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Abstract - The progressive shift from human-driven to automated driver assistance and to fully autonomous vehicles has placed 

Artificial Intelligence (AI) at the center of automotive innovation. Advanced Driver Assistance Systems (ADAS) and Autonomous 

Vehicle (AV) platforms increasingly depend on AI for perception, decision making, and controls leading to enhanced vehicle safety 

and vehicle operational efficiency. However, the non-deterministic nature of AI, coupled with its dependence on training data and 

susceptibility to out-of-distribution (OOD) inputs, introduces novel safety hazards not encountered in traditional deterministic 

control systems [1] [2]. This paper aims to investigate the design and evaluation of safety mechanisms capable of detecting, 

mitigating, and recovering from unexpected AI behaviors in OOD scenarios for the AI system. The study considers layered safety 
architectures, continuous monitoring strategies, dataset lifecycle management, simulation-based validation, and performance 

metric analysis as part of an integrated safety framework. Key findings include that OOD detection techniques, such as 

Mahalanobis distance-based scoring, can significantly reduce misclassifications risk, although sometimes at the expense of 

operational coverage [3]. The integration of safety monitors into perception pipelines has been shown to improve system 

trustworthiness by identifying failure patterns before they escalate into hazardous decisions [4]. Furthermore, empirical studies 

reveal demographic performance disparities in pedestrian detection models, particularly under low-light or low-contrast scenarios, 

which highlights the importance of bias aware dataset curation [5] [6]. We conclude that achieving resilient autonomy demands a 

multi-layered safety approach: combining proactive monitoring, fallback control logic, diverse and bias mitigated datasets, 

rigorous simulation-based testing, and alignment with evolving regulatory standards. These measures form the basis for developing 

trustworthy AI systems capable of operating safely in unpredictable scenarios encountered during real-world driving conditions. 

 
Keywords - Index Terms, ADAS, Autonomous vehicles, AI safety, OOD detection, Bias mitigation, Simulation validation, Functional 

safety. 

 

1. Introduction 
Over the past decade, the automotive industry has undergone a rapid transformation, mostly driven by advancements in 

Advanced Driver Assistance Systems (ADAS) eventually with a shift toward fully autonomous vehicle (AV) capabilities. ADAS 

functions such as adaptive cruise control, lane keeping assistance, automated lane change, and collision mitigation are now widely 
available in production vehicles with various OEMs. This represents the first wave of automation in consumer transport [7] [8]. The 

goal of these systems is to enhance driver safety, reduce collisions, and improve traffic efficiency, while maintaining a human 

operator in control and final decision maker in the vehicle. As we move from ADAS to high-level automation as shown in Figure 1 

it leads to a shift in system design strategy utilizing Artificial Intelligence (AI) at the core of perception, decisionmaking, and 

control. AI driven perception stacks, employing deep neural networks, have shown remarkable capability in recognizing objects, 

road signs and predicting the behavior of surrounding traffic [9]. However, this reliance on AI introduces new safety considerations 

absent in traditional deterministic vehicle control systems. 

 

The benefits of AI in AVs are significant it enables human like adaptive behavior in complex environments, it helps improve 

detection under variable conditions, and can process multi-modal sensor data more effectively than deterministic algorithms [10]. 

However, these strengths are counterbalanced since neural networks are inherently data dependent, their ability to generalize is 
limited by the diversity and representativeness of training datasets [11]. Failures can arise in edgecase scenarios, such as unusual 

weather, low light conditions, construction zones, or rare pedestrian behaviors, where the AI encounters out-of-distribution (OOD) 

inputs [3]. Also, AI models often operate as “black boxes,” with decisionmaking processes that are difficult to verify or explain 

which complicates both development and post-incident analysis [12]. These challenges are compounded by the unpredictability of 

real-world driving. There are infinite range of scenarios encountered while driving due to the combination of vehicle types, 

weather, zones, road types etc.  
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Although conventional safety engineering in automotive systems has long addressed deterministic hardware and software 

failures, the stochastic and context-dependent nature of AI failures demands new approaches. Existing standards such as ISO 26262 

and ISO/PAS 21448 (SOTIF) address functional safety and safety of the intended functionality, yet their adaptation to AI-intensive 

architectures remains an evolving field [1] [2]. The purpose of this paper is to analyze how AI safety mechanisms can be designed, 

evaluated, and validated to handle failures in real-world driving contexts. We examine layered architectures, continuous 

monitoring, fallback control strategies, dataset lifecycle management, simulation-based validation, and performance metrics, with 
the aim to provide a comprehensive framework for developing trustworthy, regulation-compliant AI systems for ADAS and AVs. 

 

 
Figure 1. SAE Automation Levels [26] 

 

2. Safety Hazards Unique To Ai-Driven Adas/Avs  
2.1. Data Bias and Demographic Disparities 

A well known risk in AI based perception is due to dataset bias. Pedestrian detection models, trained predominantly on 

improperly balanced datasets, may perform poorly on specific demographic groups. Some studies have shown that detection 

accuracy is significantly lower for children and individuals with darker skin tones, particularly under challenging illumination 

conditions such as low light or fog [6] [5]. These gaps aren’t just a research problem, the bias in safety-critical models can directly 
put certain road users, especially vulnerable ones, at greater risk. The Predictive Inequity in Object Detection study [5] 

demonstrated that, in a widely used pedestrian dataset, the detection confidence was consistently lower for pedestrian with darker 

skin tone. Environmental factors such as low light and low contract conditions compounded this effect leading to sharp increase in 

the false negatives and also recognition delays lengthen [13]. Such findings underscore the need for deliberate dataset curation, 

augmentation, and bias testing as part of the safety assurance process. 

 

2.2. Out-of-Distribution (OOD) Inputs and Model Uncertainty 

Deep neural networks operate reliably within the statistical limits of their training data. When confronted with out-

ofdistribution (OOD) input such as construction zone, an irregular traffic pattern, or environmental conditions that are not 

encountered during training as shown in Figure 2, the behavior of the model can degrade unpredictably [14]. In autonomous 

vehicles, this can manifest itself as misclassifications, missed detections, or unsafe trajectory proposals.Techniques such as 
Mahalanobis distance-based scoring [3] and uncertainty estimation through ensemble methods [15] have been shown to improve 

OOD detection, allowing the system to trigger safe fallback actions. However, these methods involve trade-offs: lowering the 

detection threshold to catch more OOD cases can unnecessarily restrict operational coverage, impacting usability. 
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Figure 2. Out of Distribution Detection 

 

2.3. lack-Box Decision Processes 

Most high-performing perception and planning models in AVs are based on deep learning architectures, which inherently lack 

transparency. Their decision boundaries and feature attributions are difficult to interpret without specialized tools [12]. This opacity 

complicates verification, validation, and root-cause analysis after incidents. In safety-critical domains, the inability to provide an 

audit trail for decisions is a barrier to both regulatory compliance and public trust. Explainable AI (XAI) methods such as saliency 

mapping, feature attribution, and activation analysis are being explored to improve interpret ability [16]. Although promising, these 
methods are not yet standardized for automotive safety certification. 

 

2.4. Sensor Fusion Fragility 

Multi-modal sensor fusion (e.g., combining camera, radar, and LiDAR inputs) as shown in as shown in Figure 3 is intended to 

improve perception robustness by leveraging complementary sensing modalities. However, faults in one modality can propagate 

through the fusion pipeline, contaminating downstream perception and planning layers. For example, misaligned calibration in a 

camera-LiDAR pair can cause object position errors, leading to unsafe path planning [17].Failure modes in sensor fusion can arise 

from hardware degradation, environmental interference (e.g., radar multi-path in urban canyons), or software errors in the fusion 

algorithm itself. Because fusion is deeply integrated into decision making, even subtle sensor-specific anomalies can have 

amplified safety consequences. 

 

2.5. Real-World Failure Example 

A stark illustration of these hazards is found in the 2018 Tempe, Arizona fatality involving an AV test vehicle. Postincident 

analysis indicated that the object detection system failed to correctly classify a pedestrian crossing outside of a crosswalk until it 

was too late to initiate an avoidance maneuver [18]. The misclassification by the system, combined with an insufficient fallback 

response, exemplifies the convergence of several hazards: biased training data (infrequent pedestrianoutside-crosswalk scenarios), 

OOD conditions (dimly lit environment), black-box decision opacity, and sensor fusion limits. This case emphasizes the need for 

AI safety mechanisms that can not only detect anomalies but also respond rapidly and deterministically in ways that preserve life. 

 

 
Figure 3. Multi Modal Sensor Fusion 
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3. Ai Safety Mechanisms: Design Principles 
The design of AI safety mechanisms for ADAS and AVs requires a multi-pronged approach that addresses failure prevention, 

detection, and recovery. Safety must be embedded into both the architectural foundations and the runtime monitoring of AI 

components. This section outlines key design principles organized under safety-oriented AI architecture and control and monitoring 

strategies. 

 

3.1. Safety-Oriented AI Architecture 

3.1.1. Redundant Sensing 

Robust perception in AVs hinges on multi-modal sensing as shown in as shown in Figure 3. Cameras, radar, and lidar each 

have complementary strengths: cameras provide high-resolution semantic detail, radar maintains reliability in poor weather, and 

lidar delivers precise 3D spatial mapping [19]. By fusing these modalities, the system can maintain perception fidelity when one 

sensor is degradedradar, for instance, can detect vehicles through fog where camera performance suffers [20]. To further reduce 

systemic risk, redundant sensing can include heterogeneous hardware from multiple suppliers, reducing the chance that a shared 
defect cascades across all modalities. 

 

3.1.2. Parallel AI Pipelines 

Running independent perception or planning models in parallel allows for cross-validation of outputs. Discrepancies between 

pipelines can flag possible faults, prompting a safety review or the fallback action [21]. These models may differ in architecture, 

training data, or feature representation, ensuring that they fail under different conditions. For example, a convolutional neural 

network (CNN) and a transformer-based detector can complement each other’s weaknesses. 

 

3.1.3. Safety/Shadow Controller  

A safety or a shadow controller operates in parallel to the main autonomy stack, using deterministic, formally verifiable 

algorithms to monitor AI outputs and override them if hazardous behavior is detected [22]. The shadow controller does not rely on 
complex learned representations; instead, it enforces physical constraints, braking distances, and collision avoidance heuristics. For 

example, if the main AI proposes a lane change that would violate a safe gap threshold, the shadow controller can veto the 

maneuver and maintain the lane position. 

 

3.2. Control and Monitoring Strategies 

3.2.1. Real-Time Monitoring: 

OOD Detection: Detecting when an input lies outside of the learned distribution of the AI model is critical to avoid unsafe 

extrapolation. Methods like Mahalanobis distance based scoring [3] and softmax entropy maps [23] allow real-time detection of 

novel inputs. Upon detection, the system can reduce the autonomy level, slow the vehicle, or transfer control to a human operator. 

Safety Monitors for Perception: Safety monitors evaluate the AI output against known failure signatures. For example, if bounding 

boxes jitter excessively between frames or a tracked object disappears prematurely, the monitor can treat this as a sign of 

perception instability [24]. In such cases, fallback actions such as increasing the following distance or halting lane change can be 
triggered. Logging and Observability: Recording internal AI states, intermediate feature maps, and decision output is essential for 

post-incident analysis. High-fidelity logs enable developers and regulators to reconstruct failure chains and improve models [25]. 

In some safety frameworks, vehicle storage is supplemented by encrypted remote uploads for redundancy. 

 

3.2.2. Active Mitigation and Recovery: 

Graceful Degradation: When partial system impairment occurs, the AV should degrade functionality in a controlled way. This 

can involve reducing speed (e.g. tunnel speed mode in GPS-denied environments), limiting autonomy to simpler maneuvers, or 

prompting a human takeover [26] this behavior prevents abrupt loss of control and extends the decision window for safe recovery. 

Emergency maneuvers: If critical hazards are detected, such as complete perception failure or a high likelihood of collision, the 

system’s fallback logic can execute model predictive maneuvers for rapid deceleration, evasive swerving within safety limits, or 

controlled pullover [27]. These maneuvers must be pretested under a variety of conditions to ensure stability and prevent secondary 
hazards. Human-on-Loop supervision: Some AV platforms incorporate remote operators who can intervene in rare but high-risk 

scenarios [28]. The AI system must be designed to transmit the situational context in real time, enabling the human supervisor to 

issue corrective commands without delay. 

 

3.2.3. Health Assessment and Watchdog Functions: 

Confidence estimation: Ensemble models [15] and self modeling architectures [29] can provide a measure of predictive 

uncertainty. By quantifying confidence in its own output, the system can dynamically adjust the autonomy level with high 

confidence states allowing normal operation, while low confidence states trigger cautionary behaviors. Watchdog timers and 

crosschecks: Watchdog timers detect system hangs or excessive processing delays, initiating a safe stop if the autonomy stack 
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becomes unresponsive. Cross-checking between processors (e.g. dual redundant compute units running safety critical logic) helps 

detect erratic output caused by software or hardware faults [30].Self-testing: Routine injection of internal test cases, such as 

simulated obstacle appearances, can validate that perception, planning, and actuation components work correctly during operation. 

Failures in these self-tests prompt immediate transitions to safe fallback modes [31].These design principles collectively aim to 

create AV systems that are resilient to the diverse and unpredictable failure modes inherent to AI-driven autonomy. By combining 

architectural redundancy, continuous monitoring, active mitigation, and robust health checks, developers can significantly reduce 
the risk of catastrophic failures. 

 

4. Data, Development, and Validation for Ai Safety 
Ensuring AI safety in ADAS and AV systems depends on a rigorous approach to data management, simulation testing, and the 

use of well-defined performance indicators. Since AI models are only as robust as the data and validation processes they are built 

upon, the pipeline must be explicitly designed to capture real-world diversity, systematically test system responses, and quantify 

safety performance. 
 

4.1. Dataset Life-cycle Safety 

4.1.1. Diversity in Data Collection 

The resilience of AI in AVs depends on exposure to a wide variety of operational conditions. Standard driving datasets often 

over represent clear weather, daytime and majority of the demographic conditions [26]. Safety-oriented datasets must intentionally 

capture rare weather patterns (snow, heavy rain, fog), low illumination settings, and unusual traffic behaviors (jaywalking, sudden 

lane changes), etc. Inclusion of underrepresented demographic groups is critical, as pedestrian detection has been shown to have 

reduced accuracy for children, elderly individuals, and people with darker skin tones [32]. These disparities worsen under low light 

or fog conditions, compounding the risk in real deployments [5]. To fill in natural data gaps, synthetic augmentation techniques, 

such as generative adversarial networks (GANs) and domain randomization, can simulate challenging conditions, including 

adversarial lighting or occlusions [33]. Synthetic data cannot fully replace real-world captured data, but can extend coverage across 
rare scenarios, aiding model generalization. 

 

4.1.2. Life-cycle management and Annotation 

Dataset management driven by safety is not static; it is an evolving process tied to field performance. Continuous logging data 

from deployed fleets allows developers to identify performance regressions and emerging edge cases [25]. Annotation processes 

should include labels for safety critical tags that indicate the potential for harm if misclassified, such as a child on the road or an 

approaching emergency vehicle. Coverage monitoring tools can track the presence or absence of specific conditions in training 

data. If foggy nighttime intersections are underrepresented, targeted collection campaigns can be deployed to close these gaps 

before the next model iteration. 

 

4.1.3. Bias Checks and Fairness Audits 

 Data bias must be evaluated at multiple stages of the lifecycle. Cross-domain bias checks ensure that models trained in one 
geography generalize to others, while cross-demographic audits detect disparities in detection accuracy between age, gender, and 

ethnicity [34]. Automated fairness metrics can flag detection or classification discrepancies that exceed predefined thresholds [35]. 

Furthermore, model retraining should integrate mitigation strategies when bias is identified, such as reweighting loss functions for 

underrepresented classes or using fairness-constrained learning [36]. Safety validation is incomplete without proving that the 

model performs equitably across diverse users and environments. 

 

4.2. Simulation-Based Validation 

4.2.1. Scenario Generators 

Simulation is essential for testing AI safety mechanisms in ADAS and autonomous vehicles because it enables exploration of 

dangerous or rare scenarios that cannot be reproduced safely on public roads. Scenario generators can vary conditions such as 

lighting, weather, traffic, and road layout in the Operational Design Domain (ODD) [37]. For example, a simple case of a 
pedestrian crossing mid-block can be programmatically altered by adjusting walking speed, clothing color, visibility, or occlusions. 

This combinatorial approach ensures that corner cases, including those absent from the collected datasets, are examined prior to 

deployment. 

 

Simulation-in-the-Loop (SiL) extends this capability by offering a scalable, high-fidelity environment tailored for production 

intent AI software. Traditional road testing is expensive and poorly suited for capturing rare edge cases, whereas SiL provides cost-

effective coverage and faster iteration [41]. By simulating critical edge-case behaviors, developers can identify weaknesses long 

before vehicles face them on real roads. 
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The NHTSA ODD taxonomy [42] is central to this process, separating scenarios by factors such as infrastructure, 

environmental conditions, and operational constraints. This categorization enables tests across normal, stress, edge, and out-of-

ODD conditions as shown in Figure 4, ensuring that AI systems not only handle expected inputs, but also degrade gracefully in 

abnormal ones. To control the explosion of test combinations, methods such as pairwise testing and equivalence partitioning are 

used, thereby allowing a broad but efficient scenario coverage [41].SiL also supports agile development cycles. Automated 

regression testing verifies that new AI releases, including Over-the-Air (OTA) updates, do not compromise safety-critical functions. 

Version-controlled simulation campaigns ensure traceability [41], an important requirement for standards such as ISO 26262 

[1].Ultimately, SiL is more than a validation tool; it provides a structured framework for early bug detection, accelerated 

development, and regulatory alignment [41]. By embedding safety checks throughout the software lifecycle, simulation ensures 

that AI-driven autonomy advances without sacrificing reliability or public trust. 
 

4.2.2. Digital Twins and Hardware-in-the-Loop (HIL) 

 Digital twin systems replicate real-world locations, road geometry, and traffic conditions with high fidelity, enabling 

locationspecific safety validation [38]. When combined with HIL setups, these simulations connect the virtual environment to the 

physical AV hardware stacksensors, compute units, and actuators. This enables validation of not only AI perception and planning 

but also hardware timing, sensor synchronization, and actuator latency. Integration testing in a digital twin ensures that perception 

models can handle sensor dropout, planning modules can respond within latency budgets, and control layers can execute safe 

maneuvers even under degraded conditions [39].Simulation-based testing also provides a mechanism for regression analysis. When 

a safety incident occurs in realworld deployment, it can be replicated and varied in simulation to test candidate fixes before fleet 

wide roll out. This reduces the risk of introducing new vulnerabilities during patching. 

 
4.2.3. Metrics and Performance Indicators 

Safety performance must be quantified using clear and measurable Key Performance Indicators (KPIs) that align with functional 

safety targets. Common KPIs include: 

 Detection rates for critical classes (e.g., pedestrians, cyclists, and emergency vehicles). 

 False positive / negative rates, with an emphasis on minimizing safety-critical misses. 

 Perception latency, measured from sensor capture to classified output. 

 Reaction time, from hazard detection to initiation of a safe maneuver. 

 Safe maneuver success rate, evaluating whether the AV executed an intended safety maneuver without secondary hazards. 

 Coverage metrics indicating the percentage of known edge cases that are handled successfully [40]. 

 

These KPIs must be tracked not only in pre-deployment testing but also during post-deployment monitoring, ensuring that 
drift or environmental shifts in the real world do not erode safety performance over time. 

 

5. Contemporary Implementations and Case Studies 
The implementation of AI safety mechanisms in ADAS and AV systems has evolved through a combination of regulatory 

requirements, OEM-driven safety strategies, and lessons learned from real-world deployment. Modern approaches reflect a layered 

defense philosophy that combines redundancy, fallback controllers, continuous fleet monitoring, and compliance with formal 

testing standards. 
 

5.1. Redundancy and Shadow Controllers 

To meet Automotive Safety Integrity Level D (ASIL-D) requirements as defined by ISO 26262, leading OEMs integrate 

redundant sensing and control architectures. Sensor redundancy often pairs complementary modalities camera, radar, and LiDAR, 

so that environmental perception remains functional if one sensor fails [1]. In adverse weather, radar can retain the ability to detect 

objects where cameras struggle, and LiDAR can help resolve range ambiguities [43]. Redundancy extends beyond sensing into 

computation. Shadow controllers, deterministic backup modules run in parallel with AI-driven decision-making. While the primary 

AI model handles complex perception and planning, the shadow controller continuously evaluates the state of the vehicle against 

 
Figure 4. Scenario Generation Pipeline [41]. 
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deterministic safety rules. For example, if lane markings are lost and no safe alternative is identified within a set time window, the 

shadow controller can initiate a controlled deceleration [25]. This approach allows for graceful degradation without relying entirely 

on human intervention in rapidly evolving hazards. 

 

5.2. Lane-Keeping Fallback Strategies 

Lane-keeping assist (LKA) systems are among the most widely deployed ADAS features. Contemporary implementations use 
multi-model pipelines that combine convolutional neural networks for visual lane recognition with geometric models to track lane 

curvature [44]. When the primary perception system loses confidence, due to occlusions, poor weather, or faded markings, the 

fallback logic is triggered. This may involve requesting immediate driver takeover through visual, auditory, and haptic alerts. If no 

response is detected, the system can autonomously slow the vehicle, maintaining lateral stability until a stop is reached [45]. Some 

OEMs use confidence thresholds derived from real-time softmax entropy or OOD detection to determine when to switch to fallback 

mode [3]. 

 

5.3. Fleet Health Monitoring 

Post-deployment fleet monitoring is now a core safety practice. Vehicles are equipped with telematics and over-theair (OTA) 

update capabilities that allow OEMs to continuously capture edge case data encountered in the field [46]. This data is fed back into 

the AI model retraining pipelines, ensuring that unusual situations such as novel vehicle types or rare weather are addressed in 

future updates. Health monitoring systems also track component level performance, including sensor calibration drift, abnormal 
actuator response times, and software process health through watchdog timers [47]. When anomalies are detected, remote 

diagnostics can trigger pre-emptive maintenance or software rollback. This proactive approach reduces the likelihood of safety-

critical failures between scheduled service intervals. 

 

5.4. Real-World Effectiveness Studies 

Empirical evaluations indicate that ADAS technologies can measurably reduce collision rates. A large-scale insurance 

telematics study found that forward collision warning and lane departure warning systems were associated with an average 15% 

reduction in relevant crash rates, while blind spot monitoring reduced lane change related crashes by approximately 19% [48]. 

However, these benefits can be tempered by behavioral adaptation, a phenomenon in which drivers adjust their behavior in 

response to perceived safety nets. For example, certain urgent alerts have been associated with a 5.7% increase in harsh braking 

events, possibly reflecting over reliance or startling responses [49]. This underscores the importance of designing safety 
interventions that support, rather than disrupt, driver situational awareness. 

 

5.5. Regulatory Testing and Market Surveillance 

ADAS and AV safety claims are increasingly validated through independent testing bodies and harmonized regulations. The 

European New Car Assessment Program (Euro NCAP) now includes a dedicated Highway Assist rating, which evaluates the 

interaction between driver assistance features, safety backstops, and human-machine interfaces [50]. United Nations Economic 

Commission for Europe (UNECE) regulations such as UN R157 for Automated Lane Keeping Systems (ALKS) define 

performance limits, fallback requirements, and cybersecurity provisions for Level 3 autonomy [51]. Market surveillance 

mechanisms allow regulators to assess deployed systems after market, ensuring continued compliance with safety standards. These 

frameworks not only guide OEM implementation, but also serve as benchmarks for public trust. As higher levels of automation 

become commercially viable, such regulatory scaffolding will be essential to harmonize safety expectations across jurisdictions. 

 

6. Standards, Regulatory Framework and Open Challenges 
6.1. Functional Safety and SOTIF Foundations 

ISO 26262 establishes the functional safety baseline for road vehicles, focusing on avoiding hazards due to electrical or 

electronic failures [1]. It defines Automotive Safety Integrity Levels (ASIL) from A (lowest) to D (highest), requiring rigorous 

verification, redundancy, and fault tolerance in safety critical components. Although essential, ISO 26262 mainly addresses 

systematic and random hardware/software faults, not the performance limitations of AI-based perception and decision systems. To 
address this gap, ISO/PAS 21448, also known as Safety of the Intended Functionality (SOTIF), extends safety considerations to 

scenarios where the system functions as designed but may still cause harm, such as failing to detect a pedestrian under unusual 

lighting conditions [2]. SOTIF emphasizes the identification of unknown hazards during the concept and validation phases and 

requires scenario-based testing, both in simulation and on-road. 

 

6.2. Evolving International Regulations 

The United Nations Economic Commission for Europe (UNECE) has developed UN Regulation No. 157, which governs 

Automated Lane Keeping Systems (ALKS) at SAE Level 3 [51]. The regulation specifies operational domain limits, fallback 

requirements, minimum risk maneuvers, and data storage for crash reconstruction. In the European Union, the type approval 
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framework integrates these UNECE rules into the market entry requirements. It also mandates market surveillance, ensuring that 

post-sale vehicles continue to comply with safety standards [52]. This framework is expanding to address higher automation levels, 

integrating cybersecurity (ISO/SAE 21434) and AI ethics guidelines. 

 

6.3. Open Challenges 

• Scaling to new architectures: Transformer-based models, which excel in computer vision and multimodal fusion, 
introduce both opportunities and challenges. Their high capacity improves perception, but can exacerbate overfitting to 

biased datasets and make real-time explainability harder [53]. 

• Anticipating “unknown unknowns”: Even with extensive OOD detection and simulation, AVs can encounter 

unprecedented hazards. AI safety research must explore meta-learning and continual adaptation strategies that generalize 

beyond known training distributions [54]. 

• Explainability for trust: Both regulators and the public require interpretable output from AI systems. Current post hoc 
saliency maps and feature attribution methods often lack actionable precision for safety validation [55]. Transparent 

decision logs and hybrid rule-based checks could bridge this gap. 

• Fairness under varied conditions: Demographic disparities in pedestrian detection remain a pressing equity concern. 

Studies have shown reduced detection rates for darkskinned pedestrians, particularly in low light conditions [32]. This 

undermines both public trust and regulatory acceptance, motivating fairness-aware training pipelines and performance 

parity benchmarks in safety validation. 

 

7. Discussion and Conclusion 
This study analyzed the design, evaluation and validation of AI safety mechanisms for ADAS and AV systems. Several findings 

emerge: 

 OOD detection (e.g., Mahalanobis distance, softmax entropy maps) effectively reduces classification risk in perception 

modules, but often at the cost of operational coverage. Systems must balance false rejections against safety benefits [54]. 

 Safety monitors- shadow controllers, fallback logic, and watchdog timers significantly improve system dependability, 
providing deterministic recovery paths when AI fails [51]. 

 Bias in pedestrian (e.g. child pedestrian as shown in Figure 5) detection not only undermines ethical equity, but also 

increases collision risk. Brightness contrast post-processing, along with dataset balancing, has shown promise in 

improving both fairness and accuracy under adverse conditions [32] [56]. 

 
Figure 5. Bias against child pedestrian 

 
These results align with previous efforts to improve fairness [32] and confirm the importance of multilayer safety monitoring, 

as noted in other safety surveys of AV [54]. However, alternative interpretations must be considered. For example, driver 

adaptation to ADAS features, documented as increased harsh braking in some urgent alert scenarios, suggests that human behavior 

can offset technical safety gains [49]. 
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7.1. Limitations 

Three main constraints shape these findings: 

 Simulation vs. real-world gap: Many validation results rely on digital twins that may fail to capture unpredictable driver 

pedestrian interactions. 

 OOD detection trade-offs: While improving safety, high sensitivity can lead to operational conservatism, reducing 

usability. 

 Dataset bias limitations: Bias assessments depend on the availability and diversity of labeled datasets, which may not 

represent rare demographics or environmental conditions. 

 

7.2. Future Research Directions 

To advance trustworthy autonomy, research should focus on the following: 

 Adaptive fairness models that dynamically re-weight perception outputs under uncertain conditions. 

 Improved OOD detection using multimodal uncertainty fusion. 

 Transparency tools designed for regulatory audit and public communication. 

 Integration of real-time driver behavior monitoring to dynamically adjust intervention thresholds. 

 Regulatory proof-of-concept pilots that test AI safety mechanisms against standardized, yet evolving, scenario suites. 
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