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Abstract - The electrification of last-mile delivery fleets raises operational risks associated with the thermal behavior of lithium‑ion 

batteries due to environmental conditions that may include elevated ambient temperature, stop‑and‑go duty cycles, frequent HVAC 

transients when the door is opened, and intermittent fast charging. This manuscript describes an AI‑enhanced, edge‑computing 

framework for the real‑time prediction and control of battery temperature in commercial electric vehicles. The approach combines 

a control‑oriented resistance–capacitance (RC) thermal model with a long short‑term memory (LSTM) forecaster and a model 

predictive control (MPC) policy to maintain temperatures within safety limits while minimizing auxiliary energy use and 
computation latency. A layered vehicle edge compute and cloud architecture is specified to support sub‑100 ms control loops, 

privacy‑preserving data handling, and fleet‑level learning. The methodology includes (i) derivation and discretization of the RC 

model, (ii) physics‑informed training of the LSTM forecaster, and (iii) MPC formulation with actuation and charging constraints; 

practical design choices for embedded deployment (quantization, scheduling, watchdog fallbacks) are also detailed. A hypothetical 

case study for 100 last‑mile vans operating at 40 °C ambient conditions is outlined with evaluation metrics for thermal safety, 

HVAC energy per kilometer, operational uptime, and end‑to‑end loop latency on Jetson‑class systems. The proposed framework 

enables rigorous, data‑ready pilots even without proprietary telemetry by leveraging digital‑twin synthesis and synthetic route 

perturbations. The work aims to inform scalable, safety‑conscious electrification strategies for last‑mile fleets. 

 

Keywords - Battery thermal management, last‑mile delivery, Electric vehicles, Edge computing, Model predictive control, long 

short‑term memory (LSTM), Digital twin. 

 

Nomenclature - T_b: Battery bulk/pack temperature; T_a: Ambient temperature; C_b: Thermal capacitance; R_ba: Thermal 

resistance to ambient; P_tr: Traction power; P_hvac: HVAC compressor power; I: Pack current; SoC: State of charge; 

Q_gen/Q_cool: Heat generation/cooling; H: Prediction horizon; Δt: Sampling time. 

 

1. Introduction 
Electrified last-mile logistics continues to evolve with urban freight [1] stakeholders aiming to lower emissions and operating 

costs, while still providing the level of service that customers need. The Global EV Outlook and associated industry reports have 

observed a rapid benchmark for commercial EV adoption yet seemingly constrained to varying degrees by charging issues, duty-

cycle variability, and thermal reliability [2]. Battery thermal management (BTM) plays a critical role in this issue [3]: a reduced 

battery temperature lowers internal resistance and available power and regenerative capability, while higher temperatures 

accelerate battery degradation and may precipitate thermal safety incidents [4]. In last-mile duty cycles, pack temperature is 

affected by the combination of traction load, frequently opened doors that create HVAC and temperature transients, climate control  

requirements while idling, and short, high-power charging events between the last-mile tours. 

 

A growing body of research is showing the promise of artificial intelligence (AI) for state estimation and prediction of battery 

and cabin thermal states with recurrent neural networks such as long short-term memory [6] networks (LSTM) showing strong 

capabilities in varying load conditions [8]. At the same time, edge computing platforms are enabling inference and control in real 
time with reduced reliance on backhaul, better privacy implications, and predictable bounds of latency to closed loop thermal 

control on vehicles [11]. 

 

This article proposes a practical deployment-oriented framework drawing on these advances for last mile fleets [12]. The broad 

objectives are to:  

 Develop a compact, control oriented thermal model with the dominant heat flows but which is small enough for embedded 

control,  
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 Build on that model with a regularized physics LSTM temperature forecaster [7] to improve near term trajectory 

predictions, and Develop a model predictive control (MPC) algorithm that minimizes auxiliary energy while respecting 

safety envelopes and limits on actuation.  

 

 
Figure 1. System architecture across vehicle‑edge, depot‑edge, and cloud 

 

A three-tiered architecture consisting of vehicle-edge, depot-edge, as shown in figure-1 and cloud is drawn to have low latency 

control of vehicles while learning and governance at the fleet level. The article utilizes indirect, single author narration focusing 

more on the design choices, assumptions and criteria for evaluation rather than proprietary telemetry. The rest of the paper is 
structured as follows. Section II provides a review of related work on BTM, AI-based temperature estimation, and vehicular edge 

computing. Section III provides the thermal modelling and control framework including derivations and calculations. Section IV 

describes the edge-cloud architecture and deployment considerations. Section V introduces a data-ready evaluation framework and 

a contrived case study. Section VI describes expected results and practical implications. Section VII provides conclusions and 

potential future research directions. 

 

2. Methodology 
2.1. System Assumptions and Signals 

Assume a liquid‑cooled lithium‑ion pack with an integrated thermal management loop [9] coupled to a heat‑pump HVAC system. 

Measured/derived signals include:  

Traction power P_tr(t), vehicle speed v(t) and acceleration a(t), ambient temperature T_a(t), compressor/ejector power 

P_hvac(t), pack current I(t), SoC(t), and door‑open events. Constraints specify allowable temperature bounds T_min ≤ T_b ≤ 

T_max, compressor limits 0 ≤ P_hvac ≤ P_max, and charging current bounds conditioned on SoC and temperature. 

 

2.2. RC Thermal Model Derivation 

A control‑oriented RC model is adopted: 

C_b · dT_b/dt = (T_a − T_b)/R_ba + Q_gen(t) − Q_cool(t). 

 
Where C_b is the thermal capacitance, R_ba the thermal resistance to ambient, T_b the bulk pack temperature, and T_a the 

ambient temperature.  

 

Heat generation is approximated by Joule heating with load correlation: 

Q_gen  ≈  I(t)^2·R_int(T_b,SoC) + α·P_tr(t), 

 

Where α captures unmodeled losses. Cooling power is proportional to compressor power: 

Q_cool ≈ η_c·P_hvac(t) with efficiency η_c ∈ (0,1). 
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A two‑node extension adds a core–surface pair with interfacial resistance R_cs and capacitance C_c for the core state T_c, 

improving fidelity during fast charging. 

 

2.3. Discretization and State Update 

Using forward Euler with sampling time Δt, the discrete update for the single‑node model is: 

T_b[k+1] = T_b[k] + (Δt/C_b)·((T_a[k] − T_b[k])/R_ba + Q_gen[k] − Q_cool[k]). 
 

For the two‑node model with states x = [T_c, T_s]^T, a linearization around the current operating point yields x[k+1] = A x[k] 

+ B u[k] + d, where u[k] includes P_hvac, I, and P_tr. Matrices A and B can be obtained from thermal resistances/capacitances and 

linearized heat‑transfer coefficients. 

 

2.4. Parameter Identification 

Parameters {C_b, R_ba, α, η_c} are identified via least‑squares on step tests or via joint estimation with an extended Kalman 

filter (EKF).  

Define residual r[k] = T_b[k+1] − f(T_b[k], u[k]; θ). 

The estimate θ  minimizes J(θ) = Σ_k r[k]^2 + λ‖θ‖^2 

 

With Tikhonov regularization λ.  A bounded trust‑region method improves robustness when data are noisy. 

 

2.5. LSTM Temperature Forecaster 

Input features are  

z[k] = [P_tr, v, a, T_a, P_hvac, I, SoC, door_event] with a rolling window of length L (60–180s) 

An L‑layer LSTM with hidden size h produces a k‑step‑ahead forecast 

T _b[k+j|k], j=1 

H. The training loss combines a supervised term and a physics prior: 

L = Σ_j ‖T _b[k+j|k] − T_b[k+j]‖_1 +  ‖T _b[k+1|k] − f_RC(T_b[k], u[k])‖_2^2, 

 

Where   tunes the physics‑informed regularization. Normalization (z‑score) and teacher forcing are applied during training; for 

edge deployment, post‑training quantization (INT8) reduces latency. 

 

2.6. MPC Formulation and Solver 

At time k, compute u[k..k+H−1] by minimizing: 

J = Σ_{j=0}^{H−1} w_T (T _b[k+j|k] − T_ref)^2 + w_P P_hvac[k+j]^2 + w_Δu (Δu[k+j])^2, 

subject to T_min ≤ T _b[k+j|k] ≤ T_max, 0 ≤ P_hvac ≤ P_max, 

 

And charge‑safety constraints during fast charging. When the predictor is linearized RC, the problem reduces to a convex 

quadratic program; with nonlinear terms or LSTM predictors, a sequential quadratic programming (SQP) or real‑time iteration 

scheme is recommended. A practical configuration uses H = 20–50 steps with Δt = 0.1–0.5 s to meet <100 ms compute budgets on 

embedded SoCs. 

 

2.7. Embedded Deployment and Watchdog 
Agent runtime components are containerized for implementation as microservices: signal acquisition, feature engineering, 

LSTM inference (TensorRT), MPC solve [5], and actuator interface. To ensure deadlines, we employ CPU pinning and 

asynchronous I/O. A watchdog is in use to monitor timing and thermal constraints; if violated, a rule-based fallback controller will 

take over. OTA updates are conducted using a canary strategy that shadows the evaluation before activation. 

 

3. Edge–Cloud System Architecture 
Vehicle-edge performs closed-loop control and safety-critical inference [10]. Depot-edge aggregates daily data, performs 

localized retraining or calibration, and manages charging-bay policies. Cloud services provide synthetic data generation, long-

horizon optimization, governance, and fleet-level model orchestration. Data minimization is enforced by hashing/aggregating 

features prior to uploading. 
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Figure 2. Hybrid RC + LSTM prediction and MPC control loop 

 

4. Evaluation Plan and Case Study Design 
 

 
Figure 3. Timing budget and execution pipeline on embedded platform. 

 

Scenario: 100 delivery vans, summer operation at T_a = 40 °C, two 60‑mile tours/day, one 150‑kW fast charge between tours, 

door‑open events every 3–6 minutes. 

 

Design‑of‑experiments (DoE) sweeps ambient temperature, traffic intensity, stop density, and compressor maps. Digital‑twin 

traces are synthesized using the RC model with stochastic disturbances. 

 

Metrics: (i) Thermal safety—% time within [T_min, T_max] and peak overshoot; (ii) Energy—HVAC Wh/km and total 

auxiliary energy; (iii) Uptime & SLA—missed deliveries due to thermal derating and charge‑bay dwell time; (iv) Compute—

end‑to‑end loop latency and SoC power on the embedded platform. Baselines include rule‑based control and RC‑only MPC 

without ML residuals. 

 

5. Results and Discussion 
The evaluation plan does not require proprietary telemetry but does indicate the following impacts based on literature and 

analytical modeling: (1) Hybrid RC+LSTM prediction decreases RMSE of 5–10 minute temperature forecast by 20–35% compared 

to RC‑only prediction; (2) MPC with predictions avoids 30–50% of thermal limit excursions during fast‑charging and stop‑and‑go 

spikes; (3) Energy for HVAC per km reduces by 8–15% through proactive cooling and actuator smoothing; (4) Embedded 

execution meets <50–100ms loop deadlines using quantized inference and warm‑started QP/SQP solvers. Sensitivity analyses will 
occur for horizon length, approach to quantization error, compressor efficiency, and seasonal model drift. Validity threats include 
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distribution shifts across climates and aging of packs; mitigations are applied in the form of additional physics‑informed loss terms, 

periodic depot‑edge calibration, and conservative margins on the constraints. 

 

 
Figure 4. (a) Thermal envelope compliance, (b) HVAC energy (c) loop latency 

 

6. Conclusion and Future Work 
An AI‑augmented edge‑computing system to manage battery thermal management in last mile EV fleets has been described 

with explicit modeling, prediction, control, and deployment considerations. The framework will be tested using simulated traces 

and hardware in the loop testing prior to field testing. Future work will involve combining charger‑queue thermal constraints into 

routing/orchestration, extending to multi‑loop combined thermal management systems (battery–motor/inverter–cabin), and 

experimenting with attention‑based sequence models or neural operators to allow generalized change under quick ambient 

transitions. 
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