International Journal of Emerging Trends in Computer Science and Information Technology
ISSN: 3050-9246 | https://doi.org/10.56472/ICRTCSIT-102
Eureka Vision Publication | ICRTCSIT'25-Conference Proceeding

Original Article

Al-Augmented Software Architecture: Autonomous Refactoring
with Design Pattern Awareness

Mohan Siva Krishna Konakanchi
Senior Software Engineer, Hitachi Digital Services, USA.

Abstract - The maintenance of legacy software systems presents a significant and escalating challenge in software engineering,
characterized by high costs, technical debt, and resistance to modernization. This paper introduces an innova- tive Al-augmented
framework for the autonomous refactoring of these systems. Our approach is uniquely centered on the identification of
architectural anti-patterns, or “code smells,” and the subsequent application of appropriate, well-established design patterns to
resolve them. The core of our contribution is a hybrid Al model that synergizes Graph Neural Networks (GNNs) for structural
code analysis and Transformer-based language models for semantic understanding and code gener- ation. To facilitate
collaborative model improvement without compromising proprietary codebases, we propose a novel fed- erated learning
framework. This framework is underpinned by a trust metric system that ensures integrity and accountability by weighting
contributions from participating silos based on their performance, data distribution, and historical reliability. Furthermore, we
address the critical trade-off between model performance and the need for human-understandable outputs by introducing a
methodology to quantify and optimize the balance between refactoring efficacy and explainability. We present a comprehensive
experimental design and a discussion of hypothetical results, demonstrating our framework’s potential to significantly reduce
cyclomatic complexity and improve software maintainability metrics compared to traditional and baseline automated refactoring
tools. Our work charts a course toward more intelligent, secure, and transparent software maintenance paradigms.

Keywords - Software Refactoring, Artificial Intelligence, Design Patterns, Federated Learning, Explainable Al, Legacy Systems,
Software Architecture.

1. Introduction

Legacy software systems are both the backbone and the bane of modern enterprises. While they encapsulate decades of in-
valuable business logic, they are also fraught with architectural decay, brittleness, and resistance to change [1]. The process of
manual refactoring restructuring existing computer code without changing its external behavioris a cornerstone of ag- ile
development and software maintenance. However, when ap- plied to large-scale legacy systems, it becomes a prohibitively
expensive, time-consuming, and error-prone endeavor [2]. The expertise required to understand monolithic codebases and correctly
apply architectural remedies like design patterns is scarce, creating a significant bottleneck in enterprise modern- ization efforts.
The advent of Artificial Intelligence (Al), particularly in the domain of deep learning and natural language processing, has opened
new frontiers for automating complex software engineering tasks. Current automated refactoring tools are largely rule-based,
capable of performing simple, localized transformations (e.g., ”Extract Method”) but lack the con- textual awareness to undertake
complex, architectural-level restructuring [3].

They cannot, for instance, identify a set of disparate, tightly-coupled classes and recognize the opportu- nity to refactor them into a
Strategy or Factory Method pattern. This requires a deeper, more holistic understanding of code’s structure, semantics, and intenta
challenge well-suited for modern Al. This paper posits a paradigm shift from simple automated refactoring to Al-augmented
architectural evolution. We pro- pose a framework that autonomously refactors legacy sys- tems by not just identifying localized
”code smells,” but by understanding the architectural anti-patterns they signify and strategically applying corrective design patterns.
Our approach is threefold, addressing the core challenges of intelligence, collaboration, and trust:
¢ An Intelligent Refactoring Core: We introduce a hy- brid Al model that combines the strengths of Graph Neu- ral
Networks (GNNs) to parse the structural graph of the code (e.g., Abstract Syntax Tree, Control Flow Graph) and a
Transformer-based Large Language Model (LLM) to comprehend code comments, variable names, and overall
semantics. This dual-pronged approach enables the model to identify complex anti-patterns and generate high-quality,
contextually appropriate refactored code based on a learned repository of design patterns.
e A Secure Collaborative Learning Framework: Im- proving such a sophisticated model requires diverse data.

https://doi.org/10.56472/RTCSIT-102

Mohan Siva Krishna Konakanchi/ ICRTCSIT'25, 6-13, 2025

However, enterprise code is a sensitive, proprietary asset that cannot be shared in a central repository. To overcome
this, we propose a trust metric-based federated learning (FL) framework. This allows multiple organiza- tions to
collaboratively train a global refactoring model on their local, private codebases. Model updates, not raw code, are
shared. Our novel trust metric ensures the integrity of the global model by weighting contributions based on their
quality, mitigating the impact of malicious or low-quality participants.

¢ A Quantifiable Explainability-Performance Balance: The “black box” nature of Al is a significant barrier to
adoption in mission-critical software engineering tasks. A developer will not accept a complex architectural change
without understanding the rationale. We intro- duce a framework to quantify and navigate the trade-off between the
performance of the refactoring (e.g., improvement in software metrics) and the explainability of the AI’s decision-
making process. This allows orga- nizations to tune the system to their desired level of autonomy versus human
oversight.

By addressing these three pillars, this work aims to lay the groundwork for a new generation of intelligent tools that
can actively participate in the lifecycle of complex soft- ware systems, not merely as passive assistants, but as active collaborators
in architectural improvement. The remainder of this paper details the theoretical underpinnings, proposed methodology,
experimental validation strategy, and potential impact of this Al-augmented approach.

2. Related Work
Our research is situated at the confluence of several do- mains: automated software refactoring, Al for software en- gineering
(AI4SE), federated learning, and explainable Al (XAl).

2.1. Automated Software Refactoring

The field of automated refactoring has a rich history. Initial tools, such as the original Refactoring Browser for Smalltalk,
focused on providing semi-automated support for develop-ers [4]. Modern IDEs like Intelli) IDEA and Eclipse have integrated a
suite of powerful, but largely pre-programmed, refactoring operations. These tools excel at syntactic transfor- mations but fall short
of architectural improvements. Research has explored more advanced techniques. Search- based software engineering (SBSE) has
been used to find optimal sequences of refactoring operations to improve soft- ware metrics like coupling and cohesion [5].
However, these approaches often suffer from a vast search space and may produce solutions that are technically optimal but
semantically nonsensical to a human developer. Other works have used machine learning to suggest refactoring opportunities. For
example, several studies have trained classifiers to detect specific code smells like ”God Class” or "Long Method” [6], but they
typically stop at detection and do not propose concrete, pattern-based solutions. Our work moves beyond mere detection to
autonomous, pattern-aware code generation.

2.2. Al for Code Generation and Understanding

The application of deep learning to source code has seen an explosion of interest. Models like OpenAl’s Codex [7] and
DeepMind’s AlphaCode [8], built on the Transformer architecture, have demonstrated astonishing capabilities in generating
functionally correct code from natural language descriptions. These models treat code as a sequence of tokens, effectively
leveraging the “naturalness” of software [9]. In parallel, Graph Neural Networks (GNNs) have emerged as a powerful tool for
learning from graph-structured data, which is a natural representation for source code (e.g., ASTs, CFGs) [10]. GNNs can capture
complex structural dependen- cies that are lost in a purely sequential representation. Our hybrid approach is novel in its explicit
combination of these two modalitiesusing GNNs for structure and Transformers for semanticsto create a more holistic code
understanding required for architectural refactoring.

2.3. Federated Learning in Software Engineering

Federated Learning (FL) was introduced by Google as a means to train models on decentralized data, such as on mobile
devices, without centralizing the data itself [11]. Its application in software engineering is nascent but promising. Researchers
have proposed using FL for tasks like defect prediction and code completion, where training data (i.e., source code) is
distributed across different organizations and cannot be shared [12]. A key challenge in FL is handling statistical heterogeneity
and ensuring the quality of client updates. The standard FedAvg algorithm, for instance, weights client contributions simply by
the size of their local dataset. Our work introduces a more sophisticated aggregation strategy based on a multi- faceted trust
metric, which is crucial for a high-stakes domain like software refactoring where malicious or poor-quality updates could have
disastrous consequences.

2.4, Explainable Al (XAl) for Code
As Al models become more integrated into the software development lifecycle, their transparency becomes paramount. The
field of XAl aims to develop methods for explaining the predictions of complex models. In the context of AI4SE,

Mohan Siva Krishna Konakanchi/ ICRTCSIT'25, 6-13, 2025

techniques like LIME and SHAP have been adapted to explain the outputs of models for tasks like vulnerability detection by
highlighting the lines of code that most influenced a prediction [13]. However, explaining a generative task like refactoring is
more complex than explaining a classification. The explanation must not only identify *what* in the input code triggered the
change but also *why* the generated code is a valid and desirable transformation. Our proposed framework for quantifying
the explainability-performance trade-off is a step towards creating tunable, glass-box” systems that can provide rationales for
their architectural suggestions, fostering trust and collaboration with human developers.

3. Proposed Al-Augmented Refactoring Framework

We propose a comprehensive framework, named ArchAl- tect, designed to autonomously refactor legacy systems. The
framework is composed of three interconnected modules: the Core Refactoring Engine, the Trust-based Federated Learn- ing
Module, and the Explainability-Performance Optimization Module.

3.1. Core Refactoring Engine: A Hybrid GNN-Transformer Model
The heart of ArchAltect is a novel hybrid deep learning model designed to understand code with high fidelity. The engine
operates in a two-stage process: Anti-Pattern Identifi- cation and Pattern-based Code Generation.

3.1.1. Stage 1: Anti-Pattern Identification:
The goal of this stage is to identify regions of code (’smells”) that are symp- tomatic of deeper architectural anti-patterns.

3.1.2. Multi-Modal Code Representation:
For a given code- base, we first construct a multi-modal representation.

e Structural Graph: We parse the source code to generate an Abstract Syntax Tree (AST) and a Program Dependence
Graph (PDG). These graphs are combined into a single, rich graph representa- tion where nodes represent code elements
(classes, methods, variables) and edges represent syntactic and control/data flow dependencies.

e Semantic Sequence: The raw code, including com- ments, is tokenized into a sequence, preserving the natural language
information embedded within it.

3.1.3. Hybrid Encoder:
The two representations are fed into a dual-stream encoder.

e A Graph Neural Network (GNN) encoder, specif- ically a Graph Attention Network (GAT) [14], op- erates on the
structural graph. The GAT learns to assign importance weights to different nodes in its neighborhood, allowing it to
capture complex structural relationships indicative of anti-patterns the Strategy” pattern, the decoder will generate
code that extracts different algorithms into separate strategy classes and modifies the original class to act as a context.

The entire model is trained end-to-end on a large dataset of “before-and-after” code examples, where legacy code with
known anti-patterns has been manually refactored by expert developers into pattern-compliant forms.

3.2. Trust-Based Federated Learning Module
To continually improve the Core Refactoring Engine with diverse data from multiple organizations (silos) without cen-
tralizing proprietary code, we propose a federated learning framework with a novel trust-based aggregation mechanism.

Let N be the number of participating silos. In each com- munication round t, a subset of silos is selected. Each selected
silo k trains the global model w; on its local data Dy to obtain a local model update AWX. The central server then aggregates
these updates to form the new global model wi.;. Instead of the standard FedAvg, we propose FedTrust, where the
aggregation is:

= r 1D |

like high coupling or low cohesion. h
- A Transformer-based Encoder {e.g., a pre-trained E
Mol =Mp

=1
E Ok

Mohan Siva Krishna Konakanchi/ ICRTCSIT'25, 6-13, 2025

Model like CodeBERT [15]) operates on the token sequence. This captures the semantic context, such as misleading variable
names or comments that are out of sync with the code’s function.

e Fusion and Classification: The output embeddings from the GNN and Transformer are fused using an attention
mechanism. This fused representation is then passed to a classification head that identifies the type of anti-pattern (e.g.,
”God Class,” ”Spaghetti Code,” ”Feature Envy”) and localizes it to the specific nodes in the graph

Stage 2: Pattern-Based Code Generation: Once an anti- pattern is identified, the engine must generate the refactored code

by applying a suitable design pattern.

o Design Pattern Selection: A policy network, trained via reinforcement learning, takes the fused anti-pattern
representation as input and selects the most appropriate design pattern from a predefined library (e.g., Strategy, Factory,
Singleton, Observer). The reward function for the RL agent is based on predicted improvements in software quality
metrics.

e Generative Transformer Decoder: The selected design pattern and the representation of the smelly code are fed into a
Transformer-based decoder. This decoder is architecturally similar to models like GPT and is trained to generate the
refactored code token by token. It is conditioned on the original code and the target pattern, ensuring that the
transformation is contextually correct and functionally equivalent. For example, if a ”God Class” is identified, and the
policy network selectsHere, tk € [0, 1] is the **Trust Metric** for silo k. It is a composite score calculated as:

w=o -Pc+p-Cy+y Ry
Where a +f +y = 1. The components are:

e Performance (Py): After a local model update is re- ceived, the server evaluates its performance on a small, public
validation dataset. The performance score is pro- portional to the improvement the update provides on this benchmark.
This discourages low-quality or intentionally poisoned updates.

e Contribution Congruence (Ck): This measures the sim- ilarity of a silo’s update to the aggregated global update. The
intuition is that honest participants working on a sim- ilar problem should produce model updates that are not wild
outliers. We measure this using the cosine similarity between the update vector Awk and the average update vector.
This helps to down-weight participants who may be training on drastically different data distributions or who have
faulty training processes.

* Reputation (Ry): This is a historical component. A silo’s reputation is an exponentially decaying moving average of its
trust scores from previous rounds. This ensures that consistently reliable participants are favored over erratic ones.

e This FedTrust mechanism makes the collaborative learning process more robust, secure, and fair, ensuring

the integrity of the powerful refactoring model.

3.3 Explainability-Performance Optimization Module
For ArchAltect to be adopted, its recommendations must be scrutable. We introduce a framework for quantifying and
managing the inherent trade-off between the performance of a refactoring and its explainability.

¢ Quantifying Performance (P): The performance of a refactoring operation is measured by a weighted sum of changes in
standard software quality metrics. Let Myefore aNd Mager b€ the sets of metrics for the code before and after refactoring.
The performance score P is:

=
P = Zi(metrici(Mater) — Metrici(Moefore))
1

Metrics include:
e Cyclomatic Complexity: A measure of the number of linearly independent paths through the code. Lower is better.
e Coupling Between Objects (CBO): Measures the num- ber of classes a given class is coupled to. Lower is better.
e Lack of Cohesion in Methods (LCOM): Measures how well methods in a class are related to each other. Lower is
better.
e Maintainability Index (MI): An aggregate score cal- culated from lines of code, cyclomatic complexity, and Halstead
volume. Higher is better.

Quantifying Explainability (X): Explainability is quan- tified by the model’s ability to provide a clear rationale for its
transformation. We propose a metric based on two factors:

Mohan Siva Krishna Konakanchi/ ICRTCSIT'25, 6-13, 2025

e Input Saliency: Using a model-agnostic technique like LIME, we identify the minimal set of input code tokens (the
critical smell”) that, if altered, would change the model’s refactoring decision. A smaller, more contiguous set of tokens
leads to a higher explainability score, as the rationale is more focused.

e Transformation Justification: The model is trained to co-generate a natural language justification alongside the
refactored code. This justification is evaluated against a human-written gold standard using metrics like ROUGE and
BLEU. The justification should explain which pattern was chosen and why (e.g., ”Applied Strategy pattern to decouple
algorithms for payment processing from the main Invoice class, reducing coupling and improving extensibility.”).

1) The X-P Pareto Front: The model can be tuned to prioritize either explainability or performance. For instance, a more
complex model might achieve higher performance gains but be harder to explain. By training a family of models with
different regularization parameters or architectural constraints, we can plot a Pareto front in the X-P space. This allows an
organization to select a model that aligns with its risk tolerance and operational policies. For example, a highly regulated
industry might choose a model with higher X and lower P, ensuring that all architectural changes are fully transparent and

auditable, even if they are less aggressive.

4. Experimental Design
To validate the efficacy of the ArchAltect framework, we propose a comprehensive set of experiments using publicly
available, open-source Java projects known for containing significant technical debt.

4.1 Dataset Curation
We will construct a dataset from two primary sources:

1) RefactoringMiner 2.0 Dataset: This dataset contains thousands of real-world refactoring operations mined from the
commit histories of popular Java projects on GitHub [16]. We will filter this dataset to focus on instances where
refactoring operations correspond to the implementation of specific design patterns. This will form the supervised
training data for the core engine.

2) Qualitas Corpus: This is a curated collection of Java systems used for software engineering research. We will use
tools like SonarQube and Checkstyle to identify projects with a high density of known code smells and anti-patterns.
These projects will serve as the testbed for evaluating the end-to-end refactoring performance.

The curated dataset will consist of pairs of (smelly code, refac- tored code, design pattern label, natural language
justification).

4.2 Baselines and Evaluation Metrics

We will compare the performance of ArchAltect against several baselines:

e No-Op Baseline: The original, un-refactored code.

e Rule-Based Tool: An open-source, automated refactoring tool like JDeodorant, which uses predefined rules to detect
smells and suggest refactorings.

e Ablation Study 1 (Transformer-only): A version of our core engine with the GNN component removed, to evaluate
the contribution of structural information.

e Ablation Study 2 (GNN-only): A version of our core engine with the Transformer component removed, to evaluate
the contribution of semantic information.

The primary evaluation will be based on the software quality metrics defined in the previous section (Cyclomatic
Complex- ity, CBO, LCOM, MI). Additionally, we will measure:
e Functional Equivalence: We will run the project’s orig- inal test suite on the refactored code. The percentage of
passing tests is a critical measure of correctness.
e Human Evaluation: Experienced software architects will be asked to rate the quality, readability, and appropriate- ness
of the generated refactorings on a Likert scale.

Experiment 1: Core Refactoring Engine Performance

This experiment will evaluate the core engine’s ability to correctly identify anti-patterns and generate high-quality,
pattern-based refactorings on the test set from the Qualitas Corpus. We will measure the percentage change in software quality
metrics and compare it against the baselines. We hypothesize that ArchAltect will achieve significantly greater improvements in
metrics like CBO and LCOM, which reflect architectural quality.

Experiment 2: Federated Learning Simulation

10

Mohan Siva Krishna Konakanchi/ ICRTCSIT'25, 6-13, 2025

We will simulate the FedTrust framework by partitioning the training dataset among 20 simulated client silos. We will
introduce heterogeneity in two ways:

e Data Heterogeneity: Different silos will have different distributions of anti-patterns (e.g., some with mostly ”God
Classes,” others with ”Data Clumps”).

e Behavioral Heterogeneity: We will designate 10% of the silos as malicious or faulty. Malicious silos will attempt to
poison the global model by submitting deliberately corrupted updates. Faulty silos will submit noisy updates due to
simulated hardware/software issues.

o We will compare the convergence speed and final model accuracy of FedTrust against standard FedAvg and FedProx. We
hypothesize that FedTrust will converge faster and to a better final performance level by effectively identifying and down-
weighting the contributions of the malicious/faulty silos.

Experiment 3: Mapping the Explainability-Performance Frontier

In this experiment, we will train multiple variants of the Core Refactoring Engine. One variant will be a very large, complex
model optimized purely for performance (P-Max). Another will be a smaller model with architectural constraints (e.g., a shallower
GNN) and a regularization term in its loss function that penalizes non-sparse input attributions, designed to maximize
explainability (X-Max). By interpolating between these two extremes, we will train a series of models and plot their scores on the P
and X axes. This will generate the empirical Pareto front, visually demonstrating the trade-off and allowing a user to select a model
that fits their needs.

5. Hypothetical Results and Discussion
While the experiments have not yet been conducted, we anticipate a set of results that would strongly validate our proposed
framework. This section outlines these expected outcomes and discusses their implications.

5.1 Expected Outcome of Experiment 1
We expect ArchAltect to outperform all baselines signifi- cantly. A hypothetical results table is shown in Table I.

Table 1: Hypothetical Improvement In Software Metrics

Model % A Cyclo. Y% A CBOJ% Test Pass
Comp.

HUI%_-I:"?SGG -15% -10% 9YY9.8%
00|

TransTtI)rmer— -22% -18% 98.5%
only

GNN-only -18% -2o% 98.2%

ArchAltect -41% -38% 99.5%

These results would indicate several key findings. First, the substantial improvement shown by ArchAltect over the rule-
based tool would demonstrate the power of a learning-based approach for complex architectural tasks. Second, the superior
performance of the full ArchAltect model compared to its ablation variants would confirm our hypothesis that both struc- tural
(from GNN) and semantic (from Transformer) informa- tion are crucial for high-quality refactoring. The slightly lower test pass
rate compared to the rule-based tool is expected, as generative models can occasionally introduce subtle bugs; however, a rate
of 99.5% would be highly acceptable, with the remaining failures being flagged for human review.

5.2 Expected Outcome of Experiment 2

In the federated learning simulation, we expect the FedTrust algorithm to demonstrate superior robustness. We would plot the
global model’s accuracy on a held-out test set over com- munication rounds. We anticipate that the curve for FedAvg would show
high variance and slower convergence due to the influence of the malicious clients. FedTrust, however, would quickly assign low
trust scores to these clients, effectively ignoring their updates and leading to a smoother and faster convergence to a higher final
accuracy. This would validate the trust metric as an effective mechanism for securing col- laborative Al development in a
decentralized environment.

5.3 Expected Outcome of Experiment 3

The experiment mapping the X-P frontier would produce a classic Pareto curve. The P-Max model might achieve a 45%
reduction in cyclomatic complexity but have a low explainabil- ity score (e.g., 0.4/1.0), with saliency maps that are diffuse and
hard to interpret. Conversely, the X-Max model might only achieve a 25% reduction in complexity but have an excellent
explainability score (e.g., 0.9/1.0), providing concise, human- readable justifications for its actions. The curve between these points
would present a range of viable models, empowering users to make an informed decision. This result would be a significant

11

Mohan Siva Krishna Konakanchi/ ICRTCSIT'25, 6-13, 2025

contribution, moving the conversation about Al in software engineering from a binary trust it or not” to a more nuanced
discussion about risk and transparency management.

5.4 Implications and Limitations

The successful validation of these hypotheses would have profound implications. It would demonstrate the feasibility of
creating Al partners that can actively manage and reduce technical debt in legacy systems, a task that currently con- sumes a vast
amount of developer time. The federated learning approach would provide a scalable and secure blueprint for building ever-smarter
models by pooling knowledge from across the industry without compromising intellectual property.

However, we acknowledge several limitations. The func- tional equivalence check is limited by the quality of the existing test
suite; a codebase with poor test coverage could have bugs introduced that go undetected. Furthermore, our model’s “creativity” is
limited by the design patterns it has been trained on. It cannot invent a novel architectural solution. Finally, the human element
remains critical. The ultimate goal is not to replace human architects but to augment their capabilities, allowing them to focus on
higher-level strategic decisions while the Al handles the complex and tedious work of architectural implementation and

maintenance.

6. Conclusion and Future Work

This paper has introduced ArchAltect, a novel Al- augmented framework for the autonomous refactoring of legacy software
systems through the intelligent application of design patterns. Our core contributions are threefold: a hybrid GNN-Transformer
model for deep code understanding and generation, a trust-metric-based federated learning framework (FedTrust) for secure
collaborative model training, and a quan- titative approach to managing the trade-off between refactoring performance and
explainability.

Through a detailed experimental design, we have outlined a clear path to validating our approach. We hypothesize that
ArchAltect will dramatically outperform existing rule-based and unimodal Al systems in improving architectural quality metrics
while maintaining functional equivalence. We further expect our FedTrust mechanism to prove resilient to malicious actors in a
decentralized setting, and our X-P framework to provide a practical tool for tuning model behavior to organizational needs.

This research represents a significant step towards a future where Al acts as a co-pilot in the entire software lifecycle, not just
in code completion, but in the complex, creative, and critical task of software architecture. Future work will focus on several key
areas. First, we plan to expand the library of design patterns and anti-patterns that the model recognizes. Second, we aim to
incorporate a human-in-the-loop feedback mechanism, where the model can learn from corrections made by human developers.
Third, we will explore the extension of this framework to other programming languages beyond Java. Ultimately, we believe that
Al-augmented software ar- chitecture holds the key to finally and effectively managing the ever-growing challenge of technical
debt, enabling the next generation of software innovation.

References

[1] M. A. L. Broda, "The Challenge of Legacy Systems,” IEEE Software, vol. 12, no. 1, pp. 56-65, Jan. 1995.

[2] W. F. Opdyke, “Refactoring: A Program Restructuring Aid in Designing Object-Oriented Application Frameworks,” Ph.D.
dissertation, Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1992.

[3] M. Fowler, “Refactoring: Improving the Design of Existing Code,” Addison-Wesley Professional, 2nd ed., 2018.

[4] J. Brant and D. Roberts, ”Refactoring in Smalltalk,” in Technology of Object-Oriented Languages and Systems (TOOLS 23),
1997, pp. 209-220.

[5] M. Harman and B. F. Jones, ”Search-based software engineering,” Information and Software Technology, vol. 43, no. 14, pp.
833-839, 2001.

[6] F.A.Fontana, M. V. Ma'ntyla”, A. V. Zaytsev, and I. S. Zanoni, A large- scale empirical study on the quality of code smell
detection tools,” ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 25, no. 4, pp. 1-45, 2016.

[71 M. Chen et al., ”Evaluating Large Language Models Trained on Code,” arXiv preprint arXiv:2107.03374, 2021.

[8] Y. Lietal., ”Competition-Level Code Generation with AlphaCode,” Science, vol. 378, no. 6624, pp. 1092-1097, 2022.

[9]1 A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, ”On the natural- ness of software,” in Proceedings of the 34th
International Conference on Software Engineering (ICSE), 2012, pp. 837-847.

[10] M. Allamanis, M. Brockschmidt, and M. Khademi, ”Learning to Rep- resent Programs with Graphs,” in International
Conference on Learning Representations (ICLR), 2018.

[11] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, Communication-Efficient Learning of

12

Mohan Siva Krishna Konakanchi/ ICRTCSIT'25, 6-13, 2025

Deep Networks from Decentralized Data,” in Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics (AISTATS), 2017.

[12] M. F. P. da Silva, "Federated Learning for Software Defect Prediction,” in 2021 IEEE/ACM 1st Workshop on Al
Engineering - Software Engineering for Al (WAIN), pp. 83-86.

[13] S. M. Lundberg and S.-I. Lee, ”A Unified Approach to Interpreting Model Predictions,” in Advances in Neural
Information Processing Systems (NIPS), 2017, pp. 4765-4774.

[14] P. Velic'kovic’, G. Cucurull, A. Casanova, A. Romero, P. Lio’, and Y. Bengio, "Graph Attention Networks,” in
International Conference on Learning Representations (ICLR), 2018.

[15] Z. Feng et al., ”CodeBERT: A Pre-Trained Model for Programming and Natural Languages,” in Findings of the
Association for Computational Linguistics: EMNLP 2020, pp. 1536-1547.

[16] N. Tsantalis, A. Chaikalis, and A. Chatzigeorgiou, “RefactoringMiner 2.0,” IEEE Transactions on Software Engineering,
vol. 44, no. 8, pp. 746-772, Aug. 2018.

[17] D. Riehle and T. Zu"llighoven, ”A pattern language for tool construction and integration based on the pipes and filters
architecture,” in Pattern Languages of Program Design 2, Addison-Wesley, 1996, pp. 253-264.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, ”Design Patterns: El- ements of Reusable Object-Oriented Software,”
Addison-Wesley, 1995.

13

