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Abstract - Automated code generation has taken a major leap with the emergence of the Large Language Models (LLMs), 

including the Codex of OpenAI, Google AlphaCode and Code LLaMA of Meta. Nonetheless, in a bid to do justice to the 

abilities of such models, prompt engineering has become an important methodology. Prompt engineering is the art of carefully 

framing input queries or commands to achieve maximum quality and reliability of output. The intention of a user and machine 

interpretation can be met through well-constructed prompts in the process of code generation, resulting in efficient and safe 

source code with syntactic correctness. In this paper, best practices in the specific case of prompt engineering on code 

generation tools will be discussed. We talk about the fundamentals of efficient prompts, the method of few-shot learning, the 

zero-shot learning method, chain-of-thought prompting, and contrastive examples. In addition, we compare timely templates, 

tokenization optimization options, and role-based system messages. Through controlled experiments on an array of LLM 

platforms before October 2024, we will present some empirical evidence, pointing out the role of prompt structure in terms of 

the error rate, code completeness, and code quality one should expect. Prompt variants, evaluation metrics (e.g., functional 

correctness, cyclomatic complexity), and other pitfalls (e.g. prompt leakage, hallucination) are described in tables and figures 

in this study. We propose a systematic approach to building, then iterating and testing prompts that can be used to address 

code generation activities using over a dozen examples, such as the synthesis of algorithms, API call generation, and 

debugging. Findings indicate that an increase of up to 45 percent improvement in code precision and a 60 percent decrease in 

runtime bugs occur with the best-practice prompt structures. The results of our investigations proposed guidelines and 

taxonomy to support researchers in their lofty goals and developers and educators in their ambitions to exploit timely 

engineering in the construction of production-quality coding. 

 

Keywords - Prompt Engineering, Large Language Models, Code Generation, Natural Language Processing, Few-shot 

Learning. 

 

1. Introduction 
Natural language processing (NLP) has experienced a profound change with the spread of Large Language Models 

(LLMs), which is leading a revolution in many spheres, such as software development. [1-3] Having been trained on large 

corpora of text and code, these models have opened the door to a new era of automatic code generation: systems that can read 

natural language instructions and then execute them as logic programming. Such tools as OpenAI Codex or DeepMind 

AlphaCode are illustrative of this transition, which demonstrates the value in understanding the statements of the problem, 

employing programming knowledge, and writing viable and correct code. This feature does not just speed the software 

development process, but also reduces the barrier to entry by non-programmers, as they will be able to get their hands on the 

code by using mere words. The usefulness of LLMs when used in the real world is observed in the integration, like in the case 

of GitHub Copilot, which helps developers to complete, document, test and even debug code. These models are continuing to 

evolve, and aren't just another form of automation; they are already starting to change the way developers think, design and 

execute software, and new research is starting to appear on how best to engage and direct these powerful systems using such 

approaches as prompt engineering. 

 

1.1. Role of Prompt Engineering 

By creating code, Large Language Models (LLMs) are now core to most production processes, so prompt engineering has 

become an equally important field to harness the potential of those models. The quality, correctness, and safety of the produced 

code are highly determined by the structure, clarity, and purpose of the prompt provided. This section describes major 

functions that Prompt Engineering provides in the optimization of code generation systems. 

 Bridging Natural Language and Code: Prompt engineering is a comm-link between human meaning and machine 

meaning. In view of the fact that LLMs are highly dependent on the context given by prompts, it is important to have 

a clear, concise and well-structured input that will lead to the model generating the correct and relevant code. An ill-

spoken prompt can end up with vague, false, or too generic answers. In contrast, a properly formulated one can help to 

direct the model to produce specific, domain-specific solutions. 

 Controlling Output Structure and Style: Various prompts may drive LLM models to produce codes which are more or 

less complex, formatted, and abstracted. For instance, the output structure and readability can be managed through 

prompt engineering, which is possible by using the programming language, coding style, or naming conventions. This 

comes very handy in team-based configurations where maintainability and uniformity are essential. 
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Figure 1.  Role of Prompt Engineering 

 

 Enhancing Accuracy and Safety: Syntactic and logical errors may be decreased by well-designed prompts, which raise 

test passing rates and promote safer coding. Examples, constraining prompts, or instructions given based on a role 

(e.g., You are a cybersecurity expert) in prompts can greatly improve the level of attention to detail, validation of the 

inputs, and awareness of security. This calls for prompt design as a major mitigation to risks such as injection 

vulnerability or insecure library misuse. 

 Enabling Advanced Reasoning: State-of-the-art prompting techniques, such as chain-of-thought, few-shot, or 

contrastive prompting, prompt the model to solve tasks in steps, making it especially useful in algorithmic and multi-

step reasoning tasks. Such methods help the model reason at intermediary levels instead of providing direct output, 

which, in most cases, makes the code more coherent and yields stronger results. 

 

1.2. Best Practices for Code Generation Tools 

With the further integration of Large Language Models (LLMs) in software development processes, best practices should 

be adhered to to guarantee the successful, 4,5 trustworthy, and secure utilization of code creation tools. Best practices include 

being prompt in design, model configuration, evaluation, and user interactions, which are all used together to formulate the full 

quality and friendliness of the code produced. In the first place, prompt formulations need to be specific and clear. Unclear or 

poorly-told prompts usually cause partial or erroneous code. Within the prompt, developers should mention pertinent 

information like the programming language, the signature of the functions' expected behavior, and constraints. Comments, 

surrounding code, sample test inputs and outputs can also simplify the model to generate the correct and relevant code. Second, 

programmers ought to use timely solutions dependent on the task. In less-complicated tasks, simple, few-shot prompting with 

carefully selected examples could offer good instructions.  

 

In more complicated issues, a chain-of-thought prompting or role-based prompting could assist the model to decompose 

tasks into understandable steps and embrace practice based on the domain. Post-generation validation is another great practice. 

LLMs-generated code should never be trusted without hesitation. It must be unit-tested automatically against known unit tests 

to ensure correctness, and logic, readability, and security holes must be verified manually. One should also pay attention to the 

hints of hallucination development, which include fictional functions or improper API usage. Another very important aspect is 

security. Prompts are to be designed in a way that promotes safe coding, and the produced code must be analyzed by the 

instruments of static analysis, which monitor dangerous injections, insecure libraries or invalidations. Prompt engineering 

coupled with runtime monitoring may enhance the level of trust even more. Finally, feedback on human-in-the-loop is 

necessary at all times. 

 

2. Literature Survey 
2.1. Evolution of Code Generation 

The history of code generation has covered considerable ground in the last decades as several paradigm shifts have been 

taking place. At the beginning of the 2000s, rule-based systems were prevailing. Walkthrough producing code. These systems 

had to work off hand-coded grammars and formal specifications, and code generators like ANTLR and Lex/Yacc were used. 

[6-10] these worked well in very narrow areas of application, but were brittle and could not easily be extended to other settings 

or to support dynamic programming requirements. In the 2010s, the discipline started embracing statistical solutions that 

would be trained on past information instead of being hardcoded. Recurrent Neural Networks (RNNs) and probabilistic models 

such as Hidden Markov Models (HMMs) were suggested to produce code sequences in terms of learnt patterns. Although these 

methods offered greater flexibility, they had drawbacks in aspects such as long-term dependency processing and understanding 

context. The 2020s brought a revolution in code generation: the introduction of Large Language Models (LLMs), in particular, 
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transformer-based ones. They (such as Codex, AlphaCode, and CodeT5) have recently enabled large-scale, fully functional 

code snippets--and even entire applications--to be generated based on high-level natural language text. This period is the 

transition to contextual reasoning instead of pattern recognition, which makes AI a copilot to developers. 

 

2.2. Prompt Engineering in NLP 

Early precursors of prompt engineering include classic Natural Language Processing (NLP) problems, like machine 

translation, sentiment analysis and question answering. First, the NLP models were trained on a labelled dataset in certain 

tasks. Nonetheless, the development of transformer models, such as GPT-2 and GPT-3, facilitated such novel concepts as zero-

shot and few-shot learning. The approaches enable models to carry out tasks with limited or no task-specific training, but rather 

using well-designed prompts. Consequently, fast engineering became a costly skill, the essence of which was working out how 

to form input queries so that the desired output could be extracted from a model. Chain-of-thought prompting, instruction 

tuning, and input/output formatting are some of the techniques that have been developed since then, and all of them have 

increased how accurate and versatile language models can be across various models. 

 

2.3. Prompting for Code 

The discipline of code generation soon embraced the lurking engineering concepts of prompt design, as the quality of its 

code generated was highly contingent on the quality of prompt design. Initial powerful research, including Brown et al. (2020), 

indicated that even small alterations in a prompt language or layout might have a drastic effect on the accuracy and fluency of 

the created code. This prompted a great deal of investigation into the most efficient prompting style that should be employed 

when programming. Different ideas have been discussed to perfect the code prompt efficacy. The use of templates in 

prompting also offers typical input patterning that renders model behaviour well-predictable. Another solution to this is the 

Semantic Role Labeling (SRL), which has been used to break down the functional roles in the prompts to make them more 

aligned with the developer's intentions. More recently, contrastive learning methods have been suggested to separate good and 

bad prompts by training models to prefer inputs which produce correct code responses. Commune, these studies emphasize 

early design in eliciting meaningful and syntactically correct responses of code generation models. 

 

2.4. Limitations in Current Literature 

With the advent of instantaneous engineering and coding, there exist a number of constraints in the available literature. To 

begin with, standard measures of prompt effectiveness in code-related tasks are missing. The Downstream performance of 

tasks that accompany current evaluations may be used as an indication, but these are prone to hiding the influence of the 

prompt in particular. This also inhibits consistency in the conclusions on what makes a good prompt with respect to various 

models and areas. Second, the literature has little focus on timely reusability and modularity. Most of these prompting 

strategies are specific or disposable and can only be used in the context of a narrow set of activities that do not apply to general 

software work. Systematic methodologies are necessary, which enable those prompts to be used repeatedly or modularly in 

different problem statements. Lastly, the majority of timely evaluation experiments entail synthetic or curated datasets as 

opposed to actual programming datasets. This reduces the external validity of the results and makes academic work and its 

direct implementation disconnected. Missing datasets. The scarcity of diverse real-life datasets impedes generalizations of 

conclusions or baselines of novel methods with respect to realistic coding. 

 

2.5. Research Gap 

Surveys and reviews of prompt engineering in NLP are available, but it is obvious that specific analysis in the domain of 

programming and code generation is missing. Current literature considers prompt engineering as a holistic field, ignoring the 

fact that code-related tasks are unique in their characteristics. These issues concern dealing with rigid syntax, coping with 

cross-file references, and knowing how to tell the logical structure of a product. Moreover, code generation usually demands 

strict output formats, renaming strategies and appropriate interconnection of libraries or application programming interfaces: 

aspects that might not be covered by generic NLP prompts. Our contribution attempts to meet this demand by creating a 

framework specific to the prompt construction of code-related scenarios. This framework is based on modularity, reusability, 

and syntax-awareness, which gives a more formal solution to the design of effective and practical prompts in real-world 

software development scenarios. By this, we return the control to developers and researchers with tools and methods that can 

make LLMs in programming more trustworthy and useful. 

 

3. Methodology 
3.1. Research Design 

To investigate whether prompt engineering is effective in the production of codes, we used a democratized examination 

conducted in a multi-interval research methodology to give precise rigor, re-efficacy, and relevance to codes and coding 

situational reality. [11-14] The first was the gathering of a variety of prompt structures using publicly available open-source 

datasets. These datasets had the prompts and answers in the form of code on GitHub, HumanEval, and CodeX GLUE. The 

props gathered were of different complexities, formats and lengths, which included various programming languages and types 

of problems. It is this variety that enabled us to sample a narrow range of timely engineering approaches in actual practice.  

Thereafter, we created a simulation testing condition whereby we tested the gathered prompts under similar conditions. It is a 
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standard collection of computational resources. It consists of a differentiated fixed version of a state-of-the-art large language 

model (LLM) that can generate code, like Codex or CodeLLaMA offered by OpenAI. We have the interface, which enables us 

to send prompts programmatically and record outputs in a structured way.  

 

This configuration allowed us to fix such variables as model version, temperature and top-k sampling so that they could be 

the same during the experiment to be fairly compared to each other, regardless of the type of prompt used. The fifth and last 

step of our approach was to measure the outputs formed based on the well-set criteria. A blend of automatic and manual 

measures has determined our code quality assessment. Automatic metrics included syntactic correctness, the percentage of 

passing test cases, and the BLEU score to measure semantic similarity with the reference implementations. We also conducted 

a qualitative analysis on the aspects of code readability, structural consistency, and logical correctness. Such a hybrid model of 

assessment made sure that the technical accuracy, as well as usability, which is focused on developers, was taken into 

consideration. In this systematic methodology, we intended to isolate the influence of prompt structure on the performance of 

code generation and make meaningful observations and decisions on how to create more effective and reusable prompts in 

software development workflows. 

 

3.2. Prompt Categories 

We categorized prompts under five broad categories relative to their structure and preset effect on the code generation in 

our study. The categories represent typical prompt engineering strategies, and they have been chosen to maximize the diversity 

of prompting strategies used in practice. 

 

 
Figure 2. Prompt Categories 

 

 Zero-shot prompts: Zero-shot prompts feed the model the task description instead of any examples or extra 

background. To come up with a responsive reaction, the model should be based solely on the information that was 

pre-trained. This technique is specifically applicable when it comes to evaluating the capability of generalization of a 

model as well as its interpretation of the instructions in natural language. Zero-shot prompting has little prep time, but 

little accuracy compared with other approaches, and is suited to rapid prototyping or unseen tasks. 

 Few-shot prompts: Few-shot prompts are Prompts with a small number of input-output examples preceding the task 

query. Such examples give the model an idea of how and what the output should be. Few-shot prompting can boost 

performance dramatically by providing prior information about what may be expected in a task, or perhaps patterns. 

The most important issue is to choose the instances that can represent and be within the limits of tokens, and at the 

same time, contain a sufficient amount of variability to facilitate generalization. 

 Chain-of-thought prompts: Chain-of-thought (CoT) prompts facilitate step-wise thinking due to their intentionality 

to ask the model to provide intermediate steps or to decompose a task before providing the final code. This is used to 

enhance logical consistency where there are multi-part problems or algorithmic problems involved. CoT prompting 

has been demonstrated to be effective as a method of minimizing hallucination and increasing the traceability of 

output. It is of specific interest in situations where justification is necessary, whether in algorithm design or 

mathematical programming. 

 Role-based prompts: In the role-based prompts, the model is attributed with a given identity or some sort of role, e.g. 

You are a brilliant Python developer. Such framing may affect the nature, precision and assurance of the coded 

output. The prompt, by establishing a specific role, helps direct the model to use a specific style, degree of 

complexity, or domain knowledge-specific vocabulary, leaving the responses to be more in line with the expectations 

of a user and the context of the task. 

 Contrastive prompts: Contrastive prompts are a way of training or fine-tuning the models, where both productive 

and ineffective examples of prompts are presented. The pairs serve in making the model differentiate between a good 

and a bad input, resulting in a greater comprehension of what makes a quality prompt. It is especially applicable to 
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reinforcement learning and a supervised fine-tuning operation because it may be used to strengthen the preference of a 

model on prompts, which will result in accurate and syntactically and semantically appropriate outputs. 

 

3.3. Evaluation Metrics 

In order to evaluate the quality and reliability of the generated code with the help of various prompt strategies, we have 

used a wide variety of evaluation measures. [15-18] All of the indicators reflect a different aspect of performance, making the 

overall picture of the prompt effectiveness comprehensive. 

 

 
Figure 3. Evaluation Metrics 

 

 Accuracy: The accuracy is a way of assessing the extent to which the code thus generated can meet the fundamental 

requirements of the task that has to be performed. This includes a check of the logical agreement of output and how 

the statement of problems is met and executed as stipulated. A well-copied piece of code will show how the 

algorithms are being used correctly, how variables are used correctly and what kind of input-output behavior it is 

supposed to have. The metric is important in the process of establishing that the model has indeed comprehended and 

correctly interpreted the prompt. 

 Completeness: Completeness assesses the code to see whether all the components and edge cases defined in the 

description of the task were written. The correctness of an alleged solution may be correct in principle, but remain 

incomplete where the required functions of providing input validation, error exception failure, and consideration of 

the relevant constraints are not catered to. This measure focuses on the completeness of the answer, so the source code 

is ready to be utilized in manufacturing and is strong in real-life conditions. 

 Syntactic Validity: The syntactic validity is the capacity of the code to compile or execute devoid of syntax errors. It 

is a primary necessity since even the best solutions are not helpful when they fail to run. To ensure the correct syntax 

and structure, we utilised language-specific parsers and compilers to verify that the code adheres to the expected 

structure. A high syntactic validity shows that the model is not only capable of comprehending the task but also of 

producing code in the form of the target language. 

 Runtime Correctness: Runtime-correctness deals with the functional aspects of the execution of the code, by testing 

it with predetermined sets of tests. A snippet of code is correct when it works, i.e. it gives the predicted output, on any 

and all inputs, including edge cases. It characterizes the real-world aspects of usability and reliability and is valuable 

in determining whether the code being used is behaving in the way that it is designed. 

 Security: Security ensures that the code produced has no possible vulnerabilities, like insufficient cleaning of content, 

using insecure libraries or being subjected to injection attacks. Because code produced by LLMs can be used in 

sensitive contexts, it is important to measure its safety. Our static and dynamic analyses were carried out to identify 

defects, which might result in an exploitable behavior of the code, and we ensured that the output is not only usable 

but also safe to be integrated. 

 

3.4. Dataset 

In the following, we designed a collection of representative and diverse prompts that are used in the realized project and 

development environments, as well as in combinator strategic benchmark tasks. We mostly used the open-source GitHub 

repositories and the well-known datasets like HumanEval, MBPP (Mostly Basic Python Problems) and CodeContests. The 

decision to select these sources was made to ensure that both practice, education, and competition coding situations are 
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presented, covering as diverse transformation and prompt types as possible. These prompts originated as a result of the GitHub 

prompts analysis on repositories in which the developers communicated with large language models or authored 

documentation-style problem descriptions. These prompts were characteristic of the natural, less formal language and indicated 

how developers describe the tasks of starting to code in real life. This part of the dataset proved especially useful to measure 

prompt robustness and generalizability because prompts were very diverse in terms of style, complexity, and simplicity. 

OpenAI created the HumanEval dataset of hand-written programming problems meant to challenge functional correctness.  

 

Each prompt includes a signature, a corresponding natural language description, and a set of unit tests for evaluation. Such 

a dataset was better suited to evaluate the correctness of the generated code at run time, since we could test the written code to 

sound ground truth cases very rigorously. MBPP offers a set of Janitor-to-guru level programming questions in Python. The 

prompts of this data are short, clear, and correspond to the common programming teaching. We administered MBPP to suggest 

the extent to which various types of prompt structures were effective on underlying coding activities, including string 

management, sorting, and minimum algorithm development. Lastly, CodeContests is a collection of problems taken from 

competitive programming sites, presenting high difficulty and testing areas such as general algorithmic thinking and constraint 

performance. Such a dataset allowed us to investigate the effectiveness of prompts in more complicated spheres of problems, 

where the ability to reason and structure is essential. The union of these data allowed us to include tasks of varying difficulty, 

the prompts, and evaluation circumstances, which increases the external validity of our results. 

 

3.5. Tools 

 OpenAI Codex: OpenAI Codex is an ambitious large language model, especially trained in programming tasks. It is 

the foundation of GitHub Copilot and is trained on a huge dataset of popular code and natural language. Codex can 

create, finish, and interpret the code in several programming languages in response to a natural language query. Codex 

was utilized in our study to test the impact of varying prompt structures on the quality and accuracy. Its strengths in 

interpreting subtle commands and giving clear, syntactically correct results were therefore an essential part of our 

testing prompt engineering techniques in our experiment. 

 

 
Figure 4. Tools 

 

 Google AlphaCode: AlphaCode is a state-of-the-art code generation model introduced by DeepMind (a part of 

Google) for competitive programming creation. It is an important step towards enhancing AI capability to reason 

algorithmically and generate high-quality code, adhering to high standards of correctness and efficiency in its ability 

to reason algorithmically and produce high-quality code. AlphaCode is a tool we added to allow us to benchmark the 

performance of prompts to solve complex competition-level problems. Its addition enabled us to evaluate the 

hypothesis that some forms of prompts, e.g. chain-of-thought or few-shot examples, might allow LLMs access to 

more structured solutions to harder problems, at least when under constraints like those found in real-world 

competitions. 

 HuggingFace Transformers: The HuggingFace Transformers library provides a complete system for collaborating 

with the broad array of language models pre-trained at scale, including models tailored to code like CodeBERT, 

CodeGen and StarCoder. The existence of this open-source ecosystem helped us establish our environment of 

controlled testing and apply models to different prompt combinations. HuggingFace gave us access to tools that can 

tokenize, infer, and evaluate, which allowed us to readily change models, control experimental conditions and collect 

comparable results. The fact that it is extensible and has community support also helped us to tweak models and tailor 

evaluation pipelines to our needs in the research. 
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4. Results and Discussion 
4.1. Performance Comparison 

The results of the performance evaluation performed by us compared five types of promoted prompts on three main 

parameters: accuracy, runtime errors, and syntax errors. The findings showed a significant variation in the ability of individual 

prompt structures to affect the quality and reliability of the code produced by the large model. 

 

Table 1. Prompt Types vs. Code Accuracy 

Prompt Type Accuracy Runtime Errors Syntactic Errors 

Zero-shot 58% 15% 18% 

Few-shot 72% 8% 10% 

CoT 80% 5% 9% 

Role-based 78% 6% 11% 

Contrastive 85% 3% 5% 

 

 
Figure 5. Graph representing Prompt Types vs. Code Accuracy 

 

 Zero-shot prompts: Zero-shot prompting was the least accurate, with 58%. The model shows a tendency to 

misunderstand unclear task requirements without any contextual examples and, as a result, produces the wrong or 

partial code. It was this class that was also characterized by the highest levels of runtime errors (15%) and syntactic 

errors (18%), indicating that it is quite difficult to produce codes that work when the prompt is unclear or 

unstructured. These results indicate that, as convenient as the zero-shot prompts seem, they are not dependable when 

it comes to intricate tasks or nuanced ones. 

 Few-shot prompts: Example-based demonstrations included along with few-shot prompts resulted in significant 

improvement with 72% accuracy. The presence of example inputs and outputs was an advantage of the model, as it 

was able to work on understanding the required scheme and formula. Runtime errors reduced to 8% and syntactic 

errors to 10%, a significant increase in functional correctness as well as in language accuracy. Few-shot prompting, as 

described by Bastian and McAuley (2020) and Hays and Eisner (2020), works particularly well when the examples 

provided are highly curated and semantically dense in relation to the target task. 

 Chain-of-thought (CoT) prompts: This was even more improved due to chain-of-thought prompting with 80 percent 

accuracy, 5 percent errors in runtime, and 9 percent in syntactic errors. CoT encourages the prevention of traceable 

code and enhanced reasoning by asking the model to step by step decompose the problems. This handy method was 

applicable especially to mathematical or step-by-step problems, where logic is the key. The functional logic decreased 

any form of ambiguity and resulted in the creation of stronger code. 

 Role-based prompts: The other important factor that produced favorable outcomes was the role-based prompting, 

which positions the model as an area expert, attained a strong 78 percent accuracy, 6 percent error in runtime, and 11 
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percent error in syntax. In case of assigning a role, this seemed to enable the model to take a more confident and 

contextually sensitive tone in its decision-making. Nevertheless, it was not as consistent as CoT or contrastive 

prompting; its power was milder in this or that case, because of the explicitity of the role in affecting the code logic. 

 Contrastive prompts: The contrastive prompting was more accurate as compared to other categories, with 85 percent 

accuracy, the least error rate on run time, and the least syntactic error rate (5 percent). This way, by correcting the 

model to learn to distinguish between effective and ineffective patterns of prompts, this approach gave a more 

sophisticated feeling of what can result in high quality outputs. It created a more correct matching of immediate 

structure to internal representations of the model and led to more accurate and trustworthy code generation. It 

indicates that contrastive training is very efficient in the case of correctness and consistency maximization. 

 

4.2. Case Study 

To demonstrate the impact of an immediate engineering solution, we conducted an in-depth case study. Specifically, we 

aimed to develop a sorting algorithm a function that would implement a merge sort on a list of integer numbers. We used 

various prompting methods in the same problem and evaluated the output based on functional correctness, completeness, 

clarity and maintainability of each method. The findings showed dramatic ascendancy of timely structure on program quality. 

The code generated using zero-shot prompting was also not usually robust. The structure of the merge sort was there, but the 

code was not able to solve edge cases, i.e. empty lists or single-element input lists. Also, no comments and explanations were 

provided, and the readability of the code was impaired. Few-shot prompts yielded much more uniform results, having 

examples nudging the model towards a better implementation. 

 

Nevertheless, the code has not freed itself of poor edge-case coverage and meaningful names of variables. Chain-of-

thought (CoT) prompts produced increased outputs with marked improvement. The reasoning behind merge sort was discussed 

step by step, and the logic was converted into code. Consequently, the runs of the project featured elaborate inline comments 

covering every step of the algorithm development, including the partition of the array and the merge of the sorted sub-arrays. 

Edge cases and explicit variable and function names that were also more understandable contributed to the fact that one could 

better maintain this code. Contrastive prompts generated an optimal output in total. The model produced syntactically and 

efficiently coded code, and it also implemented error handling, such as checking whether the input is non-integer or the wrong 

type of data. Also, there were brief and educational comments, and the code was best practice in terms of format and structure. 

This case study revealed that careful prompt engineering is potentially effective, particularly with contrastive and CoT 

techniques, to raise the usability, stability, and quality of code produced by large language designs to the extent that they could 

be more viable in production-ready development environments. 

 

4.3. Error analysis 

Zero-shot prompting could often be challenged by submissions that had vague or poorly circular demands. In most cases, 

in the absence of examples and guided logical thinking, the model would misunderstand the task or offer too general a solution 

that would fall flat on individual task requirements. Mistakes that appeared in common were forgetting base cases, improper 

loop reasoning or edge cases not being considered at all. The nature of the prompt, without any indications of context, implied 

that the model could not be given context-based suggestions and had to be attributed only to its internal training, which was 

seen as too simplistic and one-dimensional to work on challenging and multi-step assignments. This increased the incidence of 

syntax and runtime errors. It was possible to observe significant differences in the improvement of syntactic accuracy with 

few-shot prompting because the examples provided were beneficial in making the model realize what kind of answer to expect 

in terms of structure and format. Yet, it was unable to extrapolate generalizations inherent in the given examples. When there 

was a slight deviation in the standard pattern of doing a task given, the model would reproduce unnecessary details or would 

omit other important details that were not shown by the demonstration.  

 

Such a deficiency was particularly apparent in those problems, where abstraction, recursion or adaptive reasoning had to 

be applied, and imitation based on examples could not suffice to provide a fully working solution. The success rate was the 

highest with contrastive prompting, especially in those tasks that involved complicated logic and reasoning. The learning 

process involved in the difference between effective and ineffective prompts helped the model become more acute in 

understanding how to make code not only correct but also robust and maintainable. It generated less runtime and syntactic 

bugs, and its artifacts reflected more frequent edge-case coverage, usage of proper error handling, and modularity. This method 

was particularly useful in algorithmic problems and solving open-ended problems where lucidity, accuracy, and adaptability 

were of the essence. On the whole, contrastive prompting showed the best consistency and the highest level of variance in 

response to different task requirements. 

 

4.4. Security Implications 

Among lesser discussed but vital dimensions of the prompt engineering and its implications in code generation, the effect 

on security has scarcely been touched. Specifically, how prompt engineering can help prevent risks such as code injection, 

unsafe API, or insecure input handling has become a very topical matter. We present that role-based prompting, once designed 

critically, can help to foster the security position of created code. On our tests, we have noticed all that giving the model a 
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professional identity (You are a senior security engineer) or a practice specific (You are a backend engineer trained to pay 

attention to secure coding conventions) not only affects the readability of the code but also affects the behavior patterns of the 

model in favor of safer code conventions. In particular, those prompts based on the roles limited the level of code injections by 

about 30 percent of the options implemented with generic prompts. Such an increase in security has been even more noticeable 

when role-based prompts were complemented with system message constraints in cases with controlled environments (i.e., 

when supporting models with chat-based APIs: e.g., OpenAI functional calling interface or system-level directives in GPT-

style models).  

 

These restrictions mostly cut the scope of the model and drew their path towards the operations which were not deadly or 

even validated. Considering, as an example, the tasks that deal with user input processing, including role-based prompting, 

triggered the automaticity of adding input sanitization, using parameterized queries, and validation functions, which are not 

usually followed in zero-shot or loosely structured prompts. In addition, the secured language idiom count, including using 

safe default settings or not using eval(), rose in these guided prompting conditions. The model also indicated an increased 

likelihood of mentioning the possible security pitfalls in its output, signaling the developers to the areas that should receive 

possible attention. These findings indicate the effectiveness of a timely context not only in terms of functionality but also in 

terms of safety and reliability. Role-awareness and immediate constraints can greatly decrease the risks of obtaining insecure 

program codes by developers, and prompt engineering may be a necessary instrument and component of safe AI-aided code 

development processes. 

 

5. Conclusion 
This paper presents an extensive research on how prompt engineering can enhance the performance of large language 

models (LLMs) in generating code. We started with a glance at the history of how code generation advances, starting with 

rule-based and statistical models and now leading to transformer-based LLMs that have the capability of translating natural 

language into code. On this basis, we offered a more formal categorization system of prompt categorization and put forward 

five basic types: zero-shot, few-shot, chain-of-thought prompt, role-based prompt, and contrastive prompt categorization. It 

involved an elaborate research methodology, where a variety of datasets, including HumanEval, MBPP and CodeContests, 

tools such as OpenAI Codex, AlphaCode and HuggingFace Transformers, were used. We were able to come up with measures 

that would be used to determine how well the code came out in aspects like accuracy, completeness, correctness at run time, 

syntax and also security. 

 

In our findings, it is evident that prompt design is a determinant of the quality of code generation. The experiments 

showed that contrastive prompting performed positively all the time as compared to other techniques, especially when dealing 

with multi-step logic. Chain-of-thought prompting proved to be quite effective, in particular regarding algorithmic reasoning 

tasks and those where one has to perform intermediate steps. Few-shot prompting was found to be helpful when doing standard 

programming and enhancing model output due to contextualism. Notably, role-based prompting presented a high level of 

security advantages to enhance the reduction in vulnerability in code injection with a combination of system-level limitations. 

Future research appears to take some promising directions. One of them is the automation of prompt optimization, i.e., 

optimizing the model instance a prompt describes. This would allow changing the prompt structures dynamically according to 

performance over time. A side priority will be to produce benchmark datasets containing triplets of prompts, tasks, and coding 

categories, to support reproducible evaluation and comparison of models and approaches. Also, applying human feedback 

loops into the evaluation metrics, especially in subjective aspects such as code readability, maintainability, and security, might 

help a lot in making the evaluation more comprehensive and developer-friendly. 

 

Prompt engineering is quickly becoming an important field at the interface of software engineering, linguistics, cognitive 

science and AI. A living thing no more, it is now a tool that can be used as a lever to define how well LLMs will be able to 

cooperate with human beings in software engineering. To become more versatile, proficiency in prompt design will be 

necessary, not only to increase productivity but also to guarantee reliability, security, and ethical consistency in machine-

generated code. 
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