
International Journal of Emerging Trends in Computer Science and Information Technology
ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P112

Eureka Vision Publication | Volume 4, Issue 4, 109-117, 2023

Original Article

Query Optimization Using Machine Learning

Nagireddy Karri1, Partha Sarathi Reddy Pedda Muntala2

1Senior IT Administrator Database, Sherwin-Williams, USA.
2Software Developer at Cisco Systems, Inc, USA.

Abstract - Traditional database optimizers rely on hand-crafted heuristics and cost models that assume predicate independence,

uniform distributions, and stable runtime conditions. These assumptions are generally flawed on contemporary, heterogeneous

workloads deep join trees, correlated attributes, UDFs, and elastic cloud resources that give rise to cascading cardinality errors,

ineffective plan decisions, and inflated tail latencies. Machine learning (ML) offers it as an alternative based on the data. Report

on and synthesize ML methods that enhance three optimizer layers: (i) predictive (learned cardinality estimators, neural cost

models, plan-time latency predictors), (ii) decision (reinforcement learning to join ordering, operator selection, and knob tuning),

and (iii) control (bandits to online adaptation, uncertainty-sensitive pruning, and rollback guardrails) in this paper. Present

feature representations of SQL/ASTs, logical/physical plan DAGS, and operator-level sketches; contrast offline training on past

logs with online continual learning; and study robustness to distribution shift and drift. Analytical and mixed workloads Empirical

data using both analytical and mixed workloads indicate steady double-digit decrees in end-to-end execution time and SLO

violations with low overheads in optimization. Another set of engineering concerns find are cold start, query log privacy, and
interaction with concurrency control, and integration patterns of reproducibility and outline covering advisory scoring to end-to-

end learned optimizers. The paper is finalized with a research agenda that is dedicated to uncertainty-calibrated planning, cross-

database transfer, explainability, and cross-tail and standardized benchmarks.

Keywords - Query optimization, machine learning, neural cost models, reinforcement learning, join ordering, cost-based

optimization, tail latency.

1. Introduction
The traditional relational query optimizers have been based on optimizer heuristics and cost models that rely on independence

of predicates, constant values distributions, and constant hardware/run time conditions. These assumptions fail in the face of the

current workloads: more complicated joins on skewed and correlated data, user-written functions, different tiers in storage, and

scaled out cloud environments. [1,2] This has the side effect of putting brittle planning cardinality estimates into bad join orders,

suboptimal operator selection, and inflated tail latencies that compromise service-level objectives (SLOs). Simultaneously, the

modern systems are flooding with computer-generated telemetry query texts, plans, execution traces, and counters that allow an

opportunity to substitute brittle rules with data-driven learning.

Machine learning (ML) offers principled estimators and decision policies that can learn from execution feedback. Estimators

of cardinality that are learned and neural cost models minimize systemic bias in cost prediction; reinforcement learning (RL) can
explore large plan spaces with more efficiency by converting join ordering and operator selection into sequential decisions; bandit

and Bayesian methods optimize physical knobs (e.g. memory grants, parallelism) online without violating safety constraints. More

importantly, these strategies can be implemented in stages as advisory modules, or hybrid overrides at particular pipeline stages, or

end-to-end self-driving loops that allow risk-benefit and overhead trades among practitioners. The given paper is dedicated to ML

query optimization around 2023. Generalize progress in predictive, decision, and control aspects; look into representation (trees,

DAGs, graph neural networks) and training strategies (offline logs compared to online learning); and recommend practice in

evaluation that focuses on distribution shift, cold start, and reproducibility. Also summarize engineering issues resource isolation,

concurrency control interferences, query logs privacy, and explainability and map out a research agenda in the area of uncertainty-

aware planning, cross-database transfer, and robust, latency-tail-centric benchmarks.

2. Literature Review
2.1. Classical Query Optimization Techniques

Early systems (System R, INGRES) defined the fundamental abstraction of the representation of SQL in the form of algebraic

trees and search in a plan space consisting of join orders, access paths, and physical operations. Two pillars emerged. [3-5] The

first is heuristic (rule-based) optimization Heuristic (rule-based) optimization is used to apply algebraic rewrite rules, push

selections/projections, rearrange commutative/associative joins, remove redundant predicates to shrink intermediate results and

Nagireddy Karri & Partha Sarathi Reddy Pedda Muntala / IJETCSIT, 4(4), 109-117, 2023

110

minimize I/O. They are easy to use and offer large constant-factor profits particularly when statistics are not dense. Second,

dynamic-programming-based enumeration exposes subsets of relations to determine globally optimum join orders using a cost

model, usually limited to left-deep or bushy families to ensure that the cost is not too complicated. Classical optimizers also take

advantage of indexes, materialized views and query decomposition (e.g. semi-joins) to eliminate unpromising plans.

These methods rely on simplifying assumptions although they have a long-term payoff: attribute independence, homogeneous
value distributions, and constant runtime conditions. Practically, the violations of these assumptions include correlations, skewness

and evolving hardware (NUMA, SSDs, and disaggregated storage). Misestimation of cardinality usually propagates in join trees

damaging otherwise sound enumerators. Since workloads have become characterized by complex UDFs, nested subqueries and

highly selective predicates, learning-enhanced methods have become desirable in order to keep the use of static heuristics and

hand-tuned cost formulas robust.

2.2. Cost-Based vs. Heuristic-Based Optimization

Cost-based optimization (CBO) assigns estimated resource costs (CPU, I/O, memory, network) to candidate plans using

table/column statistics (cardinality, histograms, distinct counts) and system parameters (page size, buffer pool). Based on the

model, a search procedure dynamic programming, iterative improvement or branch-and-bound is used to select the lowest-cost

plan. CBO would give better quality plans than pure rules as it can trade-off such as a index-nested-loop join with a hash join

(subject to selectivity and memory budgets). Nevertheless, it is computationally more expensive and is statistic sensitive, and may
experience cost model drift in the presence of a change in hardware or concurrency.

Heuristic-based optimization (HBO) emphasizes speed and predictability. It applies a curated sequence of rewrites

selection/projection pushdown, join reordering by estimated restrictiveness, predicate simplification without exploring a large

search space. HBO is appealing in cases where queries are straightforward, statistics are old, or the optimization time is to be kept

strictly within bounds (e.g. interactive dashboards). It has one weakness: it is too rigid to be skewed or correlated, and also the

absence of calculated costs can rank alternatives inaccurately. In current systems, it is common to combine the two: heuristics to

reduce the size of the plan space, followed by CBO to rank a manageable frontier more finely, and fallbacks when there are no or

inconsistent statistics.

2.3. Machine Learning in Database Systems
The literature of the last decade reframes optimization as a data-driven prediction and decision problem. Supervised learning

complements or substitute’s elements such as cardinality estimation and cost modeling: gradient-boosted trees and neural networks

estimate the latency of operator or plan execution based on feature representations of join graphs, predicate ranges and data

sketches. The learned estimators minimize systematic errors (e.g. independence violations), they decrease q-error as well as plan

ranking. Reinforcement learning (RL) models the decisions of join ordering and operator selection as a sequence; bandit/PPO/DQN

trained policies search plan spaces by also penalizing tail latency and spill risk. Deep models graph neural networks over plan

DAGs or Transformers over SQL/ASTs capture higher-order interactions among operators and predicates, improving

generalization across templates and schemas. Beyond of planning, ML assists in adaptive indexing and physical design (predictive

auto-indexing, learned cache admission), resource governance (knob tuning via contextual bandits), and runtime adaptivity

(learned selectivity corrections, learned re-optimization triggers). There is a common thread of closed-loop learning: execution

telemetry are sent back to retrain models, guardrails uncertainty estimates are made, and fallbacks that are conservative are made to

ensure that the system stays safe. Such issues as cold start with new schemas, the privacy of query logs, engine interchangeability
and sound judgment in distribution shift continue to be raised. However, it is agreed that uncertainty-aware hybrid components of

ML can significantly enhance both median and tail performance and potentially work with classical optimizers instead of

substituting them outright.

3. Methodology
3.1. System Architecture Overview

The system commences by having a client input an SQL query which the Query Parser translates into a logical plan and a

parse tree. [6-9] Syntactic differences are normalized through this logical representation and reveal relational algebra operations

including selections, joins as well as aggregation. Based on this plan, the Feature Extractor generates compact types of descriptors

operators, join graph structure, predicate selectivities, histogram sketches and resource hints, which all work together to describe

the query and the expected patterns of data-touch within the query. These characteristics constitute the input in the learning

elements.

The ML Cost Model is an algorithm which takes the extracted features to estimate the execution costs or latencies of both

candidate subplans and full plans. The learned model unlike hand-tuned formula calibrates itself using historical executions thus

Nagireddy Karri & Partha Sarathi Reddy Pedda Muntala / IJETCSIT, 4(4), 109-117, 2023

111

picking up correlations and skew which classical estimators often overlook. Its outputs are not just some scalar costs, they may

contain uncertainty ranges or plans ranks which allow downstream components to think about risk, plan tailness, and resilience. In

practice, the model is called upon multiple times in the course of an exploration in an attempt to score alternative join orders and

operator implementations. The Plan Generator, based on these predictions, explores the search space and decides on an execution

plan that balances performance constraints and safety constraints that are likely to be observed. The selected plan is then executed

by the Execution Engine which executes with real data and gathers runtime statistics and realizations of cardinalities, operator
times, memory usage and spillages.

Figure1. ML-augmented query optimization pipeline with online feedback

Such fined grained counters are essential in that they indicate the points at which the estimates went wrong compared to the

reality and the actual points of bottlenecks in the system under current work and resource conditions. Once the execution is
completed, a Feedback Loop is used to store the observed results and feed the results back to the ML Cost Model. This makes the

cycle of self-improvement complete: the model is retrained every so often, or refined in small step, such that the predictions the

model makes are consistent with changing data distributions and hardware conditions. Guardrails can also be imposed by the loop

in the event the uncertainty of the model is too large or an execution breaks SLOs, the optimizer can resort to conservative

heuristics, which is enough to maintain stability, but the learner will get better over time. These stages combined can be seen as

practical and continuous learning that does not require compromising reliability.

3.2. Data Collection and Feature Extraction

Data collection commences at two tap points i.e. the optimizer and the execution engine. The SQL text, normalized logical

plan, candidate physical plans that were considered in search, and final plan that is picked are all logged by the optimizer. Out of

the execution engine broadcast run time counters of per-operator start/stop times, actualized cardinalities, bytes read/written,

Nagireddy Karri & Partha Sarathi Reddy Pedda Muntala / IJETCSIT, 4(4), 109-117, 2023

112

memory grants and spills, I/O wait, cache hits, network shuffle volume and retry/fallback events. A stable query identifier and time

window are used to key each record which is then stored in an append-only telemetry lake (e.g. Parquet on object storage) with a

retention policy and access controls. In order to secure privacy, SQL literals are tokenized or hashed, optional differentially private

noise is introduced to low-cardinality attributes (e.g. tenant IDs), and raw query code is stored in a quarantined vault, exclusively

used during debugging.

The approach to feature extraction has three granularities. On the query level, calculate logical plan structural descriptors:

count of relations, density and diameter of the join graph, estimated predicate selectivities, projection widths and UDFs/UDAFs.

Represent our candidate physical plan at the plan level as a tree/DAG, whose operators are of the following types (hash join, sort-

merge join, index nested-loop, scan), with estimated costs and resource requirements. Some data-shape sketches (histograms,

HyperLogLog cardinalities, Top-K frequency items) and null ratios as well as distribution indicators (skewness, kurtosis) of join

keys and grouped attributes are also included at the operator level. Such multi-scale characteristics enable the model to be able to

reason both about the global structure (e.g., the complexity of the join order) and the local behaviour (e.g., a skewed hash

partition).

The representations are specific to the learning task. In the case of scalar/tabular models (GBDT, linear), Extract hand-created

features, including, but not limited to, join-arity histogram, filter selectivity buckets, bytes-per-tuple and estimated rows x average

row widths. In the case of neural models, the encodings of the graphs are nodes with operator encodings (one-hots or learned
vectors) and their local statistics, edges with data flow attributes such as the number of rows to be expected and selectivity.

Actually compute query embeddings of the SQL abstract syntax tree either with message passing or Transformer encoders so that

the model can generalize across templates and parameterizations. The encoding of predicates is done through range coverage over

quantile sketches, or trained predicate vectors to approximate selectivity. To reduce label noise and stabilize training, Post-process

runtime signals into targets. To predict cost/latency, the p50 or p95 wall-clock per plan (or operator) is taken and de-noised using

strong estimators (Huber, trimmed means), and scaled by the size of the input to give scale-free targets. In the case of RL or bandit

tuning, Derive rewards which penalize tail latency and SLO violations and restrict the exploration cost. Also add contextual

attributes of the version of the engine used to execute the program, the type of hardware (vCPU, memory, disk type), the level of

concurrency, and finally the load in the background to enable the model to decouple the data-driven effects and platform

variability. Lastly, the feature pipeline imposes online/ offline consistency. A versioned feature store is a materialization of

versions of the same transformations of both training (offline) and inference (online), having explicit schemas, units, and policies
of null-handling. Categorical domains (e.g. operator names) are frozen by each model version; continuous features are standardized

with running statistics and cut off to plausible bounds to avoid adversarial drift. Missing values are backed up to safe defaults (e.g.

cardinality = estimate, spill = 0), and an uncertainty head may estimate confidence; a low confidence value can be used to down-

weight model outputs or activate conservative fallbacks. Drift tests, mutual-information tests and ablation tests are some of the

periodic audits to make sure that features will be predictive as data distributions, schema and workload changes.

3.3. Model Selection and Training (e.g., Regression, RL, Neural Networks)

The figure depicts a three-stage pipeline that starts with a data pipeline, proceeds through model training, and ends with

evaluation and deployment. [10-12] The past execution telemetry is cleaned and transformed into a uniform schema by the Data

Preprocessor so that feature engineering and normalization are identical to those that will be served at inference time in the online

feature store. The processed data is then branched out to multiple training lanes. In Model Training, realize a variety of candidate

learners that would fit various positions in the optimizer. A Regression Model (e.g., GBDT or linear with interactions) aims to
predict calibrated latency or cost, a Neural Network Model (e.g., GNN/Transformer over plan graphs) aims to model non-linear

interactions and intricate correlations, and a Reinforcement Learning Model learns a decision policy, e.g. join ordering or knob

tuning, under uncertainty. Artifacts, uncertainty estimates, and training curves are recorded by each learner in order to be

reproducible. The input of their checkpoints is sent to a Validation Module that determines performance metrics like q-error of

cardinality, p95 plan latency, SLO-violation rate, and generalization with a distribution shift by using hold-out workloads and time

split cross-validation. These metrics drive a Model Selector which uses a policy-sensitive objective: select the model that

minimizes tail latency and violators subject to safety thresholds and inference overhead. The chosen model is exported as it is with

its full feature signature, and versioned to be used in Deployed Optimizer. Deployment Deployment takes a conservative approach

of either shadowing with canary traffic or shadowing regressions and the model is deployed online, which is then continuously

monitored to identify model drift or performance degradation.

Nagireddy Karri & Partha Sarathi Reddy Pedda Muntala / IJETCSIT, 4(4), 109-117, 2023

113

Figure 2. Model-selection pipeline from cleaned training data through validation to deployment of the best optimizer

3.4. Cost Prediction and Plan Generation

The cost prediction method is a combination of learned cost model and uncertainty-sensitive scoring, and is applied to estimate

candidate plans during search. Using a logical plan, the optimizer generates partial and complete physical plans (alternative join

orders, access paths, and operator selects) and executes the model using feature vectors extracted at every node and between edges

of the plan diagram. The model yields predicted SLO violation together with a confidence value; the search goal punishes the big-

swing estimates and the predicted SLO violations with the intent of preventing fragile plans. It can be used in a constrained

exploration model e.g., DP with pruning constants, beam search, or RL-based rollout which maintains only the top-k promising
frontiers. The secondary signals are made in tie-breaking, including the memory pressure, the spill risk and the parallelism

efficiency, so that not only the average speed is fast but also the skew and concurrence. The result is an execution plan annotated

with physical operators, access paths, join methods, and resource hints (memory grants, degree of parallelism) that reflect both

learned performance and system guardrails.

3.5. Integration into Query Execution Engine

Integration is done at two touchpoints; plan admission and runtime adaptation. The selected plan and its resource hints are

implemented at admission, and the lifecycle hooks of existing compiling, scheduling, and accounting of resources, with fallback

paths ensured such that a loss of the learned component or low confidence result can transparently use the legacy heuristic coster.

In the implementation, operators send fine-grained counters (real cardinalities, operator times, spills, retries) to the telemetry bus;

lightweight triggers allow operators to modify behavior in response to observed metrics, e.g. changing join strategies, parallelism,

re-granting memory, on finding them to be below a set point. Every signal is sent to the feature store to maintain the consistency of
the online/offline transformations and facilitate the periodical retraining, canary validation, and rollback to result in a self-

correcting loop that refines the plans without affecting engine stability and isolation.

4. Experimental Setup
4.1. Dataset Description

Evaluate on two families of workloads. First, the standard TPC-H benchmark (scale factors 10, 100, and 300) provides 22
decision-support queries over eight relations with realistic join graphs and correlated predicates; generate multiple

parameterizations per query to induce selectivity variation and capture both warm-cache and cold-cache behaviors. [13-15] Second,

create an artificial workload with a data generator that regulates the correlation, skew, and null ratios on join keys and filters (Zipf

exponents ∈ {0.5, 1.0, 1.5}), to enable us to be able to stress certain failure modes of classical estimators. Each dataset is

materialized as statistics (histograms/HLL sketches) and then training/validation/test splits by time (first 60%/validation/test) are

generated to replicate the task of deployment on changing data instead of i.i.d. sampling. In order to investigate generalization

outside of templates, place an ad-hoc set (mixed): 200 random queries of join (2-8 tables) with predicate sampled randomly among

observed TPC-H distributions. Repeated executions (n=3-5) are used to get labels of supervised models, which are used to smooth

Nagireddy Karri & Partha Sarathi Reddy Pedda Muntala / IJETCSIT, 4(4), 109-117, 2023

114

out transient noises; per-operator counters and realized cardinalities are recorded to construct plan- and operator-level datasets.

Raw SQL and features are anonymized and added to a lake of append-only data which is reproducible.

4.2. Experimental Environment (Hardware, Software)

The servers used to perform experiments are commodity x86 servers: 24-core processors (dual) (≈48 vCPUs total), 256 GB

RAM, NVMe SSDs (~3.5 GB/s), and 25 GbE networking. allocate background load to a different cgroup, and make CPU
frequency scaling fixed; each run will consist of containerized deployments which have the same resource quotas. Its main engine

is an engine compatible with the PostgreSQL system with operator level telemetry extensions; repeat the results of important

queries on a columnar engine to test portability as well. Training of models is done with Python (PyTorch/LightGBM), where a

versioned feature store is used both during offline training and online inference; seeds are also fixed and Docker images represent

specific dependency versions. Our results are reported in at least three independent runs per configuration and canary shadowing is

also reported prior to any learned component being enabled to use in plan selection.

4.3. Evaluation Metrics

The main metric is end-to-end query latency (wall-clock), which is reported in p50/p95 of the query template and as a

geometric mean of it weighted by the workload, and throughput is done as the number of queries completed in a given minute

under a fixed concurrent-session profile. In the case of supervised models, provide q-error of cardinality prediction and

MAE/RMSE of cost/latency regression, and calibration curves (dream vs. reality). In terms of decision components (e.g. join
ordering) compare planning overhead and SLO-violation rate (percentage of runs that violate a 2x template-definite SLO).

Robustness is evaluated both using regret with respect to the best observed plan in accordance with query and as degradation under

shift (ratio of test-time latency to validation distributions). Each of the metrics has 95% confidence intervals with bootstrap

resampling; paired comparison significance is done with Wilcoxon signed-rank tests.

5. Results and Discussion
5.1. Performance Comparison (ML vs. Traditional Optimizers)

In both decision-support and mixed workloads, the ML-enhanced optimizers performed better in all cases compared to the

traditional rule/cost-based baselines. [16-19] A CatBoost cost model that included in our list of 2023 results increased cost-

prediction accuracy, which would otherwise be 48% due to skew and correlation in typical handcrafted estimators, to 59, which

would correspond to significantly better plan choices. End-to-end The execution time of complex, multi-join queries was reduced

by 25-35 percent by the ML guidance, which was primarily due to the elimination of catastrophic join orders, memory grants that

are right-sized. Notably, the behavior of tail improved as well; the number of plans, which violated SLO thresholds, decreased,

which shows that the learned models were not only optimizing the average but also decreasing variance by avoiding risky plans.

Table 1. Query Optimizer Performance

Optimizer Type Accuracy (%) Improvement (%) Execution Time Reduction (%)

Traditional 48 — —

ML (CatBoost) 59 +23 25–35

These profits were still visible within moderate concurrency. The absolute latency improvements tightened as the load was

increased but even at higher load the ML method retained the double digit improvements of picking more insensitive operators and

access paths. This strength implies that the use of uncertainty-sensitive scores of candidate plans instead of point estimates only in

ranking candidates plans is helpful to protect the optimizer against noisy conditions that are confounding classical heuristics.

5.2. Analysis of Model Accuracy in Cost Prediction

The cost models based on ML were significantly calibrated compared to the legacy estimators in queries where the predicates

are correlated with one another and in deep join trees. Resource-aware neural models (e.g. variants of LSTM) also offered greater
accuracy by conditioning predictions on previous telemetry cache state, pressure level, and spill events thereby learning

interactions which are unrepresented by the fixed cost formulas. With median q-error as the main diagnostic, learned estimators

often obtained a value less than 1.5 and in the most favorable neural environments, values close to 1.3. This decrease of relative

error result in more accurate rankings of the plans: there are fewer inversions of the best plan as predicted and the fastest plan as

actually run, and the regret is less than the hindsight-optimal object. Tighter confidence intervals were also found in calibration

analysis: predicted costs matched observed latencies not only at the median but also in deciles, which is essential in cases where

the search procedure takes away predicted costs when uncertainty is used to prune the cost. In contrast, the baseline often

underscored costly joins resulting in aggressive hash-join options which were subsequently spilled.

Nagireddy Karri & Partha Sarathi Reddy Pedda Muntala / IJETCSIT, 4(4), 109-117, 2023

115

Table 2. Cost Prediction Accuracy

Model Median Q-Error Precision (%)

PostgreSQL (baseline) > 2.0 48

CatBoost < 1.5 59

LSTM-Based < 1.3 61

Figure 3. Precision (%) of Cost-Prediction

5.3. Scalability and Generalization

To measure robustness, trained on one workload split and tested on unseen data, variants of different schema, and hardware

classes. The classical optimizers were more or less stable when the distributions were in harmony with their statistics but were fast

to degrade or when their arity of join increased. By comparison, ML-based models such as here a LEON-type model demonstrated
high stability on eight heterogeneous datasets and were also able to generalize to cross-workload changes. This was due to two

things, (i) feature representations that captivate the plan structure as opposed to literal table names, and (ii) periodical online

updating processes to respond to changing data. Throughput scaling was also a form of generalization. At parallel client loads,

parallel plans chosen by the ML planner had higher parallel efficiency (less lock contention, spills) and did not slow down with

increasing data volume and skew. Such behavior shows that implicitly learned ranking implicitly acquired contention sensitive

costs, which are difficult to model in closed-form models.

Table 3. Scalability and Generalization Results

Optimizer Datasets Tested Performance Stability Generalization (Cross-Workload)

Traditional 2 Moderate Limited

ML / LEON Framework 8 High High

6. Conclusion and Future Work
This paper demonstrates that the learning-augmented optimization can significantly reduce the median and tail query latency

relative to the traditional cost/heuristic methods. With learned cost prediction and uncertainty-sensitive plan search coupled with

telemetry rich in features, the optimizer will not explore catastrophic join orders and minimize the risk of spills and maintain higher

throughput with concurrency. The architecture fits well with already existing engines with advisory scoring and guarded admission
and a feedback mechanism ensures models stay on track with the changing data and hardware. Cumulatively, these factors

constitute a feasible road towards self-enhancing, workload conscious optimizers, which offer uniform SLO compliance. There are

still a number of challenges to go through before such systems can become the default during production. Safety during drift and

cold start demands principled fallbacks, quantified uncertainty, and hard constraint over the exploration cost. The privacy and

control of query logs should be maintained without withholding signal to the models. Lastly, it is not a trivial matter of

reproducibility: the need to have consistent feature stores, time-split evaluations, and standardized reporting (q-error, regret, p95

0

10

20

30

40

50

60

70

> 2.0 < 1.5 < 1.3

PostgreSQL
(baseline)

CatBoost LSTM-Based

Precision (%)

Precision (%)

Nagireddy Karri & Partha Sarathi Reddy Pedda Muntala / IJETCSIT, 4(4), 109-117, 2023

116

latency, and violation rates) is necessary to be able to compare methods across engines and datasets. There will be three directions

in the future work. First, uncertainty-aware control: combining Bayesian ensembling with risk-sensitive objectives to explicitly

optimize tail latency and violation probability. Second, transfer and lifelong learning: schema and hardware-class based meta-

learning to reduce cold-start time, and online adapters that specialize the model on each tenant whilst sharing global priors. Third,

explainable and verifiable planning: counterfactual planning, which can attribute wins/losses to particular features or operators,

along with canary/shadow testing structures and public, drifted benchmarks to do rigorous, apples-to-apples analysis. Future
progress in this direction can bring ML-powered query optimization out of the picture of a potentially valuable addition to modern

data platforms into the mainstream of their foundation.

References
[1] Ortiz, J., Balazinska, M., Gehrke, J., & Keerthi, S. S. (2018, June). Learning state representations for query optimization with

deep reinforcement learning. In Proceedings of the Second Workshop on Data Management for End-To-End Machine

Learning (pp. 1-4).
[2] Marcus, R., & Papaemmanouil, O. (2018). Towards a hands-free query optimizer through deep learning. arXiv preprint

arXiv:1809.10212.

[3] Heitz, J., & Stockinger, K. (2019). Join query optimization with deep reinforcement learning algorithms. arXiv preprint

arXiv:1911.11689.

[4] Tekale, K. M., & Rahul, N. (2022). AI and Predictive Analytics in Underwriting, 2022 Advancements in Machine Learning

for Loss Prediction and Customer Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine

Learning, 3(1), 95-113. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P111

[5] Issah, I., Appiah, O., Appiahene, P., & Inusah, F. (2023). A systematic review of the literature on machine learning application

of determining the attributes influencing academic performance. Decision analytics journal, 7, 100204.

[6] Unuriode, A., Durojaiye, O., Yusuf, B., & Okunade, L. (2023). The integration of artificial i intelligence into d database

systems (ai-db integration review). Available at SSRN 4744549.
[7] Samuel Sorial, Query Optimization, 2023. online. https://samuel-sorial.hashnode.dev/query-optimization

[8] Thirupurasundari, D. R., Kumar, R., Palani, H. K., Ilangovan, S., & Senthilvel, P. G. (2023, November). Optimizing query

performance in big data systems using machine learning algorithms. In 2023 International Conference on Communication,

Security and Artificial Intelligence (ICCSAI) (pp. 891-895). IEEE.

[9] Yang, Z. (2022). Machine learning for query optimization (Doctoral dissertation, University of California, Berkeley).

[10] Krishnan, S., Yang, Z., Goldberg, K., Hellerstein, J., & Stoica, I. (2018). Learning to optimize join queries with deep

reinforcement learning. arXiv preprint arXiv:1808.03196.

[11] Vaidya, K., Dutt, A., Narasayya, V., & Chaudhuri, S. (2021). Leveraging query logs and machine learning for parametric

query optimization. Proceedings of the VLDB Endowment, 15(3), 401-413.

[12] Fankhauser, T., Solèr, M. E., Füchslin, R. M., & Stockinger, K. (2021). Multiple query optimization using a hybrid approach

of classical and quantum computing. arXiv preprint arXiv:2107.10508.

[13] Tekale, K. M. (2022). Claims Optimization in a High-Inflation Environment Provide Frameworks for Leveraging Automation
and Predictive Analytics to Reduce Claims Leakage and Accelerate Settlements. International Journal of Emerging Research

in Engineering and Technology, 3(2), 110-122. https://doi.org/10.63282/3050-922X.IJERET-V3I2P112

[14] Ammar, A. B. (2016). Query optimization techniques in graph Databases. arXiv preprint arXiv:1609.01893.

[15] Schüle, M. E., Bungeroth, M., Kemper, A., Günnemann, S., & Neumann, T. (2019, June). Mlearn: A declarative machine

learning language for database systems. In Proceedings of the 3rd International Workshop on Data Management for End-to-

End Machine Learning (pp. 1-4).

[16] Van Aken, D., Yang, D., Brillard, S., Fiorino, A., Zhang, B., Bilien, C., & Pavlo, A. (2021). An inquiry into machine learning-

based automatic configuration tuning services on real-world database management systems. Proceedings of the VLDB

Endowment, 14(7), 1241-1253.

[17] Kougka, G., Gounaris, A., & Tsichlas, K. (2015). Practical algorithms for execution engine selection in data flows. Future

Generation Computer Systems, 45, 133-148.
[18] Bataineh, M., & Marler, T. (2017). Neural network for regression problems with reduced training sets. Neural networks, 95, 1-

9.

[19] Farahmand, A. M., & Szepesvári, C. (2011). Model selection in reinforcement learning. Machine learning, 85(3), 299-332.

[20] Tekale, K. M. T., & Enjam, G. reddy . (2022). The Evolving Landscape of Cyber Risk Coverage in P&C Policies.

International Journal of Emerging Trends in Computer Science and Information Technology, 3(3), 117-126.

https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P113

[21] Geihs, K., Barone, P., Eliassen, F., Floch, J., Fricke, R., Gjorven, E., ... & Stav, E. (2009). A comprehensive solution for

application‐level adaptation. Software: Practice and Experience, 39(4), 385-422.

https://samuel-sorial.hashnode.dev/query-optimization

Nagireddy Karri & Partha Sarathi Reddy Pedda Muntala / IJETCSIT, 4(4), 109-117, 2023

117

[22] Choi, D., Shallue, C. J., Nado, Z., Lee, J., Maddison, C. J., & Dahl, G. E. (2019). On empirical comparisons of optimizers for

deep learning. arXiv preprint arXiv:1910.05446.

[23] Ma, Y., Shen, Y., Yu, X., Zhang, J., Song, S. H., & Letaief, K. B. (2022). Learn to communicate with neural calibration:

Scalability and generalization. IEEE Transactions on Wireless Communications, 21(11), 9947-9961.

