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Abstract - The development of connected vehicles is 

generating unprecedented volumes of IoT data, which in turn 

impacts the functionalities of modern transportation systems. 

This puts pressure on conventional IT Operations 

Management (ITOM) frameworks. In this paper, we propose 

a novel, multi-layered architecture that integrates AIOps 

(Artificial Intelligence for IT Operations) for real-time fault 

prediction and autonomous Root Cause Analysis (RCA) 
within the context of a connected vehicle ecosystem. The 

architecture integrates vehicle onboard diagnostics, edge 

computing, and cloud computing to manage efficient data 

and workload analytics. It contains a hybrid predictive 

engine that applies lightweight statistical models for low-

latency anomaly detection and advanced cloud deep learning 

models for recognizing complex failure patterns. For 

diagnostics, we propose a graph-based RCA engine that 

dynamically models the V2X system's interrelationships to 

determine the rapid and precise origin of failures. We 

address the challenges of latency, data scalability, and 

model explainability, proposing solutions for each. This 
study aims to propose an operational intelligence framework 

for connected mobility solutions. 
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1. Introduction 
The automotive sector is undergoing a dramatic shift in 

its paradigm from classical mechanical engineering to 

software and distributed computing. Today’s vehicles are 

equipped with dozens of Electronic Control Units (ECUs) 

and hundreds of sensors. They also have intra-vehicle 

networks like CAN, FlexRay, and automotive Ethernet, 

which incorporate vehicles as cyber-physical systems. This 

change further integrates vehicles into the IoT ecosystem and 

turns them into crucial data-generating nodes. however, this 

shift in technology introduces operational challenges to the 
automotive and IT sectors that have never been seen before, 

in terms of complexity and scale. Merging these two worlds 

introduces a new category of cyber-physical operational 

problems. The latest issue is that a software bug in a cloud-

based service could cause a vehicle to malfunction critically, 

and a vehicle malfunction could, in turn, compromise the 

cloud service. Approaches from each of the two domains 

alone are not enough to handle this new, closely connected 

reality. The complexity of the issue is staggering. For every 

hour of operation, the high-resolution cameras, LiDAR, and 

other advanced sensors are projected to yield raw data of 

three to six terabytes per vehicle[4]. When scaled to a fleet of 

millions of vehicles, the volume, velocity, and variety of data 

become profoundly overwhelming. From a single vehicle, 

there is already a significant data issue.  

 
The challenge becomes even greater with the newer 

concept of Vehicle-to-Everything (V2X) communications 

that form a self-organizing and dynamic network of 

interactions with other vehicles (V2V), Infrastructure (V2I), 

pedestrians (V2P), and cloud services (V2C). The resultant 

ecosystem of V2X is a distributed system of unprecedented 

scale and dynamism. Such an unchecked system creates the 

paradox of losing control, risking overlooked issues, and 

compromising reliability and safety. Such frameworks are 

impossible to provide with the current IT Operations 

Management (ITOM) systems that are reliant on manual, 

inflexible, and rule-bound reactive systems. The impact of 
V2X changes focus not only on the system, but also on 

operational effectiveness and cost efficiency. Regarding the 

areas of connected and autonomous mobility, system failures 

extend beyond the typical considerations of mobility service 

disruptions. Autonomous connected mobility service failures 

can lead to costly recalls and pose a risk to human safety. 

Predicting and mitigating operational anomalies, 

understanding the precise root cause of deviations, and 

diagnosing irregularities in real time are mission-critical for 

operations. 

 

2. End-to-End Working of the AIOps 

Framework   
Prior to the examination of individual operational 

challenges, an overview of the complete AIOps framework 

operational sequence is warranted. The architecture 

implements a stratified distribution of cognitive functions, 

tiered into three interdependent layers: the vehicle, the 

network edge, and the cloud. This stratification is a design 

imperative that balances latency constraints, bandwidth 

limitations, and computational overhead, ensuring each 

processing function is placed where it incurs the least total 

burden.  

 Execution commences at Layer 1: The Vehicle 
(On-Board Intelligence). At this tier, a two-step 

sequence of real-time data triage is executed. First, 
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incoming high-bandwidth streams from resident 

sensors and vehicle data buses (e.g., Controller Area 

Network (CAN), Local Interconnect Network 

(LIN)) are subjected to recursive filtering, wherein a 

calibrated set of lightweight anomaly detection 

models parametrize signal behavior. Deviations 
exceeding empirically defined thresholds are 

tagged; all remaining data are suppressed. Rather 

than transmitting the voluminous raw datasets, only 

salient, reduced messages consolidated anomaly 

alerts and statistical summaries are then transmitted 

to the succeeding edge node. This onboard filtering 

is an essential first step in managing the large 

volume of data. 

 Data proceeds from Layer 2: The Edge (Localized 

Fleet Coordination). Deployed on edge servers 

within the 5G mobile network (e.g., Multi-access 

Edge Computing nodes), this stratum assimilates 
inputs from numerous nearby vehicles. It executes 

event correlation across the local fleet to surface 

emergent phenomena affecting multiple 

automobiles such as sudden surface ice and 

concurrently deploys intermediate-complexity 

predictive models to enable low-latency, vehicle-to-

vehicle (V2V) and vehicle-to-infrastructure (V2I) 

safety services.  

 Subsequently, information is conveyed to Layer 

3: The Cloud (Global Fleet Intelligence). This 

central hub provides the required storage and 
compute capacity to sustain prolonged, fleet-wide 

analytics. Here, intricate deep learning architectures 

ingest petabytes of legacy telemetry to detect subtle 

performance declines and predict the failure of 

individual components. This layer also executes 

domain-general, root-cause exploration and delivers 

validated findings that are capable of driving both 

preemptive product recalls and future vehicle 

designs.  

 

3. Challenges in AIOps for Connected Vehicles 
The remainder of this section examines the key 

challenges to implementing the AIOps architecture within 

the ecosystem of connected automobiles. 

 

3.1. Managing Data Volume and Velocity at the Edge 

The edge nodes in the framework's layered architecture 

continue to serve as major hotspots of data concentration 
within the system. For instance, an edge server in charge of a 

metropolitan area may be receiving aggregated data streams 

from hundreds or thousands of vehicles at the same time, 

creating a localized big data challenge. It poses the challenge 

of processing an exceptionally high volume and velocity of 

data in real-time, all while constrained by the resources of 

edge devices.  

 

3.2. Minimizing Latency For Predictive Safety Functions 

Active safety and collision avoidance applications 

require an extremely optimized pipeline for a diverse set of 
streams, as sensor data collection and insight or warning 

prediction must be under a few milliseconds. Achieving 

these ultra-low latencies requires optimizing every stage of 

the processing pipeline: from data collection and model 

execution, to data transmission and insight generation. 

 

3.3. Model Accuracy, Drift, and Explainable AI (XAI) 

The machine-learning models employed in the 
framework determine its effectiveness. These models, 

however, are not fixed. Their accuracy can deteriorate over 

time and with changes in the operating environment this is 

referred to as “concept drift.” In addition, the “black box” 

problem associated with complex models, particularly deep 

neural networks, is a significant concern in safety-critical 

domains where every automated decision must be 

transparent, auditable, and trustworthy.  

  

3.4. Interoperability and framework scalability in a multi-

OEM context 

The overarching goal of the framework is to achieve 
fleet-wide scale, multi-telecommunication, and multi-OEM 

vehicle interoperability. A lack of standards for data and 

communication in the automotive industry currently restricts 

that vision. The adoption barrier is not merely technical. It is 

also socio-technical; concerns of data sovereignty, liability, 

and trust are at its center. 

 

4. Mitigation Strategies 
The strategies listed below aim to mitigate the 

challenges discussed in the previous section. 

 

4.1. Managing Data Volume and Velocity at the Edge 

To address the localized big data challenge, a more 

comprehensive approach to data reduction at the edge is 

required in order to avoid being overwhelmed. Considering 

that each vehicle produces data at a staggering rate of 6 TBs 

an hour, raw data transmission is out of the question. The 

core strategy is to implement an intelligent, adaptive data 
reduction pipeline that captures crucial data while drastically 

slicing the volume. This consists of several complementary 

techniques.  To accomplish this objective, a combination of 

data filtering, aggregation, and predictive methods could be 

employed. These methods include filtering data points based 

on specific criteria to remove those that are more irrelevant 

than relevant, as well as aggregating data over periods of 

time or across multiple sensors. One form of aggregation 

calculation is the mean and variance of a sensor reading over 

a second, instead of every millisecond. Predictive solutions 

that are based on data can refrain from transmission until the 
actual reading diverges from a predicted reading by a 

considerable margin, especially during stable conditions. 

 

Next, compressing the data is vital. This may include 

lossless algorithms such as Huffman or Lempel-Ziv-Welch 

(LZW), which retain the original data without any 

alterations, as well as lossy algorithms that achieve higher 

compression ratios by eliminating less critical data. Modern 

algorithms, like Zstandard (or Zstd) can be applied to reduce 

the data footprint before transmission from the vehicle or 

processing at the edge node. Finally, the reduction of 

dimensionality techniques can transform large volumes of 
sensor data into lower-dimensional sensor data that retains 
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the rich data. This is accomplished with feature extraction. 

Some linear methods, such as Principal Component Analysis 

(PCA), can be used to extract the most essential parts of data, 

but more sophisticated non-linear techniques tend to perform 

better on complex data sets like those coming from vehicles. 

For example, Autoencoders, a type of neural network, may 
be trained on normal operating data to extract a compact 

representation of the healthy state of the system. 

 

This compact representation enables efficient anomaly 

detection at the edge any data that cannot be accurately 

reconstructed may indicate a fault. In some scenarios, a 

lightweight neural network may even be able to run on the 

vehicle’s embedded systems to encode raw data into a 

compact, task-oriented format designed for AI processes 

before reaching the edge, ensuring that the data reduction is 

aligned with the specific AI processes that will be executed.  

Finally, these techniques are context-aware and adaptive. For 
example, the system may operate in a low-fidelity sampling 

mode during normal driving conditions; however, for certain 

vehicles or regions where anomalies are suspected, the 

system may increase the data resolution, sampling rate, or 

both. This adaptive data acquisition enables the system to 

dynamically adjust the data density to where computational 

and network resources are most limited, providing a scalable 

and efficient data management solution at the edge.   

 

4.2. Ultra-Low Latency Assurance for Safety-Critical 

Predictions   
Synergistic optimization of hardware, models, and 

network fabric is crucial for achieving millisecond-level end-

to-end latency in safety-critical applications. The key to low-

latency inference is hardware acceleration. Specialized 

hardware designed for the parallel processing of neural 

networks is necessary, not only on edge servers but also on 

in-vehicle gateways. These accelerators utilize parallel 

computing techniques, including Graphics Processing Units 

(GPUs), Field-Programmable Gate Arrays (FPGAs), 

Application-Specific Integrated Circuits (ASICs), and Tensor 

Processing Units (TPUs). For example, Nvidia’s Jetson Nano 

consumes 5-10 watts of power while delivering hundreds of 
GigaFLOPS, making it an energy-efficient system on a chip. 

This enables the deployment of advanced AI models within 

vehicles or nearby edge nodes. These devices greatly cut 

down the time needed to compute models, which is essential 

for real-time decision-making. 

 

In parallel with hardware acceleration, the AI models 

undergo aggressive optimization. Typically, a large and 

sophisticated deep learning model trained in the cloud cannot 

be deployed directly to the edge due to the resources it 

requires. Hence, it is important to consider techniques that 
lower the resources in terms of computation and memory. 

One of the techniques is Quantization, in which the precision 

of the model’s weights and activations is reduced. For 

example, transforming 32 floating-point numbers to 8-bit 

integers. This technique not only shrinks the size of storage 

but also improves the speed of lower-precision arithmetic 

hardware computation.  Another important technique is 

Pruning, which is the process of removing connections, also 

known as redundant or non-critical weights within the neural 

network. This process leads to a model that is “sparse” and 

smaller. A sparse model improves inference speed while 

consuming less memory and computation. These techniques 

can be combined. Additionally, advanced methods such as 

quantization-aware training can minimize the accuracy loss 
that might result from these optimizations.   

 

Lastly, advanced network guarantees enable the 

controlled certainty of latency, a capability provided through 

5G network slicing. This is a foundational capability of 5G 

architecture that allows the segmentation of a single, 

physical network into several virtual, end-to-end networks. A 

network slice can be set up for Ultra-Reliable Low-Latency 

Communications (uRLLC) [6]. This uRLLC slice is 

provisioned with specific Quality of Service (QoS) 

requirements to ensure a minimum of one millisecond 

latency, ultra-reliable throughput, and high bandwidth, high 
reliability, as well as ultra-low latency. Through network 

slicing, network resources are reserved, ensuring advanced 

reliability for safety applications. This allows critical data 

packets to bypass congestion caused by non-urgent traffic, 

thereby guaranteeing deterministic network performance 

crucial for the function of autonomous vehicles. 

 

4.3. Model Explainability and Drift 

A dual approach of a strong operational pipeline to 

address model erosion, along with the implementation of 

explainability techniques to clarify model outputs, is needed 
to maintain the performance and integrity of the framework’s 

AI models for a prolonged period. The first component of the 

strategy addresses model drift, which is the decline in a 

model's accuracy over time as it encounters real-world data 

that diverges from the data on which it was trained.  

 

There are two primary forms of drift: Data drift refers to a 

change in the statistical characteristics of the input data (e.g., 

the introduction of a new sensor type across the fleet), and 

concept drift, which is a change in the relationship between 

the inputs and outputs (e.g., the emergence of a new, 

previously unseen failure mode). To address this, a thorough 
Machine Learning Operations (MLOps) pipeline is essential. 

This pipeline encompasses the entire lifecycle of the machine 

learning and acts as a proactive, systematic safeguard against 

drift. Its key functions include:   

 Continuous Monitoring: The MLOps pipeline 

checks the performance of the deployed models 

against the set metrics (accuracy, precision, recall) 

and measures data drift between distributions using 

statistical techniques like KL Divergence.   

 Automated Retraining: If significant data drift 

occurs, performance metrics surpass set thresholds, 
or monitored KPIs are neglected, the pipeline 

initiates an automated retraining sequence triggered 

by a fresh model. This new model is trained on a 

corpus of recent data. 

 Automated Redeployment: Once the newly 

trained model has undergone validation and is 

confirmed to surpass the previously deployed 

model, the MLOps pipeline automates its 
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deployment to the edge and cloud. This structure 

establishes a self-sustaining system of monitoring, 

retraining, and improvement that sustains the 

accuracy and reliability of the models over time.  

 

The latter part of the strategy addresses the “black box” 
issue. “Black box” describes a system that may be 

functioning correctly but lacks a way to conduct a 

transparent audit of its performance. In an automotive 

application, having accurate predictions is necessary but not 

enough; predictive reasoning must also be understandable 

and auditable. This is the reason for Explainable AI (XAI), 

which aims to give human-level understanding of AI-based 

decisions. 

 

Although the framework’s graph-based RCA engine is 

capable of visualizing the failure path and, thus, provides a 

certain level of explainability, deeper XAI analyses can be 
used to interpret the deep learning models in the predictive 

engine. Some of the key XAI approaches are:   

 Model-Agnostic Local Explanations: Local 

Interpretable Model-Agnostic Explanations (LIME) [8] 

and other similar approaches explain a prediction via a 

simpler model, which is interpretable in its simpler 

form, built in the vicinity of the prediction of interest, 

and is, however, faithful to the more complicated model.   

 Feature Contribution Analysis: With methods such as 

SHAP (SHapley Additive exPlanations), the 

contribution of each input feature to a specific prediction 
shows which sensor readings or data points pushed the 

model's output in a certain direction[9]. 

 Feature Importance and Visualization: Engineers can 

gain a deeper understanding of how a model behaves 

globally by visualizing the marginal effect or its 

prediction using techniques like Partial Dependency 

Plots.   

 

With the application of the aforementioned methods of 

explanation, validation of each model allowed for informed 

inferences and decisions, thus enabling engineers to place 
trust in inferences and predictions in a high-stakes context.   

 

5. Framework Scalability and Interoperability 

in a Multi-OEM Environment   
The AIOps framework can be deployed across a fleet of 

vehicles, provided that socio-technical and technical 

fragmentation barriers to data sharing are resolved. This 

must be addressed through a two-pronged mitigation 

approach centered on the standardization of technology and a 

governance system based on collaboration. First, to achieve 

technical interoperability, the framework must address the 

ecosystem of competing vehicle manufacturers that employ a 

variety of proprietary communication interfaces and data 

exchange paradigms. A competing solution would need to 
focus on proprietary standards. V2X communication 

standards essential to the framework's modular, API-driven 

architecture include the IEEE 1609 WAVE (Wireless Access 

in Vehicular Environments) protocol suite and the SAE 

J2735 message set standard, which, together, provide secure 

and interoperable communication for DSRC (Dedicated 

Short-Range Communications) based systems. In Europe, the 

equivalent standard is the ETSI ITS-G5. With these 

harmonized standards, the framework will achieve a 

minimum communication interface standard for vehicle 

diversity and model year. More difficult, the second problem 

is to enable the sharing of data in an ecosystem where data is 
sensitive and highly desired. 

 

OEMs rarely share telemetry and diagnostic data due to 

concerns over intellectual property, competitive advantage, 

and liability. The most effective mitigation strategy would be 

to form an industry-wide consortium or a trusted, neutral 

third-party data-sharing platform. Such a governing body 

would be responsible for core governance strategies and have 

expansive obligations, providing critical support for an 

organization or consortium dealing with massive amounts of 

data. Their core obligations would include the following:   

 Defining Governance Policies: The governing 
body would establish and enforce policies for data 

access and data stewardship, creating a balanced, 

competitive environment for all participants   

 Enforcing Data and Security Standards: The 

consortium would implement consistently the 

application of a common data ontology, thereby 

enforcing ecosystem-wide data security and 

requiring rigorous ecosystem-wide security 

governance. This also covers the management of a 

common PKI for all authenticated vehicles and 

infrastructure nodes, protecting against data 
poisoning and ensuring system-wide message 

integrity.   

 Ensuring Privacy: The consortium would ensure 

the application of privacy safeguards with regard to 

the use of GUIDs (Globally Unique Identifiers) and 

compliance with data sharing and consent rules.   

 Managing Legal and Financial Frameworks: The 

body would establish common templates that grant 

intellectual property rights, outline liability for 

cross-system failures, specify shares, and detail all 

associated costs for data and access. 
 

Such a collaborative framework is an essential non-

technical complement to the technical architecture, creating 

the trusted environment necessary to unlock the full safety 

and efficiency benefits of a truly interconnected vehicular 

ecosystem. 

 

6. Recommendations   
After analyzing the challenges of an AIOps framework 

for connected vehicles and strategies to mitigate them, we 

have identified key recommendations to guide organizations 

working towards an AIOps framework for connected 

vehicles.   

 

6.1. First safety prioritization for network architecture   

The network is a safety-critical backbone component 

and must be treated as one. A safety-critical network, as a 

best-effort minimal approach, requires going beyond best 
effort. It is best to implement proactive approaches, such as 

the required implementation of network slicing on 5G, which 
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will guarantee the creation of separate, ultra-reliable, low-

latency virtual networks. It is also recommended to utilize 

edge hardware acceleration, leveraging GPUs and FPGAs, to 

ensure the allocated latency for critical predictive models is 

met for stringent computations. 

 

6.2. Set Up a Separately Managed Trustworthy AI and 

MLOps Practice: 

The AI models are an integral part of the AIOps engine 

and should not be treated as a static software asset. We 

propose establishing a dedicated MLOps unit that will be 

accountable for the entire lifecycle of the predictive models. 

This unit should be responsible for model diagnostics, 

automated retraining, and model redeployment due to drift, 

as well as the XAI (Explainable AI) integration pipeline. 

Every predictive model that is used in safety-critical 

functions must have an explainability component integrated 

(for example, via SHAP or LIME) to allow for transparency 
and auditability of all automated decisions for human 

controllers and regulators. 

 

6.3. Advocate for Establishing a Sector-Wide Consortium 

for Data Sharing 

The most critical obstacle to a fully functional fleet-wide 

AIOps platform is not technical, but rather, organizational. In 

order to realize the full potential of the graph-based RCA 

engine, ecosystem-wide data accessibility is a necessity. As a 

result, we recommend that leading OEMs, 

telecommunication providers, and technology firms form a 
neutral, third-party consortium that will oversee the 

controlled and anonymized sharing of operational data. This 

consortium could formulate standardized data ontologies, 

security hardware and software infrastructure (PKI), and 

legal frameworks that would enable the establishment of a 

trusted data exchange ecosystem, transforming a competitive 

obstacle into a collaborative effort that bolsters collective 

data safety and system reliability.   

 

7. Conclusion    
This document has theoretically developed a complete, 

multi-layered AIOps framework for real-time fault prediction 

and automated root cause analysis for the connected vehicle 

ecosystem. It can be concluded from the study conducted 

that a framework of this type is not only possible, but it is 

also crucial in managing the operational complexities and 

ensuring the safety of the next-generation intelligent 

transportation systems. The proposed framework is fully 
responsive and incorporates actionable answers to the 

primary research questions that underpin the rationale for 

this research. Altogether, this framework provides a 

comprehensive and resilient blueprint for the future of 

automotive operations by integrating a layered architecture, a 

hybrid intelligence engine, a graph-based diagnostic system, 

and strategically addressing key non-technical problems with 

actionable recommendations. 
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