulatory-sensitive domains such 

as credit scoring, we employed SHAP (SHapley Additive 

exPlanations) to interpret the Transformer’s decisions. SHAP 

values were computed for the test set, revealing the relative 

contribution of each input feature to the model's final 

prediction. The results of this analysis are visualized in Fig 

2: SHAP Summary Plot of Top 10 Features for the 

Transformer Model, which displays the average absolute 

SHAP values of the most influential variables. 



Santhosh Kumar Sagar Nagaraj / IJETCSIT, 6(3), 19-27, 2025 

25 

 

Table 2. SHAP Summary Plot of Top 10 Features for the Transformer Model 

Feature Mean SHAP Value (Normalized) 

Debt-to-Income Ratio 0.234 

Number of Delinquencies 0.208 

Region-Specific GDP Growth 0.192 

Recent Credit Inquiries 0.154 

Credit Utilization Ratio 0.132 

Loan Type (Personal/Business) 0.109 

Previous Default Flag 0.087 

Income Stability Indicator 0.076 

Employment Duration 0.063 

Number of Open Credit Lines 0.059 

 

Fig 2, SHAP analysis reveals three key insights. First, 

debt-to-income (DTI) ratio emerges as the most critical 

feature, confirming its long-standing role in credit scoring as 

a primary indicator of a borrower’s ability to manage loan 

obligations. Second, number of past delinquencies and recent 

credit inquiries rank highly, suggesting that both long-term 

financial behavior and recent borrowing activity weigh 

heavily in the model’s assessment. Third, the inclusion of 

region-specific GDP growth as a top predictor illustrates the 

Transformer’s ability to capture macro-financial interactions, 

which are particularly relevant in multi-country credit risk 

evaluation. 

 

 

 
Figure 2. SHAP Summary Plot of Top 10 Features for Transformer Model 

 

The Transformer’s attention mechanism also provides 

implicit interpretability. Analysis of attention maps showed 

that the model frequently allocated higher attention scores to 

sequence elements corresponding to periods of economic 

downturn, missed payments, or significant changes in credit 

utilization. This ability to focus on critical windows of 

borrower behavior, regardless of position in the input 

sequence, underpins the model’s strong performance on 

temporally unstructured and irregularly sampled financial 

data. In comparing Transformer-based results to those of 

CNN and LSTM models, we found that although the latter 

models captured some temporal and nonlinear effects, they 

lacked the cross-context flexibility offered by the attention 

mechanism. For instance, while LSTMs performed well on 

borrowers with consistent monthly reporting, they struggled 

with irregular time intervals or missing macroeconomic data. 

The CNN, in contrast, was limited by its local feature 

extraction and did not account for the temporal evolution of 

financial behavior an essential dimension in credit risk 

modeling. 

 

8. Limitations and Ethical Considerations 
Despite the promising results of Transformer-based 

architectures in credit risk classification, several important 

limitations must be acknowledged. These limitations pertain 

to both methodological aspects of the study and broader 

ethical implications related to the deployment of AI-driven 

credit scoring systems in heterogeneous financial 

environments. Recognizing and addressing these limitations 

is essential not only for scientific rigor but also for 

responsible and equitable application in real-world financial 

systems. 

One of the foremost concerns in this study-and in credit 

modeling more broadly-is the presence of bias in historical 
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financial data. Legacy credit records often reflect systemic 

socioeconomic inequalities, such as disparities in access to 

credit for minority populations, women, or low-income 

borrowers. These biases can be inadvertently learned and 

perpetuated by machine learning models, especially high-

capacity models like Transformers that capture subtle 

correlations in large datasets. For example, features such as 

employment history or geographic location may serve as 

proxies for protected attributes, reinforcing discriminatory 

lending patterns if not properly monitored and mitigated. 

 

Another limitation relates to the complexity and 

interpretability of deep learning models, particularly 

Transformers. While post hoc interpretability methods such 

as SHAP values offer valuable insights into model behavior, 

they do not inherently make the model transparent. Unlike 

simpler models such as logistic regression or decision trees, 

Transformers do not provide easily traceable decision 

pathways. This opacity poses challenges for financial 

institutions that must comply with regulatory frameworks 

requiring explanation of credit decisions (e.g., the EU’s 

General Data Protection Regulation [GDPR], the U.S. Fair 

Credit Reporting Act). Furthermore, reliance on post hoc 

explanations can lead to inconsistent interpretations, 

especially when model behavior is nonlinear and data-

dependent. 

 

A related concern is the risk of over-reliance on 

algorithmic outputs in credit decision-making processes. 

Financial institutions may defer too much authority to high-

performing models without conducting sufficient due 

diligence on their limitations. This can result in the 

automation of biased or flawed decisions, especially if 

human oversight is weak or misaligned. As DL models 

become more accurate, the tendency to bypass manual 

verification increases-a phenomenon often referred to as 

―automation bias.‖ Hence, even with high-performing 

systems, the role of human judgment and robust governance 

frameworks remains indispensable. 

 

The cross-border deployment of credit risk models 

introduces further ethical and legal complications. Applying 

a model trained on multinational data to new jurisdictions 

without local adaptation can lead to regulatory non-

compliance and unfair treatment of borrowers. For instance, 

a model trained predominantly on North American and 

European data may not accurately reflect lending norms, 

cultural behaviors, or regulatory standards in emerging 

markets such as Southeast Asia or Sub-Saharan Africa. This 

kind of domain mismatch can result in elevated default 

misclassification rates and unequal access to credit for local 

populations. 

 

Another technical limitation is the handling of data 

sparsity and imbalance across markets and sectors. While 

techniques such as SMOTE and cost-sensitive loss functions 

were used to mitigate these effects, the training data for some 

segments-particularly rural borrowers or agricultural loans in 

less developed markets-remained sparse. This limits the 

ability of the model to generalize to these underrepresented 

groups. Moreover, evaluation metrics averaged over the 

entire test set may mask poor performance in these niche 

segments, potentially leading to overlooked model failures in 

specific subpopulations. 

 

From a privacy standpoint, the integration of sensitive 

financial and demographic information in training data raises 

questions around data governance, consent, and 

anonymization standards. Although all datasets used in this 

study were anonymized and obtained under proper data-

sharing agreements, the potential for re-identification 

through advanced modeling techniques cannot be fully 

dismissed. Institutions must implement stringent data 

handling and encryption protocols, and continuously audit 

model outputs for compliance with data protection standards. 

 

9. Conclusion and Future Research 
This study has presented a comprehensive empirical 

investigation into the use of deep learning architectures-

specifically CNNs, LSTMs, and Transformers-for credit risk 

classification across heterogeneous financial markets. By 

leveraging a multi-national, multi-sectoral dataset 

comprising millions of borrower records, we evaluated the 

predictive performance and generalizability of each model 

architecture under real-world data conditions. Our findings 

strongly support the use of Transformer-based models as 

state-of-the-art solutions for credit risk modeling in 

environments characterized by temporal complexity and 

structural heterogeneity. 

 

The Transformer model consistently outperformed CNN 

and LSTM models across all key performance metrics, 

including accuracy, recall, F1-score, and AUC-ROC. More 

importantly, it demonstrated resilience and adaptability when 

evaluated across distinct market segments-geographic 

regions, loan types, and industry sectors. This cross-market 

generalizability addresses a persistent challenge in financial 

modeling: the inability of traditional or even classical 

machine learning models to maintain consistent performance 

in diverse or evolving environments. The attention-based 

architecture of the Transformer appears particularly well-

suited to learning latent patterns from high-dimensional, 

irregularly sampled financial sequences. 

 

Beyond predictive performance, our study also placed 

strong emphasis on model interpretability, a critical 

requirement in regulatory-compliant credit decision systems. 

Using SHAP values, we identified and validated a consistent 

set of predictive features-including debt-to-income ratio, 

number of delinquencies, and regional GDP growth-across 

all model variants. These findings not only enhance the 

practical trustworthiness of deep learning models but also 

provide financial institutions with actionable insights into the 

risk factors driving borrower default. Importantly, 

interpretability tools allowed us to identify and mitigate 

potential algorithmic biases that may arise from historical or 

structural inequalities in the data. 

 

This study is not without its limitations. Issues related to 

historical data bias, model opacity, cross-border fairness, and 
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data sparsity in underrepresented borrower segments persist 

and must be addressed before full-scale deployment. 

Moreover, while post hoc explainability techniques such as 

SHAP offer a degree of transparency, they do not fully 

resolve the interpretability challenge posed by complex DL 

models. These concerns underscore the need for ongoing 

ethical scrutiny, regulatory alignment, and algorithmic 

auditing when integrating AI models into financial risk 

assessment pipelines. 

 

Building on the findings of this research, several 

promising avenues for future investigation emerge. First, 

fairness-aware machine learning approaches-such as 

adversarial debiasing or constrained optimization-should be 

incorporated to ensure equitable treatment across protected 

groups. Second, domain adaptation techniques may be 

explored to improve model transferability between markets 

with limited labeled data. Third, there is scope to integrate 

real-time transactional and behavioral data (e.g., mobile 

payment logs, clickstream data) into credit models to 

improve responsiveness and predictive granularity. Finally, 

ongoing advances in self-supervised learning could allow 

models to learn risk-relevant representations from large 

unlabeled datasets, thereby reducing dependence on 

historical expert labels that may be biased or outdated. The 

critical research direction involves the deployment of 

continuous learning frameworks for credit scoring systems. 

Given the volatility of global financial markets and the 

evolving behavior of borrowers, static models become 

obsolete quickly. Online learning and model retraining 

pipelines that adapt to new data in near real time could 

substantially enhance model robustness and reduce drift over 

time. These pipelines would also support proactive risk 

management, helping financial institutions detect emergent 

default patterns before they manifest in significant portfolio 

losses. 

 

In conclusion, this study underscores the transformative 

potential of deep learning-particularly Transformer 

architectures-in advancing credit risk assessment in a 

globally connected and data-rich financial ecosystem. By 

addressing both technical performance and interpretability, 

the proposed framework contributes to the development of 

more accurate, equitable, and accountable credit scoring 

systems. Future research must continue to bridge the gap 

between algorithmic innovation and ethical deployment to 

ensure that such models serve not only institutional 

efficiency but also broader goals of financial inclusion and 

justice. 
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