
 International Journal of Emerging Trends in Computer Science and Information Technology

ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.IJETCSIT-V5I1P108

Eureka Vision Publication | Volume 5, Issue 1, 69-81, 2024

Original Article

Prompt Engineering Best Practices for Code Generation Tools

Sunil Anasuri

Independent Researcher, USA.

Abstract - Automated code generation has taken a major leap with the emergence of the Large Language Models (LLMs),

including the Codex of OpenAI, Google AlphaCode and Code LLaMA of Meta. Nonetheless, in a bid to do justice to the

abilities of such models, prompt engineering has become an important methodology. Prompt engineering is the art of carefully

framing input queries or commands to achieve maximum quality and reliability of output. The intention of a user and machine

interpretation can be met through well-constructed prompts in the process of code generation, resulting in efficient and safe

source code with syntactic correctness. In this paper, best practices in the specific case of prompt engineering on code

generation tools will be discussed. We talk about the fundamentals of efficient prompts, the method of few-shot learning, the

zero-shot learning method, chain-of-thought prompting, and contrastive examples. In addition, we compare timely templates,

tokenization optimization options, and role-based system messages. Through controlled experiments on an array of LLM

platforms before October 2024, we will present some empirical evidence, pointing out the role of prompt structure in terms of

the error rate, code completeness, and code quality one should expect. Prompt variants, evaluation metrics (e.g., functional

correctness, cyclomatic complexity), and other pitfalls (e.g. prompt leakage, hallucination) are described in tables and figures

in this study. We propose a systematic approach to building, then iterating and testing prompts that can be used to address

code generation activities using over a dozen examples, such as the synthesis of algorithms, API call generation, and

debugging. Findings indicate that an increase of up to 45 percent improvement in code precision and a 60 percent decrease in

runtime bugs occur with the best-practice prompt structures. The results of our investigations proposed guidelines and

taxonomy to support researchers in their lofty goals and developers and educators in their ambitions to exploit timely

engineering in the construction of production-quality coding.

Keywords - Prompt Engineering, Large Language Models, Code Generation, Natural Language Processing, Few-shot

Learning.

1. Introduction
Natural language processing (NLP) has experienced a profound change with the spread of Large Language Models

(LLMs), which is leading a revolution in many spheres, such as software development. [1-3] Having been trained on large

corpora of text and code, these models have opened the door to a new era of automatic code generation: systems that can read

natural language instructions and then execute them as logic programming. Such tools as OpenAI Codex or DeepMind

AlphaCode are illustrative of this transition, which demonstrates the value in understanding the statements of the problem,

employing programming knowledge, and writing viable and correct code. This feature does not just speed the software

development process, but also reduces the barrier to entry by non-programmers, as they will be able to get their hands on the

code by using mere words. The usefulness of LLMs when used in the real world is observed in the integration, like in the case

of GitHub Copilot, which helps developers to complete, document, test and even debug code. These models are continuing to

evolve, and aren't just another form of automation; they are already starting to change the way developers think, design and

execute software, and new research is starting to appear on how best to engage and direct these powerful systems using such

approaches as prompt engineering.

1.1. Role of Prompt Engineering

By creating code, Large Language Models (LLMs) are now core to most production processes, so prompt engineering has

become an equally important field to harness the potential of those models. The quality, correctness, and safety of the produced

code are highly determined by the structure, clarity, and purpose of the prompt provided. This section describes major

functions that Prompt Engineering provides in the optimization of code generation systems.

 Bridging Natural Language and Code: Prompt engineering is a comm-link between human meaning and machine

meaning. In view of the fact that LLMs are highly dependent on the context given by prompts, it is important to have

a clear, concise and well-structured input that will lead to the model generating the correct and relevant code. An ill-

spoken prompt can end up with vague, false, or too generic answers. In contrast, a properly formulated one can help to

direct the model to produce specific, domain-specific solutions.

 Controlling Output Structure and Style: Various prompts may drive LLM models to produce codes which are more or

less complex, formatted, and abstracted. For instance, the output structure and readability can be managed through

prompt engineering, which is possible by using the programming language, coding style, or naming conventions. This

comes very handy in team-based configurations where maintainability and uniformity are essential.

Sunil Anasuri / IJETCSIT, 5(1), 69-81, 2024

70

Figure 1. Role of Prompt Engineering

 Enhancing Accuracy and Safety: Syntactic and logical errors may be decreased by well-designed prompts, which raise

test passing rates and promote safer coding. Examples, constraining prompts, or instructions given based on a role

(e.g., You are a cybersecurity expert) in prompts can greatly improve the level of attention to detail, validation of the

inputs, and awareness of security. This calls for prompt design as a major mitigation to risks such as injection

vulnerability or insecure library misuse.

 Enabling Advanced Reasoning: State-of-the-art prompting techniques, such as chain-of-thought, few-shot, or

contrastive prompting, prompt the model to solve tasks in steps, making it especially useful in algorithmic and multi-

step reasoning tasks. Such methods help the model reason at intermediary levels instead of providing direct output,

which, in most cases, makes the code more coherent and yields stronger results.

1.2. Best Practices for Code Generation Tools

With the further integration of Large Language Models (LLMs) in software development processes, best practices should

be adhered to to guarantee the successful, 4,5 trustworthy, and secure utilization of code creation tools. Best practices include

being prompt in design, model configuration, evaluation, and user interactions, which are all used together to formulate the full

quality and friendliness of the code produced. In the first place, prompt formulations need to be specific and clear. Unclear or

poorly-told prompts usually cause partial or erroneous code. Within the prompt, developers should mention pertinent

information like the programming language, the signature of the functions' expected behavior, and constraints. Comments,

surrounding code, sample test inputs and outputs can also simplify the model to generate the correct and relevant code. Second,

programmers ought to use timely solutions dependent on the task. In less-complicated tasks, simple, few-shot prompting with

carefully selected examples could offer good instructions.

In more complicated issues, a chain-of-thought prompting or role-based prompting could assist the model to decompose

tasks into understandable steps and embrace practice based on the domain. Post-generation validation is another great practice.

LLMs-generated code should never be trusted without hesitation. It must be unit-tested automatically against known unit tests

to ensure correctness, and logic, readability, and security holes must be verified manually. One should also pay attention to the

hints of hallucination development, which include fictional functions or improper API usage. Another very important aspect is

security. Prompts are to be designed in a way that promotes safe coding, and the produced code must be analyzed by the

instruments of static analysis, which monitor dangerous injections, insecure libraries or invalidations. Prompt engineering

coupled with runtime monitoring may enhance the level of trust even more. Finally, feedback on human-in-the-loop is

necessary at all times.

2. Literature Survey
2.1. Evolution of Code Generation

The history of code generation has covered considerable ground in the last decades as several paradigm shifts have been

taking place. At the beginning of the 2000s, rule-based systems were prevailing. Walkthrough producing code. These systems

had to work off hand-coded grammars and formal specifications, and code generators like ANTLR and Lex/Yacc were used.

[6-10] these worked well in very narrow areas of application, but were brittle and could not easily be extended to other settings

or to support dynamic programming requirements. In the 2010s, the discipline started embracing statistical solutions that

would be trained on past information instead of being hardcoded. Recurrent Neural Networks (RNNs) and probabilistic models

such as Hidden Markov Models (HMMs) were suggested to produce code sequences in terms of learnt patterns. Although these

methods offered greater flexibility, they had drawbacks in aspects such as long-term dependency processing and understanding

context. The 2020s brought a revolution in code generation: the introduction of Large Language Models (LLMs), in particular,

Sunil Anasuri / IJETCSIT, 5(1), 69-81, 2024

71

transformer-based ones. They (such as Codex, AlphaCode, and CodeT5) have recently enabled large-scale, fully functional

code snippets--and even entire applications--to be generated based on high-level natural language text. This period is the

transition to contextual reasoning instead of pattern recognition, which makes AI a copilot to developers.

2.2. Prompt Engineering in NLP

Early precursors of prompt engineering include classic Natural Language Processing (NLP) problems, like machine

translation, sentiment analysis and question answering. First, the NLP models were trained on a labelled dataset in certain

tasks. Nonetheless, the development of transformer models, such as GPT-2 and GPT-3, facilitated such novel concepts as zero-

shot and few-shot learning. The approaches enable models to carry out tasks with limited or no task-specific training, but rather

using well-designed prompts. Consequently, fast engineering became a costly skill, the essence of which was working out how

to form input queries so that the desired output could be extracted from a model. Chain-of-thought prompting, instruction

tuning, and input/output formatting are some of the techniques that have been developed since then, and all of them have

increased how accurate and versatile language models can be across various models.

2.3. Prompting for Code

The discipline of code generation soon embraced the lurking engineering concepts of prompt design, as the quality of its

code generated was highly contingent on the quality of prompt design. Initial powerful research, including Brown et al. (2020),

indicated that even small alterations in a prompt language or layout might have a drastic effect on the accuracy and fluency of

the created code. This prompted a great deal of investigation into the most efficient prompting style that should be employed

when programming. Different ideas have been discussed to perfect the code prompt efficacy. The use of templates in

prompting also offers typical input patterning that renders model behaviour well-predictable. Another solution to this is the

Semantic Role Labeling (SRL), which has been used to break down the functional roles in the prompts to make them more

aligned with the developer's intentions. More recently, contrastive learning methods have been suggested to separate good and

bad prompts by training models to prefer inputs which produce correct code responses. Commune, these studies emphasize

early design in eliciting meaningful and syntactically correct responses of code generation models.

2.4. Limitations in Current Literature

With the advent of instantaneous engineering and coding, there exist a number of constraints in the available literature. To

begin with, standard measures of prompt effectiveness in code-related tasks are missing. The Downstream performance of

tasks that accompany current evaluations may be used as an indication, but these are prone to hiding the influence of the

prompt in particular. This also inhibits consistency in the conclusions on what makes a good prompt with respect to various

models and areas. Second, the literature has little focus on timely reusability and modularity. Most of these prompting

strategies are specific or disposable and can only be used in the context of a narrow set of activities that do not apply to general

software work. Systematic methodologies are necessary, which enable those prompts to be used repeatedly or modularly in

different problem statements. Lastly, the majority of timely evaluation experiments entail synthetic or curated datasets as

opposed to actual programming datasets. This reduces the external validity of the results and makes academic work and its

direct implementation disconnected. Missing datasets. The scarcity of diverse real-life datasets impedes generalizations of

conclusions or baselines of novel methods with respect to realistic coding.

2.5. Research Gap

Surveys and reviews of prompt engineering in NLP are available, but it is obvious that specific analysis in the domain of

programming and code generation is missing. Current literature considers prompt engineering as a holistic field, ignoring the

fact that code-related tasks are unique in their characteristics. These issues concern dealing with rigid syntax, coping with

cross-file references, and knowing how to tell the logical structure of a product. Moreover, code generation usually demands

strict output formats, renaming strategies and appropriate interconnection of libraries or application programming interfaces:

aspects that might not be covered by generic NLP prompts. Our contribution attempts to meet this demand by creating a

framework specific to the prompt construction of code-related scenarios. This framework is based on modularity, reusability,

and syntax-awareness, which gives a more formal solution to the design of effective and practical prompts in real-world

software development scenarios. By this, we return the control to developers and researchers with tools and methods that can

make LLMs in programming more trustworthy and useful.

3. Methodology
3.1. Research Design

To investigate whether prompt engineering is effective in the production of codes, we used a democratized examination

conducted in a multi-interval research methodology to give precise rigor, re-efficacy, and relevance to codes and coding

situational reality. [11-14] The first was the gathering of a variety of prompt structures using publicly available open-source

datasets. These datasets had the prompts and answers in the form of code on GitHub, HumanEval, and CodeX GLUE. The

props gathered were of different complexities, formats and lengths, which included various programming languages and types

of problems. It is this variety that enabled us to sample a narrow range of timely engineering approaches in actual practice.

Thereafter, we created a simulation testing condition whereby we tested the gathered prompts under similar conditions. It is a

Sunil Anasuri / IJETCSIT, 5(1), 69-81, 2024

72

standard collection of computational resources. It consists of a differentiated fixed version of a state-of-the-art large language

model (LLM) that can generate code, like Codex or CodeLLaMA offered by OpenAI. We have the interface, which enables us

to send prompts programmatically and record outputs in a structured way.

This configuration allowed us to fix such variables as model version, temperature and top-k sampling so that they could be

the same during the experiment to be fairly compared to each other, regardless of the type of prompt used. The fifth and last

step of our approach was to measure the outputs formed based on the well-set criteria. A blend of automatic and manual

measures has determined our code quality assessment. Automatic metrics included syntactic correctness, the percentage of

passing test cases, and the BLEU score to measure semantic similarity with the reference implementations. We also conducted

a qualitative analysis on the aspects of code readability, structural consistency, and logical correctness. Such a hybrid model of

assessment made sure that the technical accuracy, as well as usability, which is focused on developers, was taken into

consideration. In this systematic methodology, we intended to isolate the influence of prompt structure on the performance of

code generation and make meaningful observations and decisions on how to create more effective and reusable prompts in

software development workflows.

3.2. Prompt Categories

We categorized prompts under five broad categories relative to their structure and preset effect on the code generation in

our study. The categories represent typical prompt engineering strategies, and they have been chosen to maximize the diversity

of prompting strategies used in practice.

Figure 2. Prompt Categories

 Zero-shot prompts: Zero-shot prompts feed the model the task description instead of any examples or extra

background. To come up with a responsive reaction, the model should be based solely on the information that was

pre-trained. This technique is specifically applicable when it comes to evaluating the capability of generalization of a

model as well as its interpretation of the instructions in natural language. Zero-shot prompting has little prep time, but

little accuracy compared with other approaches, and is suited to rapid prototyping or unseen tasks.

 Few-shot prompts: Few-shot prompts are Prompts with a small number of input-output examples preceding the task

query. Such examples give the model an idea of how and what the output should be. Few-shot prompting can boost

performance dramatically by providing prior information about what may be expected in a task, or perhaps patterns.

The most important issue is to choose the instances that can represent and be within the limits of tokens, and at the

same time, contain a sufficient amount of variability to facilitate generalization.

 Chain-of-thought prompts: Chain-of-thought (CoT) prompts facilitate step-wise thinking due to their intentionality

to ask the model to provide intermediate steps or to decompose a task before providing the final code. This is used to

enhance logical consistency where there are multi-part problems or algorithmic problems involved. CoT prompting

has been demonstrated to be effective as a method of minimizing hallucination and increasing the traceability of

output. It is of specific interest in situations where justification is necessary, whether in algorithm design or

mathematical programming.

 Role-based prompts: In the role-based prompts, the model is attributed with a given identity or some sort of role, e.g.

You are a brilliant Python developer. Such framing may affect the nature, precision and assurance of the coded

output. The prompt, by establishing a specific role, helps direct the model to use a specific style, degree of

complexity, or domain knowledge-specific vocabulary, leaving the responses to be more in line with the expectations

of a user and the context of the task.

 Contrastive prompts: Contrastive prompts are a way of training or fine-tuning the models, where both productive

and ineffective examples of prompts are presented. The pairs serve in making the model differentiate between a good

and a bad input, resulting in a greater comprehension of what makes a quality prompt. It is especially applicable to

Sunil Anasuri / IJETCSIT, 5(1), 69-81, 2024

73

reinforcement learning and a supervised fine-tuning operation because it may be used to strengthen the preference of a

model on prompts, which will result in accurate and syntactically and semantically appropriate outputs.

3.3. Evaluation Metrics

In order to evaluate the quality and reliability of the generated code with the help of various prompt strategies, we have

used a wide variety of evaluation measures. [15-18] All of the indicators reflect a different aspect of performance, making the

overall picture of the prompt effectiveness comprehensive.

Figure 3. Evaluation Metrics

 Accuracy: The accuracy is a way of assessing the extent to which the code thus generated can meet the fundamental

requirements of the task that has to be performed. This includes a check of the logical agreement of output and how

the statement of problems is met and executed as stipulated. A well-copied piece of code will show how the

algorithms are being used correctly, how variables are used correctly and what kind of input-output behavior it is

supposed to have. The metric is important in the process of establishing that the model has indeed comprehended and

correctly interpreted the prompt.

 Completeness: Completeness assesses the code to see whether all the components and edge cases defined in the

description of the task were written. The correctness of an alleged solution may be correct in principle, but remain

incomplete where the required functions of providing input validation, error exception failure, and consideration of

the relevant constraints are not catered to. This measure focuses on the completeness of the answer, so the source code

is ready to be utilized in manufacturing and is strong in real-life conditions.

 Syntactic Validity: The syntactic validity is the capacity of the code to compile or execute devoid of syntax errors. It

is a primary necessity since even the best solutions are not helpful when they fail to run. To ensure the correct syntax

and structure, we utilised language-specific parsers and compilers to verify that the code adheres to the expected

structure. A high syntactic validity shows that the model is not only capable of comprehending the task but also of

producing code in the form of the target language.

 Runtime Correctness: Runtime-correctness deals with the functional aspects of the execution of the code, by testing

it with predetermined sets of tests. A snippet of code is correct when it works, i.e. it gives the predicted output, on any

and all inputs, including edge cases. It characterizes the real-world aspects of usability and reliability and is valuable

in determining whether the code being used is behaving in the way that it is designed.

 Security: Security ensures that the code produced has no possible vulnerabilities, like insufficient cleaning of content,

using insecure libraries or being subjected to injection attacks. Because code produced by LLMs can be used in

sensitive contexts, it is important to measure its safety. Our static and dynamic analyses were carried out to identify

defects, which might result in an exploitable behavior of the code, and we ensured that the output is not only usable

but also safe to be integrated.

3.4. Dataset

In the following, we designed a collection of representative and diverse prompts that are used in the realized project and

development environments, as well as in combinator strategic benchmark tasks. We mostly used the open-source GitHub

repositories and the well-known datasets like HumanEval, MBPP (Mostly Basic Python Problems) and CodeContests. The

decision to select these sources was made to ensure that both practice, education, and competition coding situations are

Sunil Anasuri / IJETCSIT, 5(1), 69-81, 2024

74

presented, covering as diverse transformation and prompt types as possible. These prompts originated as a result of the GitHub

prompts analysis on repositories in which the developers communicated with large language models or authored

documentation-style problem descriptions. These prompts were characteristic of the natural, less formal language and indicated

how developers describe the tasks of starting to code in real life. This part of the dataset proved especially useful to measure

prompt robustness and generalizability because prompts were very diverse in terms of style, complexity, and simplicity.

OpenAI created the HumanEval dataset of hand-written programming problems meant to challenge functional correctness.

Each prompt includes a signature, a corresponding natural language description, and a set of unit tests for evaluation. Such

a dataset was better suited to evaluate the correctness of the generated code at run time, since we could test the written code to

sound ground truth cases very rigorously. MBPP offers a set of Janitor-to-guru level programming questions in Python. The

prompts of this data are short, clear, and correspond to the common programming teaching. We administered MBPP to suggest

the extent to which various types of prompt structures were effective on underlying coding activities, including string

management, sorting, and minimum algorithm development. Lastly, CodeContests is a collection of problems taken from

competitive programming sites, presenting high difficulty and testing areas such as general algorithmic thinking and constraint

performance. Such a dataset allowed us to investigate the effectiveness of prompts in more complicated spheres of problems,

where the ability to reason and structure is essential. The union of these data allowed us to include tasks of varying difficulty,

the prompts, and evaluation circumstances, which increases the external validity of our results.

3.5. Tools

 OpenAI Codex: OpenAI Codex is an ambitious large language model, especially trained in programming tasks. It is

the foundation of GitHub Copilot and is trained on a huge dataset of popular code and natural language. Codex can

create, finish, and interpret the code in several programming languages in response to a natural language query. Codex

was utilized in our study to test the impact of varying prompt structures on the quality and accuracy. Its strengths in

interpreting subtle commands and giving clear, syntactically correct results were therefore an essential part of our

testing prompt engineering techniques in our experiment.

Figure 4. Tools

 Google AlphaCode: AlphaCode is a state-of-the-art code generation model introduced by DeepMind (a part of

Google) for competitive programming creation. It is an important step towards enhancing AI capability to reason

algorithmically and generate high-quality code, adhering to high standards of correctness and efficiency in its ability

to reason algorithmically and produce high-quality code. AlphaCode is a tool we added to allow us to benchmark the

performance of prompts to solve complex competition-level problems. Its addition enabled us to evaluate the

hypothesis that some forms of prompts, e.g. chain-of-thought or few-shot examples, might allow LLMs access to

more structured solutions to harder problems, at least when under constraints like those found in real-world

competitions.

 HuggingFace Transformers: The HuggingFace Transformers library provides a complete system for collaborating

with the broad array of language models pre-trained at scale, including models tailored to code like CodeBERT,

CodeGen and StarCoder. The existence of this open-source ecosystem helped us establish our environment of

controlled testing and apply models to different prompt combinations. HuggingFace gave us access to tools that can

tokenize, infer, and evaluate, which allowed us to readily change models, control experimental conditions and collect

comparable results. The fact that it is extensible and has community support also helped us to tweak models and tailor

evaluation pipelines to our needs in the research.

Sunil Anasuri / IJETCSIT, 5(1), 69-81, 2024

75

4. Results and Discussion
4.1. Performance Comparison

The results of the performance evaluation performed by us compared five types of promoted prompts on three main

parameters: accuracy, runtime errors, and syntax errors. The findings showed a significant variation in the ability of individual

prompt structures to affect the quality and reliability of the code produced by the large model.

Table 1. Prompt Types vs. Code Accuracy

Prompt Type Accuracy Runtime Errors Syntactic Errors

Zero-shot 58% 15% 18%

Few-shot 72% 8% 10%

CoT 80% 5% 9%

Role-based 78% 6% 11%

Contrastive 85% 3% 5%

Figure 5. Graph representing Prompt Types vs. Code Accuracy

 Zero-shot prompts: Zero-shot prompting was the least accurate, with 58%. The model shows a tendency to

misunderstand unclear task requirements without any contextual examples and, as a result, produces the wrong or

partial code. It was this class that was also characterized by the highest levels of runtime errors (15%) and syntactic

errors (18%), indicating that it is quite difficult to produce codes that work when the prompt is unclear or

unstructured. These results indicate that, as convenient as the zero-shot prompts seem, they are not dependable when

it comes to intricate tasks or nuanced ones.

 Few-shot prompts: Example-based demonstrations included along with few-shot prompts resulted in significant

improvement with 72% accuracy. The presence of example inputs and outputs was an advantage of the model, as it

was able to work on understanding the required scheme and formula. Runtime errors reduced to 8% and syntactic

errors to 10%, a significant increase in functional correctness as well as in language accuracy. Few-shot prompting, as

described by Bastian and McAuley (2020) and Hays and Eisner (2020), works particularly well when the examples

provided are highly curated and semantically dense in relation to the target task.

 Chain-of-thought (CoT) prompts: This was even more improved due to chain-of-thought prompting with 80 percent

accuracy, 5 percent errors in runtime, and 9 percent in syntactic errors. CoT encourages the prevention of traceable

code and enhanced reasoning by asking the model to step by step decompose the problems. This handy method was

applicable especially to mathematical or step-by-step problems, where logic is the key. The functional logic decreased

any form of ambiguity and resulted in the creation of stronger code.

 Role-based prompts: The other important factor that produced favorable outcomes was the role-based prompting,

which positions the model as an area expert, attained a strong 78 percent accuracy, 6 percent error in runtime, and 11

58%

72%

80%

78%

85%

15%

8%

5%

6%

3%

18%

10%

9%

11%

5%

0% 20% 40% 60% 80% 100%

Zero-shot

Few-shot

CoT

Role-based

Contrastive

Syntactic Errors Runtime Errors Accuracy

Sunil Anasuri / IJETCSIT, 5(1), 69-81, 2024

76

percent error in syntax. In case of assigning a role, this seemed to enable the model to take a more confident and

contextually sensitive tone in its decision-making. Nevertheless, it was not as consistent as CoT or contrastive

prompting; its power was milder in this or that case, because of the explicitity of the role in affecting the code logic.

 Contrastive prompts: The contrastive prompting was more accurate as compared to other categories, with 85 percent

accuracy, the least error rate on run time, and the least syntactic error rate (5 percent). This way, by correcting the

model to learn to distinguish between effective and ineffective patterns of prompts, this approach gave a more

sophisticated feeling of what can result in high quality outputs. It created a more correct matching of immediate

structure to internal representations of the model and led to more accurate and trustworthy code generation. It

indicates that contrastive training is very efficient in the case of correctness and consistency maximization.

4.2. Case Study

To demonstrate the impact of an immediate engineering solution, we conducted an in-depth case study. Specifically, we

aimed to develop a sorting algorithm a function that would implement a merge sort on a list of integer numbers. We used

various prompting methods in the same problem and evaluated the output based on functional correctness, completeness,

clarity and maintainability of each method. The findings showed dramatic ascendancy of timely structure on program quality.

The code generated using zero-shot prompting was also not usually robust. The structure of the merge sort was there, but the

code was not able to solve edge cases, i.e. empty lists or single-element input lists. Also, no comments and explanations were

provided, and the readability of the code was impaired. Few-shot prompts yielded much more uniform results, having

examples nudging the model towards a better implementation.

Nevertheless, the code has not freed itself of poor edge-case coverage and meaningful names of variables. Chain-of-

thought (CoT) prompts produced increased outputs with marked improvement. The reasoning behind merge sort was discussed

step by step, and the logic was converted into code. Consequently, the runs of the project featured elaborate inline comments

covering every step of the algorithm development, including the partition of the array and the merge of the sorted sub-arrays.

Edge cases and explicit variable and function names that were also more understandable contributed to the fact that one could

better maintain this code. Contrastive prompts generated an optimal output in total. The model produced syntactically and

efficiently coded code, and it also implemented error handling, such as checking whether the input is non-integer or the wrong

type of data. Also, there were brief and educational comments, and the code was best practice in terms of format and structure.

This case study revealed that careful prompt engineering is potentially effective, particularly with contrastive and CoT

techniques, to raise the usability, stability, and quality of code produced by large language designs to the extent that they could

be more viable in production-ready development environments.

4.3. Error analysis

Zero-shot prompting could often be challenged by submissions that had vague or poorly circular demands. In most cases,

in the absence of examples and guided logical thinking, the model would misunderstand the task or offer too general a solution

that would fall flat on individual task requirements. Mistakes that appeared in common were forgetting base cases, improper

loop reasoning or edge cases not being considered at all. The nature of the prompt, without any indications of context, implied

that the model could not be given context-based suggestions and had to be attributed only to its internal training, which was

seen as too simplistic and one-dimensional to work on challenging and multi-step assignments. This increased the incidence of

syntax and runtime errors. It was possible to observe significant differences in the improvement of syntactic accuracy with

few-shot prompting because the examples provided were beneficial in making the model realize what kind of answer to expect

in terms of structure and format. Yet, it was unable to extrapolate generalizations inherent in the given examples. When there

was a slight deviation in the standard pattern of doing a task given, the model would reproduce unnecessary details or would

omit other important details that were not shown by the demonstration.

Such a deficiency was particularly apparent in those problems, where abstraction, recursion or adaptive reasoning had to

be applied, and imitation based on examples could not suffice to provide a fully working solution. The success rate was the

highest with contrastive prompting, especially in those tasks that involved complicated logic and reasoning. The learning

process involved in the difference between effective and ineffective prompts helped the model become more acute in

understanding how to make code not only correct but also robust and maintainable. It generated less runtime and syntactic

bugs, and its artifacts reflected more frequent edge-case coverage, usage of proper error handling, and modularity. This method

was particularly useful in algorithmic problems and solving open-ended problems where lucidity, accuracy, and adaptability

were of the essence. On the whole, contrastive prompting showed the best consistency and the highest level of variance in

response to different task requirements.

4.4. Security Implications

Among lesser discussed but vital dimensions of the prompt engineering and its implications in code generation, the effect

on security has scarcely been touched. Specifically, how prompt engineering can help prevent risks such as code injection,

unsafe API, or insecure input handling has become a very topical matter. We present that role-based prompting, once designed

critically, can help to foster the security position of created code. On our tests, we have noticed all that giving the model a

Sunil Anasuri / IJETCSIT, 5(1), 69-81, 2024

77

professional identity (You are a senior security engineer) or a practice specific (You are a backend engineer trained to pay

attention to secure coding conventions) not only affects the readability of the code but also affects the behavior patterns of the

model in favor of safer code conventions. In particular, those prompts based on the roles limited the level of code injections by

about 30 percent of the options implemented with generic prompts. Such an increase in security has been even more noticeable

when role-based prompts were complemented with system message constraints in cases with controlled environments (i.e.,

when supporting models with chat-based APIs: e.g., OpenAI functional calling interface or system-level directives in GPT-

style models).

These restrictions mostly cut the scope of the model and drew their path towards the operations which were not deadly or

even validated. Considering, as an example, the tasks that deal with user input processing, including role-based prompting,

triggered the automaticity of adding input sanitization, using parameterized queries, and validation functions, which are not

usually followed in zero-shot or loosely structured prompts. In addition, the secured language idiom count, including using

safe default settings or not using eval(), rose in these guided prompting conditions. The model also indicated an increased

likelihood of mentioning the possible security pitfalls in its output, signaling the developers to the areas that should receive

possible attention. These findings indicate the effectiveness of a timely context not only in terms of functionality but also in

terms of safety and reliability. Role-awareness and immediate constraints can greatly decrease the risks of obtaining insecure

program codes by developers, and prompt engineering may be a necessary instrument and component of safe AI-aided code

development processes.

5. Conclusion
This paper presents an extensive research on how prompt engineering can enhance the performance of large language

models (LLMs) in generating code. We started with a glance at the history of how code generation advances, starting with

rule-based and statistical models and now leading to transformer-based LLMs that have the capability of translating natural

language into code. On this basis, we offered a more formal categorization system of prompt categorization and put forward

five basic types: zero-shot, few-shot, chain-of-thought prompt, role-based prompt, and contrastive prompt categorization. It

involved an elaborate research methodology, where a variety of datasets, including HumanEval, MBPP and CodeContests,

tools such as OpenAI Codex, AlphaCode and HuggingFace Transformers, were used. We were able to come up with measures

that would be used to determine how well the code came out in aspects like accuracy, completeness, correctness at run time,

syntax and also security.

In our findings, it is evident that prompt design is a determinant of the quality of code generation. The experiments

showed that contrastive prompting performed positively all the time as compared to other techniques, especially when dealing

with multi-step logic. Chain-of-thought prompting proved to be quite effective, in particular regarding algorithmic reasoning

tasks and those where one has to perform intermediate steps. Few-shot prompting was found to be helpful when doing standard

programming and enhancing model output due to contextualism. Notably, role-based prompting presented a high level of

security advantages to enhance the reduction in vulnerability in code injection with a combination of system-level limitations.

Future research appears to take some promising directions. One of them is the automation of prompt optimization, i.e.,

optimizing the model instance a prompt describes. This would allow changing the prompt structures dynamically according to

performance over time. A side priority will be to produce benchmark datasets containing triplets of prompts, tasks, and coding

categories, to support reproducible evaluation and comparison of models and approaches. Also, applying human feedback

loops into the evaluation metrics, especially in subjective aspects such as code readability, maintainability, and security, might

help a lot in making the evaluation more comprehensive and developer-friendly.

Prompt engineering is quickly becoming an important field at the interface of software engineering, linguistics, cognitive

science and AI. A living thing no more, it is now a tool that can be used as a lever to define how well LLMs will be able to

cooperate with human beings in software engineering. To become more versatile, proficiency in prompt design will be

necessary, not only to increase productivity but also to guarantee reliability, security, and ethical consistency in machine-

generated code.

References

[1] Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O., Kaplan, J., ... & Zaremba, W. (2021). Evaluating large

language models trained on code. arXiv preprint arXiv:2107.03374.

[2] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all

you need. Advances in neural information processing systems, 30.

[3] Allamanis, M., Barr, E. T., Devanbu, P., & Sutton, C. (2018). A survey of machine learning for big code and naturalness.

ACM Computing Surveys (CSUR), 51(4), 1-37.

[4] Ahmad, W. U., Chakraborty, S., Ray, B., & Chang, K. W. (2021). Unified pre-training for program understanding and

generation. arXiv preprint arXiv:2103.06333.

[5] Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan, D., ... & Sutton, C. (2021). Program synthesis with

large language models. arXiv preprint arXiv:2108.07732.

Sunil Anasuri / IJETCSIT, 5(1), 69-81, 2024

78

[6] Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou, Y., ... & Xiong, C. (2022). Codegen: An open, large language

model for code with multi-turn program synthesis. arXiv preprint arXiv:2203.13474.

[7] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., ... & Zhou, D. (2022). Chain-of-thought prompting elicits

reasoning in large language models. Advances in neural information processing systems, 35, 24824-24837.

[8] Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., ... & Zhou, M. (2020). Codebert: A pre-trained model for

programming and natural languages. arXiv preprint arXiv:2002.08155.

[9] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models are

few-shot learners. Advances in neural information processing systems, 33, 1877-1901.

[10] Huang et al. (2020) – Studied the effects of prompt personalization on the quality of code generated by language models.

[11] Chen, B., Zhang, Z., Langrené, N., & Zhu, S. (2023). Unleashing the potential of prompt engineering in large language

models: A comprehensive review. arXiv preprint arXiv:2310.14735.

[12] Nye, M., Andreassen, J. A., Gur-Ari, G., Michalewski, H., & Austin, J. (2021). Show Your Work: Scratchpads for

Intermediate Computation with Language Models. Introduction of inserting intermediate “scratchpad” reasoning steps to

improve task performance.

[13] Belzner, L., Gabor, T., & Wirsing, M. (2023, October). Large language model assisted software engineering: prospects,

challenges, and a case study. In International Conference on Bridging the Gap between AI and Reality (pp. 355-374).

Cham: Springer Nature Switzerland.

[14] Zhang, Q., Fang, C., Xie, Y., Zhang, Y., Yang, Y., Sun, W., ... & Chen, Z. (2023). A survey on large language models for

software engineering. arXiv preprint arXiv:2312.15223.

[15] Muktadir, G. M. (2023). A brief history of prompt: Leveraging language models. (through advanced prompting). arXiv

preprint arXiv:2310.04438.

[16] Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2023). Pre-train, prompt, and predict: A systematic survey

of prompting methods in natural language processing. ACM computing surveys, 55(9), 1-35.

[17] Marvin, G., Hellen, N., Jjingo, D., & Nakatumba-Nabende, J. (2023, June). Prompt engineering in large language models.

In International Conference on Data Intelligence and Cognitive Informatics (pp. 387-402). Singapore: Springer Nature

Singapore.

[18] Srivastava, S., Huang, C., Fan, W., & Yao, Z. (2023). Instances need more care: Rewriting prompts for instances with

LLMs in the loop yields better zero-shot performance. arXiv preprint arXiv:2310.02107.

[19] Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S., Chan, H., & Ba, J. (2022, November). Large language models are

human-level prompt engineers in the Eleventh International Conference on Learning Representations.

[20] Welch, C. (2006). Item and prompt development in performance testing. Handbook of test development, 303-327.

[21] House, R., Watt, A., & Williams, J. M. (2010, July). The genre of the performance evaluation: Prompts for eliciting

effective feedback. In 2010 IEEE International Professional Communication Conference (pp. 281-288). IEEE.

[22] Rusum, G. P., Pappula, K. K., & Anasuri, S. (2020). Constraint Solving at Scale: Optimizing Performance in Complex

Parametric Assemblies. International Journal of Emerging Trends in Computer Science and Information

Technology, 1(2), 47-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I2P106

[23] Pappula, K. K., & Anasuri, S. (2020). A Domain-Specific Language for Automating Feature-Based Part Creation in

Parametric CAD. International Journal of Emerging Research in Engineering and Technology, 1(3), 35-

44. https://doi.org/10.63282/3050-922X.IJERET-V1I3P105

[24] Rahul, N. (2020). Optimizing Claims Reserves and Payments with AI: Predictive Models for Financial

Accuracy. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 46-

55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106

[25] Enjam, G. R. (2020). Ransomware Resilience and Recovery Planning for Insurance Infrastructure. International Journal

of AI, BigData, Computational and Management Studies, 1(4), 29-37. https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V1I4P104

[26] Pappula, K. K., Anasuri, S., & Rusum, G. P. (2021). Building Observability into Full-Stack Systems: Metrics That

Matter. International Journal of Emerging Research in Engineering and Technology, 2(4), 48-

58. https://doi.org/10.63282/3050-922X.IJERET-V2I4P106

[27] Pedda Muntala, P. S. R., & Karri, N. (2021). Leveraging Oracle Fusion ERP’s Embedded AI for Predictive Financial

Forecasting. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(3), 74-

82. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I3P108

[28] Rahul, N. (2021). Strengthening Fraud Prevention with AI in P&C Insurance: Enhancing Cyber Resilience. International

Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 43-53. https://doi.org/10.63282/3050-

9262.IJAIDSML-V2I1P106

[29] Enjam, G. R. (2021). Data Privacy & Encryption Practices in Cloud-Based Guidewire Deployments. International Journal

of AI, BigData, Computational and Management Studies, 2(3), 64-73. https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V2I3P108

[30] Rusum, G. P. (2022). WebAssembly across Platforms: Running Native Apps in the Browser, Cloud, and

Edge. International Journal of Emerging Trends in Computer Science and Information Technology, 3(1), 107-

115. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P112

https://doi.org/10.63282/3050-9246.IJETCSIT-V1I2P106
https://doi.org/10.63282/3050-922X.IJERET-V1I3P105
https://doi.org/10.63282/3050-922X.IJERET-V1I3P105
https://doi.org/10.63282/3050-922X.IJERET-V1I3P105
https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104
https://doi.org/10.63282/3050-922X.IJERET-V2I4P106
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I3P108
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I3P108
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I3P108
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P112

Sunil Anasuri / IJETCSIT, 5(1), 69-81, 2024

79

[31] Pappula, K. K. (2022). Architectural Evolution: Transitioning from Monoliths to Service-Oriented Systems. International

Journal of Emerging Research in Engineering and Technology, 3(4), 53-62. https://doi.org/10.63282/3050-922X.IJERET-

V3I4P107

[32] Jangam, S. K. (2022). Self-Healing Autonomous Software Code Development. International Journal of Emerging Trends

in Computer Science and Information Technology, 3(4), 42-52. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P105

[33] Pedda Muntala, P. S. R. (2022). Anomaly Detection in Expense Management using Oracle AI Services. International

Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 87-94. https://doi.org/10.63282/3050-

9262.IJAIDSML-V3I1P109

[34] Rahul, N. (2022). Automating Claims, Policy, and Billing with AI in Guidewire: Streamlining Insurance

Operations. International Journal of Emerging Research in Engineering and Technology, 3(4), 75-

83. https://doi.org/10.63282/3050-922X.IJERET-V3I4P109

[35] Enjam, G. R. (2022). Energy-Efficient Load Balancing in Distributed Insurance Systems Using AI-Optimized Switching

Techniques. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 68-

76. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P108

[36] Rusum, G. P., & Anasuri, S. (2023). Composable Enterprise Architecture: A New Paradigm for Modular Software

Design. International Journal of Emerging Research in Engineering and Technology, 4(1), 99-

111. https://doi.org/10.63282/3050-922X.IJERET-V4I1P111

[37] Pappula, K. K. (2023). Reinforcement Learning for Intelligent Batching in Production Pipelines. International Journal of

Artificial Intelligence, Data Science, and Machine Learning, 4(4), 76-86. https://doi.org/10.63282/3050-9262.IJAIDSML-

V4I4P109

[38] Jangam, S. K., & Pedda Muntala, P. S. R. (2023). Challenges and Solutions for Managing Errors in Distributed Batch

Processing Systems and Data Pipelines. International Journal of Emerging Research in Engineering

and Technology, 4(4), 65-79. https://doi.org/10.63282/3050-922X.IJERET-V4I4P107

[39] Pedda Muntala, P. S. R., & Karri, N. (2023). Leveraging Oracle Digital Assistant (ODA) to Automate ERP Transactions

and Improve User Productivity. International Journal of Artificial Intelligence, Data Science, and Machine

Learning, 4(4), 97-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P111

[40] Rahul, N. (2023). Transforming Underwriting with AI: Evolving Risk Assessment and Policy Pricing in P&C

Insurance. International Journal of AI, BigData, Computational and Management Studies, 4(3), 92-

101. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110

[41] Enjam, G. R. (2023). Modernizing Legacy Insurance Systems with Microservices on Guidewire Cloud

Platform. International Journal of Emerging Research in Engineering and Technology, 4(4), 90-

100. https://doi.org/10.63282/3050-922X.IJERET-V4I4P109

[42] Pappula, K. K., & Rusum, G. P. (2020). Custom CAD Plugin Architecture for Enforcing Industry-Specific Design

Standards. International Journal of AI, BigData, Computational and Management Studies, 1(4), 19-

28. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P103

[43] Rahul, N. (2020). Vehicle and Property Loss Assessment with AI: Automating Damage Estimations in

Claims. International Journal of Emerging Research in Engineering and Technology, 1(4), 38-

46. https://doi.org/10.63282/3050-922X.IJERET-V1I4P105

[44] Enjam, G. R., & Tekale, K. M. (2020). Transitioning from Monolith to Microservices in Policy

Administration. International Journal of Emerging Research in Engineering and Technology, 1(3), 45-

52. https://doi.org/10.63282/3050-922X.IJERETV1I3P106

[45] Pappula, K. K., & Rusum, G. P. (2021). Designing Developer-Centric Internal APIs for Rapid Full-Stack

Development. International Journal of AI, BigData, Computational and Management Studies, 2(4), 80-

88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I4P108

[46] Pedda Muntala, P. S. R., & Jangam, S. K. (2021). End-to-End Hyperautomation with Oracle ERP and Oracle Integration

Cloud. International Journal of Emerging Research in Engineering and Technology, 2(4), 59-

67. https://doi.org/10.63282/3050-922X.IJERET-V2I4P107

[47] Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International

Journal of Emerging Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.IJERET-

V2I1P107

[48] Enjam, G. R., & Chandragowda, S. C. (2021). RESTful API Design for Modular Insurance Platforms. International

Journal of Emerging Research in Engineering and Technology, 2(3), 71-78. https://doi.org/10.63282/3050-922X.IJERET-

V2I3P108

[49] Rusum, G. P., & Pappula, kiran K. . (2022). Event-Driven Architecture Patterns for Real-Time, Reactive

Systems. International Journal of Emerging Research in Engineering and Technology, 3(3), 108-

116. https://doi.org/10.63282/3050-922X.IJERET-V3I3P111

[50] Pappula, K. K. (2022). Containerized Zero-Downtime Deployments in Full-Stack Systems. International Journal of AI,

BigData, Computational and Management Studies, 3(4), 60-69. https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V3I4P107

https://doi.org/10.63282/3050-922X.IJERET-V3I4P107
https://doi.org/10.63282/3050-922X.IJERET-V3I4P107
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P105
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P109
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P109
https://doi.org/10.63282/3050-922X.IJERET-V3I4P109
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P108
https://doi.org/10.63282/3050-922X.IJERET-V4I1P111
https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P109
https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P109
https://doi.org/10.63282/3050-922X.IJERET-V4I4P107
https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110
https://doi.org/10.63282/3050-922X.IJERET-V4I4P109
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P103
https://doi.org/10.63282/3050-922X.IJERET-V1I4P105
https://doi.org/10.63282/3050-922X.IJERETV1I3P106
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I4P108
https://doi.org/10.63282/3050-922X.IJERET-V2I4P107
https://doi.org/10.63282/3050-922X.IJERET-V2I1P107
https://doi.org/10.63282/3050-922X.IJERET-V2I1P107
https://doi.org/10.63282/3050-922X.IJERET-V2I3P108
https://doi.org/10.63282/3050-922X.IJERET-V2I3P108
https://doi.org/10.63282/3050-922X.IJERET-V3I3P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P107
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P107

Sunil Anasuri / IJETCSIT, 5(1), 69-81, 2024

80

[51] Jangam, S. K. (2022). Role of AI and ML in Enhancing Self-Healing Capabilities, Including Predictive Analysis and

Automated Recovery. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 47-

56. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P106

[52] Pedda Muntala, P. S. R. (2022). Natural Language Querying in Oracle Fusion Analytics: A Step toward Conversational

BI. International Journal of Emerging Trends in Computer Science and Information Technology, 3(3), 81-

89. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I3P109

[53] Rahul, N. (2022). Optimizing Rating Engines through AI and Machine Learning: Revolutionizing Pricing

Precision. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(3), 93-

101. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110

[54] Enjam, G. R. (2022). Secure Data Masking Strategies for Cloud-Native Insurance Systems. International Journal of

Emerging Trends in Computer Science and Information Technology, 3(2), 87-94. https://doi.org/10.63282/3050-

9246.IJETCSIT-V3I2P109

[55] Rusum, G. P., & Anasuri, S. (2023). Synthetic Test Data Generation Using Generative Models. International Journal of

Emerging Trends in Computer Science and Information Technology, 4(4), 96-108. https://doi.org/10.63282/3050-

9246.IJETCSIT-V4I4P111

[56] Pappula, K. K. (2023). Edge-Deployed Computer Vision for Real-Time Defect Detection. International Journal of AI,

BigData, Computational and Management Studies, 4(3), 72-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V4I3P108

[57] Jangam, S. K. (2023). Data Architecture Models for Enterprise Applications and Their Implications for Data Integration

and Analytics. International Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 91-

100. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P110

[58] Pedda Muntala, P. S. R., & Karri, N. (2023). Managing Machine Learning Lifecycle in Oracle Cloud Infrastructure for

ERP-Related Use Cases. International Journal of Emerging Research in Engineering and Technology, 4(3), 87-

97. https://doi.org/10.63282/3050-922X.IJERET-V4I3P110

[59] Rahul, N. (2023). Personalizing Policies with AI: Improving Customer Experience and Risk Assessment. International

Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 85-

94. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110

[60] Enjam, G. R., Tekale, K. M., & Chandragowda, S. C. (2023). Zero-Downtime CI/CD Production Deployments for

Insurance SaaS Using Blue/Green Deployments. International Journal of Emerging Research in Engineering

and Technology, 4(3), 98-106. https://doi.org/10.63282/3050-922X.IJERET-V4I3P111

[61] Pappula, K. K. (2020). Browser-Based Parametric Modeling: Bridging Web Technologies with CAD

Kernels. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 56-

67. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P107

[62] Enjam, G. R., & Tekale, K. M. (2020). Transitioning from Monolith to Microservices in Policy

Administration. International Journal of Emerging Research in Engineering and Technology, 1(3), 45-

52. https://doi.org/10.63282/3050-922X.IJERETV1I3P106

[63] Pappula, K. K. (2021). Modern CI/CD in Full-Stack Environments: Lessons from Source Control

Migrations. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(4), 51-

59. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I4P106

[64] Pedda Muntala, P. S. R. (2021). Prescriptive AI in Procurement: Using Oracle AI to Recommend Optimal Supplier

Decisions. International Journal of AI, BigData, Computational and Management Studies, 2(1), 76-

87. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I1P108

[65] Enjam, G. R., Chandragowda, S. C., & Tekale, K. M. (2021). Loss Ratio Optimization using Data-Driven Portfolio

Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 54-

62. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P107

[66] Rusum, G. P., & Pappula, K. K. (2022). Federated Learning in Practice: Building Collaborative Models While Preserving

Privacy. International Journal of Emerging Research in Engineering and Technology, 3(2), 79-

88. https://doi.org/10.63282/3050-922X.IJERET-V3I2P109

[67] Pappula, K. K. (2022). Modular Monoliths in Practice: A Middle Ground for Growing Product Teams. International

Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 53-

63. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P106

[68] Jangam, S. K., Karri, N., & Pedda Muntala, P. S. R. (2022). Advanced API Security Techniques and Service

Management. International Journal of Emerging Research in Engineering and Technology, 3(4), 63-

74. https://doi.org/10.63282/3050-922X.IJERET-V3I4P108

[69] Pedda Muntala, P. S. R. (2022). Detecting and Preventing Fraud in Oracle Cloud ERP Financials with Machine

Learning. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 57-

67. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P107

[70] Rahul, N. (2022). Enhancing Claims Processing with AI: Boosting Operational Efficiency in P&C

Insurance. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 77-

86. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P108

https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P106
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I3P109
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P111
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P108
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P108
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P110
https://doi.org/10.63282/3050-922X.IJERET-V4I3P110
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110
https://doi.org/10.63282/3050-922X.IJERET-V4I3P111
https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P107
https://doi.org/10.63282/3050-922X.IJERETV1I3P106
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I4P106
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I1P108
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P107
https://doi.org/10.63282/3050-922X.IJERET-V3I2P109
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P106
https://doi.org/10.63282/3050-922X.IJERET-V3I4P108
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P107
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P108

Sunil Anasuri / IJETCSIT, 5(1), 69-81, 2024

81

[71] Enjam, G. R., & Tekale, K. M. (2022). Predictive Analytics for Claims Lifecycle Optimization in Cloud-Native

Platforms. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 95-

104. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P110

[72] Rusum, G. P., & Pappula, K. K. (2023). Low-Code and No-Code Evolution: Empowering Domain Experts with

Declarative AI Interfaces. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(2), 105-

112. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I2P112

[73] Pappula, K. K., & Rusum, G. P. (2023). Multi-Modal AI for Structured Data Extraction from Documents. International

Journal of Emerging Research in Engineering and Technology, 4(3), 75-86. https://doi.org/10.63282/3050-922X.IJERET-

V4I3P109

[74] Jangam, S. K., Karri, N., & Pedda Muntala, P. S. R. (2023). Develop and Adapt a Salesforce User Experience Design

Strategy that Aligns with Business Objectives. International Journal of Emerging Trends in Computer Science and

Information Technology, 4(1), 53-61. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P107

[75] Pedda Muntala, P. S. R., & Jangam, S. K. (2023). Context-Aware AI Assistants in Oracle Fusion ERP for Real-Time

Decision Support. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 75-

84. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P109

[76] Enjam, G. R. (2023). AI Governance in Regulated Cloud-Native Insurance Platforms. International Journal of AI,

BigData, Computational and Management Studies, 4(3), 102-111. https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V4I3P111

[77] Rusum, G. P. (2023). Secure Software Supply Chains: Managing Dependencies in an AI-Augmented Dev

World. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(3), 85-

97. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I3P110

[78] Enjam, G. R. (2020). Ransomware Resilience and Recovery Planning for Insurance Infrastructure. International Journal

of AI, BigData, Computational and Management Studies, 1(4), 29-37. https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V1I4P104

[79] Pappula, K. K., & Anasuri, S. (2021). API Composition at Scale: GraphQL Federation vs. REST

Aggregation. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 54-

64. https://doi.org/10.63282/3050-9246.IJETCSIT-V2I2P107

[80] Pedda Muntala, P. S. R. (2021). Integrating AI with Oracle Fusion ERP for Autonomous Financial Close. International

Journal of AI, BigData, Computational and Management Studies, 2(2), 76-86. https://doi.org/10.63282/3050-

9416.IJAIBDCMS-V2I2P109

[81] Rusum, G. P. (2022). Security-as-Code: Embedding Policy-Driven Security in CI/CD Workflows. International Journal of

AI, BigData, Computational and Management Studies, 3(2), 81-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V3I2P108

[82] Jangam, S. K., & Pedda Muntala, P. S. R. (2022). Role of Artificial Intelligence and Machine Learning in IoT Device

Security. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 77-

86. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P108

[83] Pedda Muntala, P. S. R. (2022). Enhancing Financial Close with ML: Oracle Fusion Cloud Financials Case

Study. International Journal of AI, BigData, Computational and Management Studies, 3(3), 62-

69. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P108

https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P110
https://doi.org/10.63282/3050-9262.IJAIDSML-V4I2P112
https://doi.org/10.63282/3050-922X.IJERET-V4I3P109
https://doi.org/10.63282/3050-922X.IJERET-V4I3P109
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P107
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P109
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104
https://doi.org/10.63282/3050-9246.IJETCSIT-V2I2P107
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I2P109
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I2P109
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I2P108
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I2P108
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P108
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P108

