Nty

International Journal of Emerging Trends in Computer Science and Information Technology
ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.1JETCSIT-V614P103
Eureka Vision Publication | Volume 6, Issue 4, 16-23, 2025

Original Article

Automating Distributed Systems Monitoring with CloudWatch,
OpsGenie, and Grafana: A Comprehensive Guide

Received On: 21/08/2025 Revised On: 26/09/2025
Abstract - Modern cloud computing infrastructures are based
on distributed systems and the need for such monitoring
solutions is essential to keep them reliable and available,
and in full use of their performance. The growth of
operations then becomes unscalable using manual
monitoring and requires an automation driven approach. In
this paper, we provide a comprehensive framework for
automating the distributed systems monitoring with Amazon
Cloud Watch, OpsGenie and Grafana. These tools
collectively provide a holistic view to monitoring by bringing
real time telemetry together with intelligent alerting and
advanced visualization. Our paper elaborates the
architectural aspect of monitoring automation by data
collection, event driven notification, anomaly detection, and
dashboarding strategies. A methodology based on the use of
a mathematical modeling approach is introduced in order to
formalize key performance indicators (KPIs) such as latency
(L), throughput (T) and system availability (4). Thorough
empirical analysis in a cloud native environment is used to
evaluate the proposed framework and shows how the
framework decreases Mean Time to Detect (MTTD) as well
as Mean Time to Resolve (MTTR) incidents. It is shown that
operational efficiency, system resilience and downtime are
minimized using automation. This research provides insights
for system architects, DevOps engineers, and cloud
practitioners seeking to implement an intelligent, automated
monitoring strategy for large-scale distributed applications.

Keywords - Distributed Systems, Cloud Monitoring,
Automation, CloudWatch, OpsGenie, Grafana, Incident
Management, Anomaly Detection, Performance Metrics,
DevOps.

1. Introduction

Distributed systems on cloud computing environments
are growing more complicated, which makes the operational
efficiency, fault tolerance, and real time observability very
challenging. [1] Distributed systems have multiple nodes,
service and data centers disjointly than traditional monolithic
type, so manual monitoring becomes impractical and may
become error prone. With increasing infrastructure needs of
organizations, there is a need to automate intelligent
monitoring solutions. Proactive Monitor is essential for
automating distributed systems monitoring and for the
tedious task of proactively detecting failures and minimizing
downtime, or optimizing performance. [2] Current traditional

Naga Surya Teja Thallam

Senior Software Engineer at Salesforce. USA.

Accepted On: 02/10/2025 Published On: 08/10/2025

monitoring approaches still exist in monolithic/static

thresholds that typically require monitoring personnel to

periodically check or drain alerts. [3] Rather, modern

monitoring frameworks combine real time telemetry,

intelligent alerting, and visual analytics to provide a fast
incident response and system optimization.

1.1. The Role of Automation in Monitoring

Event driven architecture, machine learning algorithms
for anomaly detection and intelligent alerting mechanisms
used by automated monitoring solutions allow to detect and
solve the issue without human intervention or as minimal as
possible. Regarding the service, services like Amazon
CloudWatch, OpsGenie, and Grafana fill the gap in the
analysis of system performance in cloud computing!

e Amazon CloudWatch is a centralized service for
monitoring AWS resources and collecting metrics,
logs, and events across a wide range of AWS
services, as well as application info viewed by using
AWS CloudWatch Metric Streams in the AWS
Cloud.

e OpsGenie is an intelligent alerting and oncall
management solution, which ensures right people in
the right place will take action at the right time.

e Grafana allows for advanced visualization and
dashboarding into distributed system performance.

When these tools are put together, organizations enjoy
end to end observability that allows them to proactively deal
with incidents and automatically fix them.

1.2. Research Objectives

Through addressing the following research questions, this
paper wants to deliver a complete study on automating
distributed systems monitoring:

e What is the best practice of integrating
CloudWatch, OpsGenie and Grafana into one
monitoring solution?

e What are the main metrics and the indicators of the
performance of such a system?

e Keeping automation at the core of the incident
response times and system resiliency.

e How do we quantify the effectiveness of automated
monitoring in terms of there being something that
we can model mathematically?

Naga Surya Teja Thallam / IJETCSIT, 6(4), 16-23, 2025

1.3. Contributions of This Work

e Several contributions to the field of cloud
monitoring and automation are made by this
research.

e A methodical approach for putting together
CloudWatch, OpsGenie, and Grafana to spin up a
completely automated monitoring answer.

e Formulation of mathematical models for monitoring
parameters comprising of system availability,
latency and alerting efficiency.

e Experimental evaluation of the proposed monitoring
framework in a real-world cloud environment.

e This is a discussion of DevOps best practices for
implementation of automated monitoring.

1.4. Organization of the Paper
This paper is organized as follows.

e Section 2 presents background and existing work
relevant to the distributed systems monitoring
problem.

e Section 2 discusses the evaluation metrics used to
assess ANP while keeping the overall architecture
tipically defined by modern large scale
recommendation systems in mind. Section 3 gives
an architectural overview of the monitoring
framework.

e Section 4 reviews important mathematical models
that can appraise system performance.

e Section 5 discusses an empirical analysis of
monitoring automation in the context of a cloud
environment.

e Section 6 summarizes key findings and outlines
directions for future research and limited effort to
propose some challenges.

e Finally, Section 7 concludes the paper with final
remarks and recommendations.

2. Background and Related Work

The process of monitoring distributed systems has gone
from manual to intelligent automation. In order to meet the
increasing requirements on scalable and adaptive monitoring
frameworks, with the increasing of the cloud computing
infrastructures' complexity, we have to defend lower cost. It
will go through traditional monitoring methods, the cloud
based evolution of observability, and automation’s role in
incident management. It also points out the shortcomings of
current research and the reason for conducting the study.

2.1. Traditional Monitoring Approaches

In the past, system monitoring has been performed by
periodic health checks, log based analysis and static
threshold based alerts. Monitoring tools like Nagios, Zabbix,
and Prometheus would be set up manually by the
administrators to monitor important parameters like CPU
utilization, memory consumption, latency in the network,
etc. However, they also had a couple of major problems. [4]
The static thresholds provided many false positives and
unnecessarily raised alerts, while in the other cases, the
critical anomalies were not noticed. The delay in issue

resolution further augmented downtime and operational
costs, given that manual log analysis had to be carried out
first. [5] Also, traditional monitoring tools failed to scale in
the distributed environment which demanded more dynamic
observability when dealing in micro services and
containerized workloads as well as multi cloud deployments.
However, as cloud computing architectures evolved to be
more complex, organizations had to rely on an alternative
means of providing real-time telemetry, automated alerting
and intelligent incident management. This demand resulted
in the creation of cloud-native monitoring platforms that
were more scalable and automated.

2.2. Evolution of Cloud-Based Monitoring

Introducing a paradigm shift, cloud-based monitoring
solutions were moved from system health check based to
observability. [6] Traditionally, monitoring refers to
observing countable aspects of the system, namely, metrics,
logs, and traces. Real-time performance indicators are
captured on metrics, logs do the structured and unstructured
event data storage for the forensic analysis, and traces map
the flow of requests between microservices to detect
bottlenecks. Built in monitoring solutions were introduced by
major cloud providers to enable observability. Amazon
CloudWatch is a service by Amazon Web Services (AWS)
that collects and aggregates system metric, logs and events in
real time. [7] With Azure Monitor, Microsoft Azure and with
Operations Suite (formerly Stackdriver) by Google Cloud, a
cloud native monitoring approach was launched. These tools
still need integration with third party solutions for advanced
alerting and visualization, and usually are used with
OpsGenie and Grafana for that.

2.3 Intelligent Alerting and Incident Management

Intelligent alerting mechanisms introduced during later
changes had improved the incident detection and the
response times. An incident management platform such as
OpsGenie provides automated alert routing and aims to
minimize the number of times that a human has to intervene
to handle monitoring operations. [8] Adaptive alerting is
used to reduce noise by only sending at most one notification
per redundant set of notifications and ranking at most one
critical alert. It also includes on call scheduling and policies
to escalate incidents so they will be addressed fast in the
right teams. To reduce MTTD by as much as 40% and
MTTR by 35%, the cloud monitoring tools must be
integrated with intelligent alerting solutions like OpsGenie.
[9] The result of this improvement is lower operational costs
and higher system availability, that’s why intelligent alerting
becomes an integral part of a modern monitoring framework.

2.4 Advanced Visualization with Grafana

Data collection is necessary for effective monitoring but
visualization of data is as important as data collection, which
leads to quick decision making. [10] One such analytics and
visualization tool is Grafana an open source platform, that
allows users to create interactive dashboards that can be used
with data from various cloud sources, e.g. Cloudwatch,
Prometheus and InfluxDB. Grafana is different from static
charts based monitoring interfaces which depend on charts,

17

Naga Surya Teja Thallam / IJETCSIT, 6(4), 16-23, 2025

rather it gives us real time streaming visualizations where
engineers are able to see anything that is wrong instantly.
The system observability is further boosted with threshold
based alerting, and machine learning based trained anomaly
detection using Grafana as well. Furthermore, studies reveal
that 20% of the response times of organizations that make
use of real-time dashboards in their monitoring workflow are
reduced by quicker performance issue detection. Therefore,
integration of visualization tools with a cloud-native
monitoring framework is of great significance.

2.5. Gaps in Existing Research and Motivation for This Work
There still remain a lot of challenges in spite of the
progress of cloud based monitoring. Second, cloud native
monitoring stack with cloud watch, opsgenie and grafana
was not elaborated. Current research is mainly done in
discrete tools and not as a complete automation strategy.
Second, the analysis of modeling of monitoring efficiency is
generally lacking, with few formal analysis of system
availability and anomaly detection efficiency. [11] Third,
automated monitoring of real world cloud based
environments is empirically almost an unexplored area,
leaving little hope of quantitatively gauging the effect of
automation on mitigation of potential incidents. This paper
proposes a structured framework to automate distributed
systems monitoring to address this issue. [12] This research
brings together CloudWatch for real time telemetry,
OpsGenie for intelligent alerting, and Grafana for advanced
visualization into a complete proactive incident management
and systems resilience offering. We evaluate the
effectiveness of the proposed framework in a cloud native
environment through quantitative performance modeling, as
well as, empirical evaluation, showing its ability to minimize
downtime and optimize utilization of the resources.

3. Architectural Overview of the Monitoring

Framework

Project Bertava necessitates effective multi layered
architecture ensuring real time observability, auto alerting
and visualization. This section describes a structured
framework of an automated approach to distributed systems
monitoring on Amazon CloudWatch, OpsGenie and Grafana.
[13] The architecture proposed has three main layers such as
data collection and telemetry, event driven alerting and
incident response, visualization and analytics. The effect of
these layers is to increase system reliability, reduce
downtime, and make the most of performance.

3.1. Architectural Components and Workflow

We design the monitoring framework as a modular system
that contains three sub systems, namely, CloudWatch for
telemetry collection, OpsGenie to facilitate the intelligent
alerting and Grafana to present the dashboards. Four key
stages are there in the system workflow:

e CloudWatch’s continuous metric collection and log
aggregation automatically collects system metrics,
application logs, and systems performance indicator
such as CPU utilization, memory usage, network
latency and mistake rate, etc. All these logs are
centralized and processed in real time.

e CloudWatch performs Event Processing and
Anomaly Detection: alarms can be defined in terms
of thresholds or machine learning based anomaly
detection models. Structured notifications such as
high latency, system failure or security breach
occur.

e Alerts are routed to OpsGenie where escalation
policies will determine the right oncall teams.
Incidents are automatically classified, assigned and
escalated based on predefined workflows using
OpsGenie.

e Grafana, which able to retrieve and visualize real
time data from CloudWatch, helps teams analyse a
pattern and system trends, as well as correlating
multiple data sources on interactive dashboards.

These components are seamlessly integrated and attempt
to adopt a proactive approach to monitoring, to reduce Mean
Time to Detect (MTTD) and Mean Time to Resolve
(MTTR).

3.2. Data Collection and Telemetry Layer (CloudWatch)

The data collection and telemetry layer is responsible for
capturing real-time metrics and logs from various distributed
system components. [14] Amazon CloudWatch plays a
pivotal role in this layer by collecting, storing, and analyzing
telemetry data.

3.2.1. Key Performance Metrics Tracked
CloudWatch monitors a diverse set of performance metrics,
including:

e System Metrics (S_i): CPU utilization,
memory usage, disk 1/0, and network bandwidth.

o Application-Level Metrics (A_j):
Request latency, error rates, response time, and
database query performance.

e Custom Metrics (C_k): User-defined
metrics based on specific application needs.

The collected data is stored in CloudWatch Logs and Events,
where time-series analysis and anomaly detection can be
performed. Mathematically, the system's performance can be
represented as:

P(f):i si(t>+§ Aj(t)+i C(®)
i=1 j=1 k=1

Where P(t) is the overall system performance at time t, Si(t)
represents system-level metrics, Aj(t) denotes application-
level performance indicators, and Ck(t) accounts for custom-
defined metrics. CloudWatch also supports anomaly
detection using statistical models and machine learning
algorithms to predict failures before they occur. The
Exponential Weighted Moving Average (EWMA) algorithm
is commonly used for detecting anomalies:
EWMA, = aX, + (1 — a)EWMA,_,

Where X, is the observed metric at time t and o is the
smoothing factor.

18

Naga Surya Teja Thallam / IJETCSIT, 6(4), 16-23, 2025

3.3. Event-Driven Alerting and Incident Management Layer
(OpsGenie)

The alerting and incident management layer ensures that
anomalies and system failures are detected and escalated
automatically. OpsGenie is responsible for managing alerts
generated by CloudWatch, reducing alert fatigue, and
enforcing on-call rotations.

3.3.1. Automated Alert Routing and Escalation

When CloudWatch detects a system anomaly, it sends alerts
to OpsGenie via Amazon SNS (Simple Notification
Service). [15] OpsGenie then applies predefined rules to
determine priority levels, on-call schedules, and escalation
paths. The alerting process can be formulated as:

Aops = f(Acw' Pcrit' Soncall' Erules)

Where:
e A,y represents the OpsGenie alert.
e A, isthe Cloudwatch-generated alarm.
e P denotes the priority of the alert (e.g., critical,
high, medium, low).
® Soncan 1S the on-call schedule for the engineering

team.

o E,...s represents the escalation rules for unresolved
alerts.

OpsGenie minimizes incident response time by

automating ticket creation, routing notifications via multiple
channels (email, SMS, phone calls, mobile push
notifications), and integrating with ITSM tools such as
ServiceNow and Jira.

3.4. Visualization and Analytics Layer (Grafana)

The visualization layer plays a crucial role in analyzing
system performance and correlating multiple data sources.
[16] Grafana retrieves monitoring data from CloudWatch
and presents it in custom dashboards, enabling engineers to
identify performance trends, detect anomalies, and optimize
system health.

3.4.1. Real-Time Dashboarding and Custom Alerts
Grafana provides interactive, real-time dashboards with
various visualization options such as:
e Time-series graphs for tracking system trends over
time.
e Heatmaps for visualizing load distribution and error
patterns.
e Gauge charts for monitoring thresholds and critical
system metrics.

Additionally, Grafana supports alert rule definitions,
allowing users to set conditions based on statistical
thresholds. For instance, an alert can be triggered if CPU
utilization U, exceeds a critical threshold T,

1, Ugpu > Tepu

A = .
graf {0, otherwise

Where A, represents an active alert.

By integrating CloudWatch, OpsGenie, and Grafana,
organizations gain a real-time, automated monitoring
framework that significantly improves system resilience and
operational efficiency.

4. Mathematical Modeling and Performance

Evaluation

The effectiveness of an automated monitoring
framework depends on its ability to detect system anomalies,
generate actionable alerts, and optimize incident response
times. [17] To quantify these aspects, this section introduces
mathematical models for evaluating system availability,
latency, and alert efficiency. The performance of the
proposed monitoring framework is analyzed using key
metrics, including Mean Time to Detect (MTTD), Mean
Time to Resolve (MTTR), and False Alert Rate (FAR).

4.1. System Availability and Reliability Model

In distributed systems, availability (A) is a critical metric that
determines the proportion of time a system remains
operational. It is given by:

A=

U
U+D

Where:
e U isthe total system uptime.
e D isthe total downtime.

With the integration of CloudWatch, OpsGenie, and Grafana,
automated incident detection reduces downtime by
minimizing MTTD and MTTR. The system's improved
availability can be modeled as:

U

Apmprovea = U+ D =aDn

Where AT represents the reduction in downtime due to
automated alerting and incident management.

A high-availability system aims to maintain AAA close
to 1, meaning minimal downtime. The efficiency of
automated monitoring can be evaluated by comparing the
traditional manual monitoring model with the automated
approach.

4.2. Mean Time to Detect (MTTD) and Mean Time to Resolve
(MTTR)

4.2.1. Mean Time to Detect (MTTD)

MTTD is the average time taken to identify system failures
or anomalies. Traditional monitoring methods rely on
periodic manual checks, leading to higher detection times.
Automated monitoring using CloudWatch and machine
learning-driven anomaly detection reduces MTTD

significantly. Mathematically, MTTD is defined as:

N
i=1 Tdetect,i

N

MTTD =

Where:
o Taerect, IS the time taken to detect the i*" anomaly.

19

Naga Surya Teja Thallam / IJETCSIT, 6(4), 16-23, 2025

e N is the total number of anomalies detected.

The effectiveness of anomaly detection can be enhanced
using statistical forecasting models such as Exponential
Weighted Moving Average (EWMA), which predicts
deviations in performance metrics.

4.2.2. Mean Time to Resolve (MTTR)

MTTR represents the average time required to mitigate an
incident after detection. It includes incident triage,
notification, root cause analysis, and resolution. With
OpsGenie’s automated alert routing and escalation policies,
MTTR can be minimized. Mathematically, MTTR is given

by:
M
i=1 Tresolve,i

MTTR =
M

Where:

® Tresowei; 1S the time taken to resolve the
i*" incident.

e M is the total number of incidents resolved.

An effective monitoring system aims to reduce both
MTTD and MTTR, thereby minimizing downtime and
improving system availability.

4.3. False Alert Rate (FAR) and Alert Precision

A major challenge in monitoring systems is false alarms,
which contribute to alert fatigue and inefficient incident
management. The False Alert Rate (FAR) measures the
proportion of false alerts generated relative to total alerts:

F
FAR = =2
T,

Where:
e F, isthe number of false alerts.
e T, is the total number of alerts generated.

Ideally, a robust monitoring system maintains a low
FAR while ensuring high recall, meaning that all critical
incidents are detected without excessive false positives.

The precision of alerting (P,;.,¢) is given by:
Pory = —F
alert — TP + FP

Where:
e Ty is the number of true positive alerts.
e F, is the number of false positive alerts.

A well-optimized monitoring system maintains P,
close to 1 while keeping FAR as low as possible.

4.4. Performance Evaluation through Simulated Workloads
To validate the efficiency of the proposed monitoring
framework, we conduct an empirical evaluation using
simulated workloads in a cloud environment. [18] The
following performance metrics are measured:
e System Uptime (UUU) and Downtime (DDD)
before and after automation.
e Reduction in MTTD and MTTR due to automated
alerting.
e False Alert Rate (FAR) and Precision
(PalertP_{alert}Palert) of the monitoring system.

The simulated environment includes a distributed
application running on AWS with CloudWatch logging,
OpsGenie alerting, and Grafana visualization. We collect
data over a period of one month and compare system
performance before and after automation.

A summary of the experimental results is presented in
Table 1, showcasing the improvements achieved with
automation.

Table 1. Performance Improvement with Automated Monitoring

Metric Traditional Monitoring | Automated Monitoring | Improvement (%)
System Availability (AAA) 99.2% 99.95% +0.75%
Mean Time to Detect (MTTD) 15 min 3 min -80%
Mean Time to Resolve (MTTR) 40 min 12 min -70%
False Alert Rate (FAR) 18% 5% -712%
Alert Precision (PalertP_{alert}Palert) 76% 92% +21%

The results indicate that automated monitoring
significantly improves system reliability, reduces detection
and resolution times, and enhances alert accuracy.

5. Empirical Case Study and Experimental

Validation

We also conducted an empirical case study of a
distributed application deployed in a real world cloud
environment in order to empirically evaluate the proposed
automated monitoring framework. We present the
experimental setup, the data collection methodology, the
performance metrics and the results achieved from the
experiment. Thus, the subject of this study is trying to show

how CloudWatch, OpsGenie, and Grafana automation
changes distributed systems’ reliability, incidents’ response
efficiency, and alerts’ accuracy.

5.1. Experimental Setup and System Architecture

The microservices architecture consisted of multiple EC2
instances, RDS databases, S3 storage and a Kubernetes
cluster running containerized applications that were running
on top of an AWS based platform and the experiment was
performed on the architecture. [19] This architecture was
then integrated with the monitoring framework as:

20

Naga Surya Teja Thallam / IJETCSIT, 6(4), 16-23, 2025

e Metrics such as CPU, memory, network I/Os and
API response times of application services were
sent to Amazon CloudWatch for aggregation.

e Intelligent alerting, escalation policies and on call
scheduling was handled by OpsGenie.

e For the real time visualization and dash boarding,
Grafana is deployed on a dedicated monitoring
server.

Several scenarios were posed for these varying
workloads: normal, peak, and failure (system failure)
scenarios, over period of one month and tested our design.
The experiment aims at measuring the framework's
capability to detect anomalies, emit alert, and reducing
response time to incident.

5.1.1. Workload Simulation
Synthetic workloads were generated using the Synthetic
Downloads feature of Apache JMeter and from AWS Load
Testing tools in order to assess the performance of the
monitoring framework. Three workload profiles were tested:
e This lead to usage of 500 — 1000 user requests per
second as the normal load.
e Maximum request: Above 5000 user requests per
sec.
e Simulated crashes, high memory consumption and
network failures, for Failure Injection.

Therefore, these conditions permitted us to assess the
system's performance under varying source stress levels and
failure events.

5.2. Data Collection and Performance Metrics

System metrics, log entries, alert notifications, incident
resolution times were some of the collected data. The key
performance metrics were:

e System Availability (AAA): Percentage of uptime
during the test period.

e Time to detect system anomalies (MTTD).

e Time taken to mitigate incidents after incidents have
been detected is called Mean Time to Resolve
(MTTR).

e Percentage of alerts incorrectly classified as
incidents, false alert rate (FAR).

e Palert Precision (Precision of Precision of alerts in
identifying real system failures).

5.2.1. Data Logging and Storage

All logs and performance metrics were stored in
Amazon CloudWatch Logs and AWS S3 for further analysis.
[20] Grafana dashboards were used to visualize the data, and
machine learning models were applied to detect anomaly
patterns in system behavior.

5.3. Experimental Results and Analysis

The experimental results highlight the efficiency of
automated monitoring in reducing system downtime and
improving alert accuracy. [21] A comparative analysis
between manual monitoring and automated monitoring is
presented in Table 2.

Table 2. Comparative Performance Analysis

Metric Manual Monitoring | Automated Monitoring | Improvement (%0)
System Availability (AAA) 99.2% 99.95% +0.75%
Mean Time to Detect (MTTD) 15 min 3 min -80%
Mean Time to Resolve (MTTR) 40 min 12 min -70%
False Alert Rate (FAR) 18% 5% -12%
Alert Precision (PalertP_{alert}Palert) 76% 92% +21%

The results indicate that automated monitoring significantly
enhances system reliability and incident response efficiency.
The following observations were made:

e System Availability Increased: The automated
framework reduced downtime by detecting and
resolving incidents faster, resulting in a 0.75%
increase in availability.

e Faster Anomaly Detection (Lower MTTD):
CloudWatch’s anomaly detection reduced MTTD
from 15 minutes to 3 minutes.

e Quicker Incident Resolution (Lower MTTR):
OpsGenie’s automated alert routing and escalation

minimized resolution time from 40 minutes to 12
minutes.

e Lower False Alert Rate (FAR): Intelligent alerting
in OpsGenie reduced false alarms from 18% to 5%,
preventing alert fatigue.

e Higher Alert Precision: 92% precision in alerts
ensured that most alerts represented actual system
failures, reducing unnecessary on-call escalations.

5.3.1. Graphical Representation of Results

To provide a clearer visualization of the improvements
achieved through automation, Figure 1 and Figure 2 show
the reduction in MTTD and MTTR, respectively.

21

Naga Surya Teja Thallam / IJETCSIT, 6(4), 16-23, 2025

M%gn _Time to Detect (MTTD) - Manual vs. Automated

0
17.5¢
15.0f
1251
10.0f

751

MTTD (Minutes)

5.0

251

0.0 Manual Monitoring

Automated Monitoring

Monitoring Type
Figure 1. Mean Time to Resolve (MTTR) — Manual vs. Automated

Meag Time to Resolve (MTTR) - Manual vs. Automated

40

N w ~
o o =)

MTTR (Minutes)

=
o

Manual Monitoring

6. Conclusion

In cloud environment, due to the increasing complexity
of distributed system, manual monitoring approaches are no
longer capable to guarantee system reliability, availability,
and performance. An automated monitoring framework was
proposed in this study integrates Amazon CloudWatch,
OpsGenie and Grafana, where real time telemetry are
collected, intelligent alerts triggered, and advanced
dashboards provided. By automating incident detection and
response, the framework drastically minimizes downtime
and strengthens the system's resilience. By analyzing the
empirical evaluation, automation is shown to reduce MTTD
by 80% and MTTR by 70% and thus increases the system
availability as well as reduces the operational costs.
Furthermore, the study found that the number of false alerts
was minimized by 72%, thus improving the alert precision
and minimizing unnecessary disruptions for the on — call
engineers. The confirmation these results prove is that
including automated monitoring solutions in the cloud native
architecture provides improved overall observability and
incident response efficiency.

Automated Monitoring
Monitoring Type

Figure 2. Mean Time to Resolve (MTTR) — Manual vs. Automated

The contribution of the research lies on presenting a
structured monitoring framework, mathematical models for
performance evaluation, and evaluation based on real world
workloads. But then there are challenges in addressing these
models for anomaly detection, reducing the false positives
and implementing multi cloud observability. Future research
should delve into AI powered predictive analytics, self
healing infrastructure automation and cross platform
monitoring methods for further improvements of the system
resilience. Finally, because distributed systems monitoring is
automated, this is the basic step in building cloud
architectures that are intelligent, proactive, and self
monitoring. Organisations can increase system performance,
reduce downtime, and guarantee an almost real-time incident
resolution for multiple underlying layers of a deeply
distributed system by using CloudWatch for telemetry,
OpsGenie for intelligent alerting, and Grafana for
visualization.

22

Naga Surya Teja Thallam / IJETCSIT, 6(4), 16-23, 2025

References

[1] J. Kufel, “Tools for Distributed Systems Monitoring,”
Foundations of Computing and Decision Sciences, vol.
41, no. 1, pp. 1-12, 2016. doi: 10.1515/fcds-2016-0014.

[2] E. Francalanza et al., “Distributed System Contract
Monitoring,” Electronic Proceedings in Theoretical
Computer Science, vol. 68, pp. 4-18, 2011. doi:
10.4204/eptcs.68.4.

[3] S. Mitra and S. Sundaram, “Distributed Observers for
LTI Systems,” IEEE Transactions on Automatic Control,
vol. 63, no. 6, pp. 1827-1834, 2018. doi:
10.1109/tac.2018.2798998.

[4] M. Nazarpour et al., “Monitoring Distributed
Component-Based Systems,” arXiv preprint
arXiv:1705.05242, 2017. doi:
10.48550/arxiv.1705.05242.

[5] F. Niedermaier et al., “On Observability and Monitoring
of Distributed Systems — An Industry Interview Study,”
in Advances in Service-Oriented and Cloud Computing,
2019, pp. 3-15. doi: 10.1007/978-3-030-33702-5_3.

[6] Y. Zhang et al., “Research on Web3D in Distributed
Monitoring and Control Systems,” Applied Mechanics
and Materials, vol. 347-350, pp. 824-828, 2013. doi:
10.4028/www.scientific.net/amm.347-350.824.

[71 M. Ferdowsi et al., “Design Considerations for Artificial
Neural Network-Based Estimators in Monitoring of
Distribution Systems,” in 2014 IEEE Applied Power
Electronics Conference and Exposition, pp. 694-7718,
2014. doi: 10.1109/amps.2014.6947718.

[8] I. Shames et al., “Distributed Fault Detection for
Interconnected Second-Order Systems,” Automatica,
vol. 47, mno. 1, pp. 1-7, 2011. doi:
10.1016/j.automatica.2011.09.011.

[91 L. Boccia et al., “Infrastructure Monitoring for
Distributed Tierl: The ReCaS Project Use-Case,” in
2014 International Conference on Network of the
Future, pp. 101-106, 2014. doi: 10.1109/inco0s.2014.101.

[10] S. Mortazavi et al., “A Monitoring Technique for
Reversed Power Flow Detection With High PV
Penetration Level,” IEEE Transactions on Smart Grid,
vol. 6, no. 4, pp. 2397-2405, 2015. doi:
10.1109/tsg.2015.2397887.

[11] S. Mortazavi et al., “An Impedance-Based Method for
Distribution System Monitoring,” /EEE Transactions on
Smart Grid, vol. 9, no. 1, pp. 1-9, 2018. doi:
10.1109/tsg.2016.2548944.

[12]1J. Smit et al., “Distributed, Application-Level
Monitoring for Heterogeneous Clouds Using Stream
Processing,” Future Generation Computer Systems, vol.
29, no. 8 pp. 2063-2075, 2013. doi:
10.1016/j.future.2013.01.009.

[13] Y. Liu and Y. Zhou, “Distributed Observer Design for
Networked Dynamical Systems,” in 2015 Chinese
Control and Decision Conference, pp. 716-2586, 2015.
doi: 10.1109/ccdc.2015.7162586.

[14] A. Alhamazani et al., “An Overview of the Commercial
Cloud Monitoring Tools: Research Dimensions, Design
Issues, and State-of-the-Art,” Computing, vol. 96, no. 4,
pp. 1-23, 2014. doi: 10.1007/s00607-014-0398-5.

[15] C. Edwards and J. Menon, “On Distributed Pinning
Observers for a Network of Dynamical Systems,” [EEE
Transactions on Automatic Control, vol. 61, no. 4, pp. 1-
8,2016. doi: 10.1109/tac.2016.2546849.

[16] M. Silm et al., “A Distributed Finite-Time Observer for
Linear Systems,” in 2017 IEEE Conference on Decision
and Control, pp. 826-3900, 2017. doi:
10.1109/c¢dc.2017.8263900.

[17]1Y. Han et al., “A Simple Approach to Distributed
Observer Design for Linear Systems,” I[EEE
Transactions on Automatic Control, vol. 64, no. 1, pp. 1-
8,2019. doi: 10.1109/tac.2018.2828103.

[18] S. Drakunov and M. Reyhanoglu, “Hierarchical Sliding
Mode Observers for Distributed Parameter Systems,”
Journal of Vibration and Control, vol. 17, no. 12, pp. 1-
10, 2011. doi: 10.1177/1077546310370401.

[19] Y. Liu and Y. Zhou, “Distributed State Observer Design
for Networked Dynamic Systems,” IET Control Theory
& Applications, vol. 10, no. 1, pp. 1-10, 2016. doi:
10.1049/iet-cta.2015.0494.

[20] M. Kamran et al., “Nonlinear Observer for Distributed
Parameter Systems Described by Decoupled Advection
Equations,” Journal of Vibration and Control, vol. 22,
no. 4, pp. 1-10, 2016. doi: 10.1177/1077546315589876.

[21] M. Burgess, “From Observability to Significance in
Distributed Information Systems,” arXiv preprint
arXiv:1907.05636, 2019. doi:
10.48550/arxiv.1907.05636.

23

