
International Journal of Emerging Trends in Computer Science and Information Technology

ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.IJETCSIT-V6I3P111

Eureka Vision Publication | Volume 6, Issue 3, 61-70, 2025

Original Article

Securing Digital Transformation: A Framework for Mainframe

and Cloud Ape Governance

Arun K Gangula
Independent Researcher.

Received On: 06/07/2025 Revised On: 27/07/2025 Accepted On: 26/08/2025 Published On: 23/09/2025

Abstract - The implementation of APIs to connect legacy

mainframe systems with modern cloud platforms creates
paramount security and governance problems. Organizations

that implement hybrid models for digital transformation

purposes face growing complexity in cyber threats because of

their increased exposure. The current security controls, which

operate in separate silos, fail to provide sufficient protection

for this environment. The paper establishes a complete four-

layered hybrid API governance framework to handle these

security challenges. The framework consists of four main

components which include (1) Policy and Governance

Foundation with Policy-as-Code (PaC) for centralized rule

enforcement and (2) Unified Identity Fabric which merges

cloud and on-premises Identity and Access Management (IAM)
under Zero Trust principles and (3) Secure Development and

Operations Lifecycle (DevSecOps) which incorporates security

into CI/CD pipelines for mainframe and cloud artifacts and (4)

Unified Observability and Response plane which provides real-

time threat detection and correlation across platforms. The

paper explains the necessary architecture, implementation

methods, and technological requirements to achieve secure

hybrid modernization.

Keywords - API Security, Mainframe Modernization, Hybrid

Cloud, API Governance, DevSecOps, Zero Trust, Identity and
Access Management (IAM), SIEM, Policy as Code (PaC),

Regulatory Compliance.

1. Introduction
1.1. The Hybrid Enterprise Reality: Mainframe Persistence

and Cloud Adoption

The modern Enterprise IT sector operates through a hybrid
system that unites traditional mainframes with contemporary

cloud infrastructure. The financial services sector, together

with healthcare and government, maintains mainframes as

essential infrastructure because they deliver reliable operations

and secure processing of vital workloads. Digital

transformation requires cloud adoption because it enables

organizations to achieve market competitiveness through

agility, innovation, and scalability [1]. The permanent hybrid

state requires mainframe and cloud technologies to operate

together in perfect harmony.

1.2. APIs: The Essential but Vulnerable Bridge

APIs function as the essential connection points that allow
cloud-native and mobile applications to access mainframe

business logic and data in this hybrid environment [2].

Research indicates that 93% of organizations treat APIs as

fundamental operational components because they enable

digital product development and service delivery beyond

technical integration [3]. The primary entry point for attackers

has shifted to APIs. Organizations that expose mainframe

capabilities through APIs unintentionally create a vulnerable

interface that compromises the protection of sensitive assets

[4].

1.3. Problem Statement: The Governance Gap in Hybrid

Security

API-based integration between cloud and mainframe

systems produces a significant security and governance gap

because these systems operate with opposing security models.

Mainframe security operates with perimeter-based controls at

the host level, but cloud security depends on distributed trust

systems and identity-based access and short-lived

infrastructure. The different security approaches between

mainframe and cloud systems create operational and

organizational challenges. Mainframe teams often remain

unaware of contemporary API security threats, while cloud
security teams attempt to enforce controls that do not match

mainframe systems [5]. The skills gap worsens this problem

because experienced mainframe specialists retire while newer

developers lack knowledge about legacy languages, such as

COBOL, and mainframe architectures [6].

The situation produces a modernization paradox. The most

popular modernization pattern, which involves keeping

mainframe systems intact while exposing them through APIs

(encapsulation), presents the most significant security risk [6].

The business disruption reduction of encapsulation enables
direct public interface access to the organization’s most secure

systems, thus bypassing perimeter-based security that has

developed over decades. The conversion of CICS transactions

into RESTful APIs generates a new security risk through web

attacks, which mainframes were not designed to handle [4].

The governance vacuum emerges because mainframe security

Arun K Gangula / IJETCSIT, 6(3), 61-70, 2025

62

teams and cloud security teams lack complete visibility and

control, thus making misconfiguration and exploitation more

likely.

2. The Strategic Context of Mainframe

Modernization and Integration
2.1. An Analysis of Modernization Drivers

Mainframe environment modernization requires strategic
pressure from multiple directions that surpasses basic cost

reduction goals. The main drivers for modernization have

shifted from cost reduction, benefits of licensing, and

infrastructure savings to business agility and competitive

differentiation. [7] Enterprises recognize that their dependable

legacy systems hinder innovation. [1] Organizations pursue

modernization because it enables them to innovate faster while

maintaining technological parity with competitors. [7] The

main driver for development velocity stems from the adoption

of DevOps practices together with CI/CD pipelines. The

deployment speeds of modernized API-based architectures

reach two to three times faster than traditional methods,
according to reported data. [1] The ability to rapidly deploy

new products and services through agile workflows becomes

essential for companies to adapt to changing market

requirements.

Organizations face a severe talent shortage due to the

decline in the number of experienced COBOL and mainframe

systems programmers as their retired workforce ages. [6]

Through modernization, organizations gain access to a larger

talent pool, including developers who specialize in Java,

Python, Node.js, and cloud-native development. [1] The
process of modernization provides organizations with a dual

benefit of upskilling the workforce and creating a more

competitive workforce that can support essential operations.

[7]

The main driving force stems from the need to access the

vast amount of data stored on mainframe systems. The

valuable customer, transactional, and workflow data

accumulated in legacy systems for decades has remained

inaccessible to users. The data stored on mainframes becomes

accessible through API enablement during modernization,
which enables real-time analytics and ML and AI applications

for deeper strategic insights and data-driven decision-making.

[7] The expenses associated with inaction now exceed the costs

of modernization because organizations face rising downtime

risks, increasing compliance and security liabilities, and

integration challenges with modern applications. Industry

surveys show this understanding through a report, which states

that 71% of organizations intend to modernize or migrate away

from mainframes during the upcoming period. [1]

2.2. Key Technologies and Integration Patterns

A hybrid coexistence strategy requires enabling

technologies and architectural patterns to achieve successful

implementation. The main tools for connecting mainframe
systems to cloud environments stand as the primary

components. The middleware solutions IBM z/OS Connect and

Microsoft Host Integration Server (HIS) enable standard

RESTful API calls from cloud applications to become native

requests that mainframe programs (such as CICS transactions

or IMS programs) can process. [9] These tools perform

intricate data transformations (e.g., from JSON to COBOL

copybook format) and protocol conversions to create an API

facade for legacy systems.

2.3. Critical Review of Modernization Patterns for Hybrid

Coexistence
The selection of appropriate modernization strategies

determines future costs, risks, and organizational agility. The

"7 Rs" framework establishes a complete classification system

that includes Rehost, Re-platform, Refactor, Rearchitect,

Replace, Retire, and Retain (or encapsulate). [6] The Gartner

TIME framework enables organizations to develop application

modernization roadmaps through strategic evaluation of these

options. [8] Most large enterprises face insurmountable

challenges when attempting to replace their core mainframe

systems entirely because of high risks, substantial costs, and

complex implementation processes. The extensive business
logic within these systems exists in poorly documented form

while remaining essential to operations. The most practical and

widespread solution for modernization has shifted toward

maintaining multiple systems simultaneously.

The most widely used approach among these is the

Retain/Encapsulate pattern, which also goes by the name

Extend/Augment. [6] The mainframe application core remains

intact while modern APIs (RESTful services) encase its

functions and data access procedures. The approach enables

cloud-based applications to securely connect with the legacy

system through APIs without needing immediate modifications
to COBOL or PL/I code. [9] The API-first integration method

extends the mainframe’s operational period while making it a

full participant in modern distributed systems. [8]

Table I provides a comparative analysis of these key

modernization strategies to guide strategic decision-making.

Table 1. Comparative Analysis of Mainframe Modernization Strategies [1]

Strategy Description Key Tools/Tech Benefits Risks/Challenges Best Use Case

Rehost (Lift-and-

Shift)

Move applications

"as-is" to cloud

Micro Focus,

Heirloom, AWS

Fastest migration,

low upfront cost,

Still a monolith;

limited DevOps;

Quick ROI with

minimal changes.

Arun K Gangula / IJETCSIT, 6(3), 61-70, 2025

63

IaaS using

emulation.

M2, Azure Logic

Apps

and minimal

disruption.

retains technical

debt.

Re-platform Upgrade some

components (e.g.,

database) for PaaS

benefits.

Cloud databases

(AWS RDS,

Azure SQL),

Linux

Gains some cloud

efficiencies;

moderate

complexity.

Compatibility issues;

retains some

technical debt.

Tactical cloud

optimization

without a

complete rewrite.

Refactor Convert legacy

code to modern

languages and
improve its

structure.

COBOL-to-Java

tools, modern

IDEs

Better

maintainability,

closing skills gap,
and enabling

DevOps.

High cost, extensive

testing, and risk of

errors.

Long-term agility

for critical apps.

Rearchitect Redesign into

microservices;

expose APIs.

Microservices

frameworks,

Docker,

Kubernetes, API

gateways

Maximum agility,

scalability, and

cloud native.

Highest complexity

and cost; requires

expertise.

Complete digital

transformation

focus.

Retain/Encapsulate Keep the legacy

system but expose

functions via APIs.

z/OS Connect,

Azure API

Management

Low risk, fast

integration, and

preserves

investment.

Hybrid complexity,

security, and latency

concerns.

Quick integration

with digital

channels.

Replace Fully retire and

adopt COTS or

SaaS solutions.

SaaS, custom

cloud-native apps

Eliminates

technical debt;

modern
capabilities.

High cost, migration

risks, and potential

lock-in.

When a suitable

commercial

solution exists.

The adoption of containerization as a key pattern helps

speed up development while reducing risks that stem from

insufficient mainframe expertise. The combination of Red Hat

OpenShift with IBM Z and Cloud Modernization Stack enables

developers to build sandboxed z/OS development and test

environments that operate in containers on standard x86

hardware. Cloud-native developers can access mainframe-like

environments through self-service using Git and Jenkins tools,

which decreases their need for mainframe-specific skills and

hardware. [10]

The modernization challenge has received significant

recent development through generative AI applications. The

main challenge of any mainframe project stems from the

absence of modern documentation for code systems that date

back decades. Google’s Gemini models have developed AI

tools that analyze legacy COBOL codebases to automatically

explain business logic and detect application dependencies

while generating initial test cases. [11] Tools now assist

developers in converting legacy code into the modern Java

programming language through automated refactoring

processes. The AI-based method solves the "black box" issue
by giving developers essential knowledge to work safely with

legacy systems, thus speeding up modernization projects and

lowering their risks. [8]

3. The Hybrid Ape Attack Surface: A New

Frontier for Threats
3.1. From Fortified Perimeters to Pervasive Endpoints

API connections between mainframes and cloud services

establish a complete security model transformation. The

mainframe security model operates as a fortress that maintains

strong host-level access control managers (ACMs) such as

RACF, ACF2, or Top Secret, and a secure network boundary.

[12] The system grants access through restricted channels,

which are thoroughly monitored. API integration shatters this

model. The perimeter effectively dissolves, replaced by a

distributed and pervasive collection of API endpoints that can

be accessed from anywhere on the internet. The new reality

establishes identity as the primary security boundary. [4] Each

API request requires separate authentication and authorization
because network location-based trust assumptions no longer

apply. The transition exposes the mainframe core operations to

new security threats that its original design did not anticipate.

The existing risk has increased because enterprise network

architecture continues to have persistent weaknesses. Security

assessments show that mainframe LPARs and general

corporate environments are not adequately segregated in most

cases. The absence of segmentation between corporate network

segments allows an attacker to use a single compromised

location to access the mainframe system. The continued use of
insecure legacy protocols such as unencrypted FTP for data

transfers remains a common and easily addressable gap that

exposes credentials and data in transit. [5]

3.2. Emerging Threats: AI-Driven Attacks and Unsafe

Consumption

The threat landscape shows continuous evolution through

two major trends, which need immediate focus: artificial

Intelligence functions as a weapon that brings both advantages

Arun K Gangula / IJETCSIT, 6(3), 61-70, 2025

64

and disadvantages to the table. Security analytics powered by

AI helps improve threat detection, but adversaries use AI to

create complex polymorphic malware and automate

vulnerability discovery and exploitation at an unprecedented

speed and scale. [12] The primary threat to API governance

emerges from autonomous AI agents, which now function as
the primary API consumers. [4] These agents, which use Large

Language Models (LLMs), operate to execute complex tasks

through automated interactions with multiple tools and APIs.

This emerging trend establishes a potent new security threat.

An AI agent operating at machine speed and scale can become

vulnerable to manipulation or hijacking, which enables

devastating attacks against Unrestricted Resource Consumption

(API4) or Unrestricted Access to Sensitive Business Flows

(API6). [13] An airline reservation system running on a

mainframe would face catastrophic failure when an agent

designed for travel booking makes millions of API requests

through deception.

API governance needs to undergo a complete

transformation to handle Non-Human Identities (NHIs)

because of this change. [4] The majority of Identity and Access

Management (IAM) systems operate with a human-oriented

approach. The modern governance framework requires strong

procedures for registering, authenticating, authorizing, and

auditing these AI agents. The development of specialized "AI

Gateways" has become necessary. These gateways function as

a protective barrier in front of traditional API gateways to

enforce AI-specific policies, which include consumption-based

rate limiting and protection against prompt injection attacks

and governance rule enforcement for AI agent interactions.

3.3. Applying the OWASP API Security Top 10 (2023 to

Mainframe-Cloud Integrations

The complete understanding of the threat landscape
requires analysis through established API security risks. The

OWASP API Security Top 10 project establishes a definitive

community-driven list of the most critical vulnerabilities that

affect APIs. [13] These risks gain new importance when

applied to mainframe-cloud hybrid architecture because they

create a pathway between modern web-facing vulnerabilities

and catastrophic breaches of legacy systems of record. These

vulnerabilities have increased potential impact because they

enable attackers to access organizations’ most valuable and

sensitive data assets. [7] The standard OWASP risks receive

specific high-impact scenario interpretations in Table II, which

apply to hybrid environments.

The framework enables practical threat modeling and

security control prioritization. BOLA (API1) and BFLA

(API5) represent the most dangerous threats when used in

hybrid environments. A BOLA vulnerability enables attackers

to extract millions of mainframe database records through API

call ID manipulation. A BFLA flaw enables a low-privilege

user on a modern cloud application to execute powerful high-

privilege administrative functions on the mainframe, which

could result in complete system compromise.

Table 2. Owasp Api Risks In A Mainframe-Cloud Context [13]

OWASP Risk Description Hybrid Example Key Mitigation

API1: BOLA Missing object-level

access checks.

Users iterate through account numbers

to access others’ data via a cloud API

linked to the mainframe DB2.

Enforce fine-grained

authorization at the API layer;

use Policy-as-Code.

API2: Broken

Authentication

Flawed Auth lets

attackers impersonate

users.

Forged JWT allows an attacker to

access CICS transactions.

Use OAuth2/OIDC; enforce

MFA; secure token handling.

API3: Property-Level

Authorization

Overexposed or

uncontrolled object

properties.

API returns full RACF user record (incl.

sensitive fields).

Return only necessary data;

server-side property validation.

API4: Resource

Consumption

No limits on resource use

can lead to DoS or cost

spikes.

Excessive API calls trigger mainframe

batch jobs, consuming MIPS.

Apply rate limiting and quotas;

monitor consumption.

API5: Function-Level

Authorization (BFLA)

Lack of role checks for

specific functions.

A regular user calls the admin endpoint

to reset passwords on the mainframe.

Enforce RBAC; separate

regular/admin functions clearly.

API6: Abuse of
Business Flows

No controls on business
action frequency.

Bots reserve all inventory via API,
blocking real customers.

Use CAPTCHA for BOT
detection and behavioral

monitoring.

API7: SSRF Server accepts user-

controlled URLs for

internal calls.

User supplies the internal mainframe

URL to import a profile picture.

Restrict URLs via allow-list;

sanitize input.

API9: Inventory

Management

Unknown or unmanaged

APIs remain exposed.

The deprecated API version remains

connected to the mainframe, making it

vulnerable to attack.

Maintain automated API

inventory and lifecycle

management.

Arun K Gangula / IJETCSIT, 6(3), 61-70, 2025

65

4. Multi-Layered Framework for Hybrid Ape

Governance
Enterprises need a unified governance framework to

protect their hybrid mainframe-cloud attack surface

adequately. The current complexity of hybrid environments

makes it impossible to maintain separate security management

for cloud and mainframe systems. The proposed framework

consists of four interconnected layers, which provide unified
governance throughout the entire API lifecycle, starting from

development through production. The four security layers of

Policy, Identity, Develops, and Observability work together to

establish a robust security posture.

4.1. Layer 1: Policy and Governance Foundation

The fundamental operational standards for enterprise APIs

are established through this foundational layer. The traditional

governance approach, which relies on manual reviews and

document-based policies, fails to meet the needs of agile and

DevOps environments due to its slow and inconsistent

operation [14]. This framework implements Policy-as-Code
(PaC) automation for governance, which provides scalable and

consistent results. The "API Council" or "Center for

Enablement" functions as a centralized governance body to

establish enterprise-wide standards that include API naming

conventions and versioning strategies, resource structuring, and

error handling formats. The council operates in a federated

model, which enables teams to implement these standards

independently.

Security and governance policies become machine-

readable rules through PaC, which store them in version-
controlled systems like Git using YAML or Rego syntax [15].

The policy demanding OAuth 2.0 with MFA for all PII-

handling APIs gets transformed into enforceable code.

Automated tools perform multiple stages of violation checks.

 IDE-level linting flags non-compliance during

development.

 CI/CD pipelines prevent the deployment of non-

compliant code.

 API gateways enforce policies at runtime [14].

The approach maintains uniform policy enforcement
between cloud and mainframe APIs. Open Policy Agent

(OPA) serves as a widely adopted open-source engine for

implementing this model [15].

4.2. Layer 2: Unified Identity Fabric

API security depends on identity as its fundamental

element, which determines both request origin and permitted

actions. A hybrid environment requires Zero Trust

implementation, which involves integrating cloud-native and

mainframe identity systems. Cloud applications use Identity

Providers (IDPs) like Microsoft Entra ID or Okta, leveraging

open standards such as OAuth 2.0 and OIDC, issuing JWTs for
authentication. Mainframes operate with External Security

Managers (ESMs) such as RACF, ACF2, or Top Secret through

proprietary communication protocols [5].

The Unified Identity Fabric operates as an abstraction layer

that converts cloud identity information into mainframe-

compatible formats [16]. The system integrates identity
federation with reverse proxies, custom APIs, and middleware

technologies [17]. The process involves:

 The API gateway accepts a JWT that comes from a

cloud application.

 The fabric checks the JWT validity before accessing

centralized policies (Layer 1).

 The fabric connects the cloud identity to a mainframe

identity before accessing the ESM.

 The system generates a short-lived credential known

as a RACF Pass Ticket for mainframe access.

 The mainframe executes transactions using security
credentials that have the minimum required

permissions.

The implementation of Zero Trust security across hybrid

environments becomes unfeasible without identity mediation.

The mainframe faces two main challenges because it lacks

support for modern communication protocols, and poorly

designed systems can introduce performance delays [17].

4.3. Layer 3: Secure Development and Operations Lifecycle

(DevSecOps

The DevSecOps layer implements security within the
Software Development Lifecycle (SDLC) by adopting the

"shift left" strategy, which makes security a collective

responsibility. The hybrid environment requires a single CI/CD

pipeline that supports both mainframe and cloud components.

The build, test, and deployment automation for COBOL

programs (mainframe) and containerized microservices (cloud)

are performed by tools including Jenkins, GitLab CI, and Red

Hat Ansible [18]. The primary automated security controls

consist of:

 The source code analysis tools SonarQube,
Checkmarx, and Codacy perform Static Application

Security Testing (SAST) to detect vulnerabilities in

COBOL, Java, and Python code during the code

committing process [18].

 The SCA tool Snyk scans open-source libraries and

dependencies to detect vulnerabilities, which ensure

only secure components are used [18].

 The DAST tools OWASP ZAP and Acunetix use

runtime probes in staging environments to identify

active vulnerabilities in applications [18].

 The security tools Aqua Security and Trivy perform
Docker image vulnerability scans before Kubernetes

deployment [18].

Supply chain security stands as a vital component in this

Arun K Gangula / IJETCSIT, 6(3), 61-70, 2025

66

process. The process requires artifact integrity verification and

uses dynamic secrets management to prevent the use of long-

lived credentials [19]. These controls integrated into the CI/CD

pipeline make security an essential element of mainframe and

cloud development processes.

4.4. Layer 4: Unified Observability and Response

The final layer delivers complete visibility across cloud

and mainframe environments. Hybrid architectures produce

security data fragmentation because mainframe SMF records

and RACF logs exist separately from cloud provider logs (e.g.,

AWS CloudTrail), API gateway logs, and application logs.

Advanced attacks remain invisible to teams because they view

security data in isolated fragments. A cloud-native Security

Information and Event Management (SIEM) system solves this

problem by collecting, standardizing, and connecting security

log data from both environments [20]. This enables cross-

platform attack chain reconstruction. A single correlation rule
can establish a connection between API gateway request IDs

and mainframe CICS transaction IDs to generate unified

security alerts with complete context information [20].

The detection capabilities receive improvement through

User and Entity Behavior Analytics (UEBA) models, which

establish typical patterns for users, service accounts, and API

clients. Machine learning enables UEBA to detect abnormal

behavior through its analysis of typical patterns, which include

both API call irregularities and unexplained data access [20].

The unified approach to observability enables proactive threat
hunting and rapid incident response, which are crucial for

securing hybrid cloud-mainframe ecosystems.

Figure 1. The Four-Layered Hybrid API Governance

Framework

5. Framework Implementation and

Operationalization
5.1. Phased Roadmap for Adoption

A governance framework of this magnitude needs a

strategic, phased implementation approach. A "big bang"

rollout is unrealistic and likely to fail due to the complexity and

organizational change involved. A more pragmatic roadmap

consists of four distinct phases, allowing an organization to
build maturity incrementally, demonstrate value early, and

adapt the framework to its specific needs.

 Phase 1: Assessment and Discovery. The journey

starts by conducting a comprehensive evaluation of

the present situation. A complete listing of all

mainframe applications, together with their business

importance and data connection forms part of this

process. [8] The analysis of legacy codebases through

automated tools reveals their logic structure and

interconnectedness, while knowledge capture sessions

with subject matter experts serve to document "tribal
knowledge" before its disappearance. [6] The cross-

functional API governance body or council forms

during this phase to create the first set of policies and

standards.

 Phase 2: Pilot Program. After defining the landscape,

the following step involves choosing a single

application with low risks that demonstrates

meaningful value for framework implementation. The

pilot process examines a complete end-to-end

workflow through the integration of tool chains and

validation of the CI/CD pipeline, as well as testing the

identity fabric and initial SIEM correlation rules
configuration. The team obtains practical experience

by running this phase to enhance their procedures

while showing concrete outcomes to stakeholders

before undertaking extensive investment.

 Phase 3: Scaled Rollout. The framework

implementation process advances through multiple

stages that expand coverage to additional applications

and services based on lessons learned from the pilot

program. The expansion process requires prioritization

according to both business value and risk factors. The

governance policies, together with automation scripts,
receive continuous improvement as new teams join

the project. The fourth phase focuses on enhancing

speed by implementing new processes and tools

within the organization’s standard operating

procedures.

 Phase 4: Optimization and Automation. The

implementation stage transitions into optimization

and maturity as the focus of this final phase. The

process involves automation improvements combined

with AI and machine learning applications for

enhanced threat detection and predictive analytics,
and a self-service model for development teams. [14]

The system should deliver a seamless experience that

Arun K Gangula / IJETCSIT, 6(3), 61-70, 2025

67

enables developers to access governance and security

platform services through APIs, which enables them

to build secure applications quickly while following

enterprise guidelines.

5.2. Toolchain Architecture: Selecting and Integrating

Solutions

The four-layered framework development needs precise

tool selection and integration of commercial and open-source

solutions. The choice of tools depends on the organization’s

current technology infrastructure, financial capabilities, and

personnel expertise. A reference architecture demonstrates

how different components unite to achieve the necessary

capabilities.

Figure 2. Hybrid API governance applied in financial and public sector use cases.

5.3. Illustrative Case Studies

The framework demonstrates its practical application through

two synthesized case studies, which follow.

 Case Study 1: Financial Institution Modernizing for
Mobile Banking: A central retail bank requires the

development of a new cloud-native mobile banking

application. The application required real-time access

to customer account balances, transaction histories,

and payment processing functions, all of which were

located on their core banking system operating on an

IBM z/OS mainframe. They adopted the

Retain/Encapsulate strategy by using IBM z/OS

Connect to transform CICS transactions into RESTful

APIs for exposure.

5.4. Framework Application

 Policy (Layer 1): The bank’s API Council established

rigid design requirements for financial APIs through

OPA policy creation, which mandated PCI-Scope APIs

to need particular OAuth 2.0 scope authorization and

complete transaction logging.

 Identity (Layer 2): Microsoft Entra ID served as the

leading identity provider for mobile users through

identity fabric implementation. The fabric validated

the JWT during user login to produce a short-lived

RACF Pass Ticket, which authorized the particular

transaction on the mainframe while maintaining end-

to-end identity propagation.

 DevSecOps (Layer 3): A unified GitLab CI/CD
pipeline was created. The pipeline executed

Checkmarx SAST analysis on both Swift code from

the mobile application and exposed COBOL

programs. Snyk performed security scans on all open-

source libraries.

 Observability (Layer 4): Microsoft Sentinel received

logs from Azure, the API gateway, and z/OS Connect

and mainframe SMF records. The system used custom

correlation rules to identify fraud patterns, which

included users making fast account transfers between

different geographic locations from multiple accounts.

 Case Study: Public Sector Agency Creating a Citizen
Portal: The state government agency established an

online system for citizens to access their personal

records, which included tax history and benefits

information stored in VSAM files from previous

decades on the mainframe system.

The main priorities focused on protecting personal data

while implementing detailed access restrictions.

Arun K Gangula / IJETCSIT, 6(3), 61-70, 2025

68

5.5. Framework Application

 Policy Layer 1: The governance policies at Layer 1

implemented data minimization through API field-

specific data returns, which prevented the disclosure

of complete records. The system enforced versioning

policies as a method to handle changes while
maintaining operational integration with other

government systems.

 Identity Layer 2: The identity federation solution

enabled citizens to access the system through their

established trusted digital identities. The identity fabric

implemented BOLA enforcement to restrict citizens

from accessing any records except their own by

validating the identity token against the requested

record ID.

 DevSecOps (Layer 3): The agency managed

deployments through an automated pipeline system
that used Ansible. The API code underwent

vulnerability scanning followed by Trivy scanning of

container images before AWS deployment.

 Observability (Layer 4): The SIEM system at Layer

4 monitored for any irregular data access patterns

through its configuration. UEBA detected suspicious

activities by monitoring when an account tried to

access numerous records in a short timeframe, which

might indicate compromised accounts or enumeration

attacks.

6. Navigating the Regulatory Landscape
The implementation of a strong governance framework

becomes essential because it helps organizations meet strict

global regulations and improve security while generating

auditable evidence of compliance. The transition of compliance

from manual periodic checks to automated outcomes happens

through development and operational integration.

6.1. PCI DSS 4 0 Compliance

PCI DSS 4.0 will become fully effective in 2024 because it

places strong emphasis on API security, as payment ecosystems

heavily rely on it [21]. The proposed framework addresses key

requirements:

 Secure SDLC (Req. 6): The DevSecOps layer (Layer

3) implements automated SAST, DAST, and SCA

scanning to integrate security directly into the CI/CD

pipeline [21].

 Access Control (Req. 7 & 8): The Unified Identity

Fabric (Layer 2) implements strong authentication

through MFA-backed OAuth 2.0 and least-privilege

authorization for API calls (Req. 7 & 8) [21].

 Logging (Req. 10): The Unified Observability layer

(Layer 4) uses centralized logging to merge API

gateway logs with mainframe and cloud logs into a

SIEM system for audit trail purposes (Req. 10) [21].

 Vulnerability Management (Req. 11): The

DevSecOps pipeline uses continuous DAST scanning

to detect and fix vulnerabilities [21].

6.2. GDPR and CCPA Compliance

APIs, transferring personal data must meet GDPR and CCPA

obligations:

 GDPR: The policies in Layer 1 enforce data

minimization, purpose limitation, and security

principles [22]. Secure APIs operationalize the Right

to Access and Right to Erasure, with TLS 1.3 and

strict access controls safeguarding data transfers [23].

 CCPA: The framework supports consumer rights,

including the Right to Know, Delete, and Opt-Out. The
policy and identity layers block data-sharing API calls

when users exercise opt-out rights [24].

6.3. Preparing for the EU Data Act (2025):

The EU Data Act, which will become effective in

September 2025, requires secure data sharing, particularly for

IoT-generated data [25]. The framework delivers the required

security features, governance structure, and auditability

capabilities to fulfil these upcoming requirements.

Table 3. Compliance Mapping of Framework Controls

Requirement Description Framework Control(s)

PCI DSS 4.0 6.2.1 Secure development of custom software &

APIs.

Layer 3: SAST, DAST, SCA in CI/CD pipeline.

PCI DSS 4.0 8.4.2 MFA for non-console CDE access. Layer 2: MFA at the API gateway for backend systems.

PCI DSS 4.0

10.2.2

Log all actions by admins/root users. Layer 4: SIEM with mainframe and cloud log integration.

GDPR Art. 25 &

32

Data protection by design & security of

processing.

All Layers: PaC, Zero Trust Identity, DevSecOps,

Monitoring.

GDPR Art. 15 &

17

Right to Access & Right to Erasure. Layers 1 & 2: Policies & APIs with identity verification.

CCPA Opt-Out Right to opt out of data sharing/sale. Layers 1 & 2: Policy-based opt-out enforcement at API &

identity layer.

Arun K Gangula / IJETCSIT, 6(3), 61-70, 2025

69

7. Conclusion
API-based mainframe and cloud system integration has

created a significant governance gap that traditional security

models, designed for silos, cannot address. The paper

established a complete framework that connects four essential

domains to close this gap through Policy-as-Code (PaC)

automation and Unified Identity Fabric. It integrated the

DevSecOps lifecycle and the Unified Observability plane. This

integrated automated framework enables enterprises to master

secure integration within hybrid ecosystems for both innovation

and critical information asset protection.

The framework’s principles will gain essential importance
because autonomous agentic AI systems will emerge as

primary API service consumers in the future. [4] Security will

transition from human access management to Non-Human

Identity (NHI) governance because of this new paradigm. The

security of AI-to-AI interactions requires advanced policy

engines and dedicated AI gateways to protect these

interactions. The framework’s extensible Identity Fabric,

together with automated Policy-as-Code, enables the necessary

management of emerging security challenges, including the

development of password-less authentication methods, which

verify that a strong verifiable identity stands as the foundation
of contemporary security.

References
[1] N. Das, “Why mainframe modernization no longer

optional: A 2025 Strategic Imperative for CIOs and CXOs

- IntErRAIT,” InterraIT, Jun. 05, 2025.

https://interrait.com/news-update/why-mainframe-
modernization-no-longer-optional-a-2025-strategic-

imperative-for-cios-and-cxos/

[2] M. Pacheco, “What is Mainframe Modernization &

Why Does it Matter?,” TierPoint, LLC, Jan. 29, 2025.

https://www.tierpoint.com/blog/mainframe-

modernization/

[3] Yilia Lin, “5 Best Practices for API governance in 2025 -

API7.ai,” 5 Best Practices for API Governance in 2025 -

API7.ai, Feb. 06, 2025. https://api7.ai/blog/api-

governance-best-practices-2025

[4] Balaganski and M. Reinwarth, “Why API Security is the
New Cybersecurity Imperative,” KuppingerCole. Jul. 07,

2025. [Online]. Available:

https://www.kuppingercole.com/watch/api-security-new-

imperative

[5] P. Young and D. Bryan, “Mainframe state of the Platform:

2025 security assessment,” NetSPI, Jun. 26, 2025.

https://www.netspi.com/blog/executive-blog/mainframe-

penetration-testing/mainframe-state-of-the-platform-2025-

security-assessment/

[6] G. Navot, “Mainframe modernization solutions: A

practical guide for 2025,” Medium, Feb. 25, 2025.

[Online]. Available:
https://medium.com/@gilad_nvt/mainframe-

modernization-solutions-a-practical-guide-for-2025-

c9676b19f79c

[7] M. Flinders and I. Smalley, “Mainframe modernization,”

IBM Think, Feb. 09, 2024.

https://www.ibm.com/think/topics/mainframe-

modernization
[8] “Legacy Mainframe Modernization: A Complete Guide

for 2025,” Quinnox, Apr. 16, 2025.

https://www.quinnox.com/blogs/legacy-mainframe-

modernization/

[9] V. Pujar, “Enterprise Modernization: Unlocking

Mainframe Capabilities via APIs with z/OS Connect,”

Medium, May 25, 2025. [Online]. Available:

https://vikaspo.medium.com/enterprise-modernization-

unlocking-mainframe-capabilities-via-apis-with-z-os-

connect-bd99e88e64c3

[10] S. Steuart and S. Loomis, “Modernize Mainframe

Applications for Hybrid Cloud with IBM and AWS |
Amazon Web Services,” Amazon Web Services, May 09,

2022. https://aws.amazon.com/blogs/apn/modernize-

mainframe-applications-for-hybrid-cloud-with-ibm-and-

aws/

[11] N. Mehta and D. Yahalom, “Accelerate mainframe

modernization with Google Cloud AI,” Google Cloud

Blog, Apr. 04, 2025.

https://cloud.google.com/blog/products/infrastructure-

modernization/accelerate-mainframe-modernization-with-

google-cloud-ai

[12] L. Wilson, “Mainframe security in 2025: Countering new
threats, using AI, and getting the basics right,” Planet

Mainframe, Feb. 21, 2025.

https://planetmainframe.com/2025/02/mainframe-security-

in-2025-countering-new-threats-using-ai-and-getting-the-

basics-right/

[13] “OWASP API Security Project | OWASP Foundation.”

https://owasp.org/www-project-api-security/

[14] TRGoodwill, “API Governance - API Central - Medium,”

Medium, Mar. 23, 2025. [Online]. Available:

https://medium.com/api-center/api-governance-

3be87aab17b4

[15] Z. Ghalleb, “What is Policy as Code?,” wiz.io, Jul. 09,
2024. https://www.wiz.io/academy/policy-as-code

[16] M. Kuppinger, “Identity Fabric and Reference

Architecture 2025: Future-Proofing your IAM,”

KuppingerCole. Jan. 15, 2025. [Online]. Available:

https://www.kuppingercole.com/watch/future-proofing-

your-iam

[17] A. Santhanam, “What Issues Arise Integrating IAM with

Legacy Systems?,” Jan. 07, 2025.

https://www.infisign.ai/blog/issues-arise-integrating-iam-

with-legacy-systems

[18] “15 DevSecOps Tools to know in 2025,” Codefresh, Mar.
26, 2025. https://codefresh.io/learn/devsecops/15-

devsecops-tools-to-know-in-2025/

[19] R. McCune, S. Art, and C. DePinto, “Key learnings from

the 2025 State of DevSecOps study | Datadog,” Datadog,

https://www.kuppingercole.com/watch/future-proofing-your-iam
https://www.kuppingercole.com/watch/future-proofing-your-iam

Arun K Gangula / IJETCSIT, 6(3), 61-70, 2025

70

Apr. 23, 2025.

https://www.datadoghq.com/blog/devsecops-2025-study-

learnings/

[20] Gebremeskel, “SIEM for hybrid Environments: Essential

for cloud & On-Prem,” TECKPATH | Managed IT

Services | Business IT Support, Feb. 14, 2025.
https://teckpath.com/the-importance-of-siem-for-

organizations-using-cloud-and-on-prem-infrastructure/

[21] Planet 9, Inc, “PCI DSS 4.0. Requirements for API

Security - Planet 9 Inc.,” Planet 9 Inc.

https://planet9security.com/pci-dss-4-0-requirements-for-

api-security/

[22] A. Bradshaw, “GDPR: Data Compliance Best Practices

for 2025,” Alation, Sep. 23, 2024.

https://www.alation.com/blog/gdpr-data-compliance-best-

practices-2025/

[23] Devtips, “GDPR-Compliant Hosting: best practices for

developers in 2025,” Medium, Apr. 12, 2025. [Online].
Available: https://medium.com/@dev_tips/gdpr-

compliant-hosting-best-practices-for-developers-in-2025-

253763a3a77d

[24] “California Consumer Privacy Act (CCPA),” State of

California - Department of Justice - Office of the Attorney

General, Mar. 13, 2024. https://oag.ca.gov/privacy/ccpa

[25] O. Vasylyk, “Data protection digest 16 Feb - 2 Mar 2025:

Data Act to strengthen EU digital market, vigilance over

US data transfers,” TechGDPR, Mar. 04, 2025.

https://techgdpr.com/blog/data-protection-digest-4032025-

data-act-to-strengthen-eu-digital-market-vigilance-over-
us-data-transfers/

[26] Singhal, S., Kothuru, S. K., Sethibathini, V. S. K., &

Bammidi, T. R. (2024). ERP excellence a data governance

approach to safeguarding financial transactions. Int. J.

Manag. Educ. Sustain. Dev, 7(7), 1-18.

[27] L. N. R. Mudunuri, V. M. Aragani, and P. K. Maroju,

"Enhancing Cybersecurity in Banking: Best Practices and

Solutions for Securing the Digital Supply Chain," Journal

of Computational Analysis and Applications, vol. 33, no.

8, pp. 929-936, Sep. 2024.

https://planet9security.com/pci-dss-4-0-requirements-for-api-security/
https://planet9security.com/pci-dss-4-0-requirements-for-api-security/
https://techgdpr.com/blog/data-protection-digest-4032025-data-act-to-strengthen-eu-digital-market-vigilance-over-us-data-transfers/
https://techgdpr.com/blog/data-protection-digest-4032025-data-act-to-strengthen-eu-digital-market-vigilance-over-us-data-transfers/
https://techgdpr.com/blog/data-protection-digest-4032025-data-act-to-strengthen-eu-digital-market-vigilance-over-us-data-transfers/

