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Abstract - Time series forecasting (TSF) is key to decision-making in finance, retail, supply chain management, healthcare,
climate among others where accurate predictions inform resource allocation, risk management and strategic planning. While
traditional statistical models such as ARIMA handle linear dependencies, they fail to capture the nonlinear and multivariate
complexities of modern datasets. Deep learning models such as RNNs, LSTMs, GRUs, CNNs, and Transformers, have
advanced forecasting accuracy by capturing temporal patterns and cross-variable interactions. However, these models are
static and unable to adapt dynamically to regime shifts, shocks or evolving trends once trained. In addressing this gap, deep
reinforcement learning (DRL) offers adaptivity by treating forecasting as sequential decision-making where agents iteratively
refine predictions through reward feedback. Attention mechanisms further enhance interpretability and accuracy by
highlighting critical time steps and features. This white paper critically reviewed DL and DRL models for multivariate TSF and
evaluated their application in finance, retail, supply chains, climate forecasting and healthcare using research studies and
datasets. Case studies demonstrate that attention-LSTM and Transformer variants outperform traditional deep models while
hybrid DRL-DL approaches achieve greater adaptability. A proposed hybrid architecture integrates attention-based
forecasting with DRL agents to combine predictive accuracy, adaptive learning, and interpretability. Although challenges on
data, model structure and tasks remain, the approach has the potential to transform TSF into adaptive and decision-support
systems across domains.

Keywords - TSF, Deep Learning, DRL, Attention Based Neural Architectures.

I. Introduction

In many industries such as finance, retail, supply chain, healthcare and climate, time series forecasting (TSF) is a critical
tool for estimating future values based on recorded historical data of their relevance (Arushana et al., 2024). Precisely, time
series are used to study how certain measures like air pollution data, electricity consumption or ozone concentration evolve over
time. Accurate forecasts enable informed decision-making in terms of predicting stock prices, product demands, weather
patterns, patient vitals, or energy loads (Casolaro et al., 2023). With accurate forecasting, businesses and organisations can make
effective decisions, maximise resource utilisation and develop effective strategies. According to Thota (2025), TSF mainly relies
on traditional statistical models like exponential smoothing and Auto Regressive Integrated Moving Average (ARIMA).
However, these models struggle with non-linear and complex, large multidimensional datasets. In recent years, Madhulatha and
Ghori (2025) observed that deep learning models specifically Recurrent Neural Networks (RNNs) and their variants Long Short-
Term Memory (LSTM) and Gated Recurrent Units (GRUS) have contributed immensely to TSF by capturing complex temporal
dependencies with superior accuracy. However, even these latest deep learning models are trained in static supervised manner
and lack mechanisms to adapt their predictions as new data arrives or conditions change (Madhulatha & Ghori, 2025). This is a
significant limitation in dynamic environments where statistical properties change over time. Figure 1 below summarises
classical and advanced deep learning models for TSF.

ARIMA

Classical Exponential
models Smoothing

Time Series

Forecasting Machine

Learning

Deep
Learning

Advanced
models
4’

Figure 1. Advanced TSF Methods (Andres, 2023)
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Due to limitations of deep learning models above, scholars have proposed deep reinforcement learning (DRL) which
promises to introduce adaptivity into forecasting models. In DRL, an agent learns to make decisions through trial-and-error
interactions with an environment and guided by reward feedback (Moreira et al., 2020). If forecasting is treated as sequential
decision-making problem, learning agent can iteratively update its forecasting strategy based on reward signals such as forecast
accuracy. Apart from DRL models, attention-based mechanisms represent another breakthrough in sequence modelling that
could further enhance forecasting. By allowing neural networks to focus on the most relevant parts of input sequence, Zhang et
al. (2024) noted that attention models have improved performance in natural language processing and vision tasks and is
increasingly applied in TSF. Transformer architectures which rely entirely on self-attention have achieved incredible results in
many forecasting benchmarks as they can capture long-range dependencies effectively (Vaswani, 2017).

Against this background, this whitepaper critically explores how DRL combined with attention-based neural architectures can
enhance TSF. The research is guided by the following key objectives;
e Toidentify various deep learning and DRL models for multivariate TSF;
e To evaluate the performance of deep learning architectures, DRL models and attention based models using real-world
case examples from financial, retail, climate and healthcare domains;
e Todesign a hybrid architecture that integrates attention mechanisms into DRL models for multivariate TSF.

2. Problem Statement

According to Oluwagbade (2025), the main challenge when analysing time-series data is its forecasting of future values
based on past measurements. While modern deep learning methods have greatly improved forecasting accuracy over classical
models, they often operate as one-shot predictors that do not adapt once trained. In practical scenarios, time series data can
exhibit regime shifts, sudden shocks, or evolving patterns (market crashes, demand surges, climate anomalies). No matter how
complex a static model is, it may fail under such changing conditions because its parameters are fixed after training (Arushana
et al., 2024). The lack of iterative refinement based on new data presents key limitation. For instance, an LSTM trained on past
data will continue to make the same errors if underlying pattern changes, unless it is retrained from scratch which is costly and
slow for real-time applications To address these issues, DRL introduces feedback loop between predictions and outcomes. By
formulating forecasting as sequential decision problem, an RL agent can receive a reward for each prediction (Smith, 2021).
For example, a reward could be a forecast error so that higher reward corresponds to lower error.

The agent’s goal is then to maximize cumulative reward that aligns with minimizing forecast error over time. Unlike
traditional training, the agent continues to learn during deployment, updating its policy as new rewards come in. This enables
adaptive learning where the model can correct itself and improve in the face of evolving data patterns. Research studies in
financial forecasting have shown the promise of this approach. For instance, the hybrid LSTM-DQN model by Madhulatha and
Ghori (2025) learned to adjust its predictions in response to real-time market fluctuations thus yielding significantly lower
error than pure LSTM and other non-adaptive models. However, integrating DRL into forecasting is non-trivial. Designing the
state representation, action space, and reward function requires care as the agent must effectively perceive time series history
(state) and output forecasts or related decisions (actions) in a way that leads to meaningful learning as shown in figure 1
(Terven, 2025). Besides, DRL are sample-inefficient and can be unstable when issues like balancing exploration versus
exploitation arise. These challenges call for adoption of attention mechanisms that can help focus DRL agent’s capacity on the
most informative parts of large multivariate input, potentially reducing noise, improving learning efficiency and interpretability
(Ke, 2020).
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Figure 1. The reinforcement learning loop involves a series of steps: (1) Initially, the agent observes
the environment. (2) This observation, along with the received reward, is utilized by the agent to
enhance task performance. (3) Subsequently, the agent dispatches an action to the environment,
aiming to exert positive control. (4) The environment transitions, altering its internal state based on
the agent’s action and its preceding state. This loop then initiates once more. The figure is inspired
by [2].

Figure 2. components of DRL (Terven, 2025)
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3. Review of Deep learning and DRL models for TSF
3.1. Deep learning Models

Existing research have explored several categories of deep learning models for TSF. Here, a few prominent DL models are
explored and how they can be applied to forecasting.

3.1.1. Recurrent Neural Networks (RNNs)

RNNs aim to explore relations between current time series and past ones. Accordingly, RNN maintains hidden state that
evolves over time and is updated based on current input and previous state (Casolaro et al., 2023). However, simple RNNs suffer
from vanishing and exploding gradients when modelling long sequences. This challenge is addressed by Long short-term
memory (LSTM) and gated recurrent unit (GRU) networks which introduces gating mechanisms that regulate the flow of
information. Alzubaidi et al. (2021) noted that LSTM cells contain input, output and forget gates while GRUs use update and
reset gates to reduce parameters and training time. Bidirectional variants (Bi-LSTM) process data in forward and backward
directions to capture past and future context. These RNNs have wide applications in time-series forecasting in finance, energy
and other sectors.

3.2. Convolutional Neural Networks

As noted by Alzubaidi et al. (2021), CNNs are associated with image processing but have been adapted for time series by
applying one dimensional convolutions across temporal and variable dimensions. CNNs capture local patterns, robust to noise
and can be efficient because convolutional filters are shared across time. However, standard CNNs have difficulty modelling
non stationary signals and long term dependencies (Bu & Cho, 2020). As with RNNs, attention mechanisms and residual
connections can mitigate these issues. Some CNN models apply multiple convolutions across different variables and use cross-
channel attention to weight each feature (Liu & Wang, 2024). Point-wise and patch-wise convolutional attention strategies have
been proposed to reduce complexity in transformer models thus highlighting the interplay between CNNs and attention.

Arushana et al. (2024) summarized deep learning models as shown in table 1 below.

Table 2. Comparison of Advanced Deep Learning Models for Time Series Forecasting

Method

Description

Strengths

Limitations

RNN

Recurrent Neural Networks
that handle sequential data
by maintaining a hidden
state.

Suitable for dynamic datasets,
captures temporal and long-term
dependencies.

Faces issues with vanishing
gradients problem, issues
with long-term dependencies,
high computational cost.

ES-RNN

Exponential Smoothing
RNN, a hybrid model
combining traditional
exponential smoothing
methods with RNNSs for
enhanced performance.

Leverages strengths of both
traditional and deep learning
methods, improves accuracy and
robustness. Effectively captures
seasonal and trend components.

Challenges in
hyperparameter tuning.

LSTM

Advanced type of RNN
designed to learn long-term
dependencies using special

gates.

Addresses vanishing gradient
problem, capable of learning long-
term dependencies.

Computationally intensive,
requires high-capacity
resources.

Attention-LSTM

Attention-based LSTM
model that improves
efficiency and forecasting
accuracy by incorporating
attention mechanisms.

Sequence forecasting with long time
steps. Nonlinearity and long memory
of time series data.

Higher computational cost
than basic LSTM. Large
number of parameters.

CNN-LSTM

Hybrid model combining
Convolutional Neural
Networks (CNN) and LSTM
to leverage spatial and
temporal dependencies.

Captures both spatial and temporal
features, enhances forecasting
accuracy.

High error rate. Less reliable.

GRU

Simplified version of LSTM
with fewer gates, designed to
achieve similar performance
with less computational
complexity.

Efficient, less computationally
intensive than LSTM, capable of
handling long-term dependencies.

Capturing long-term
dependencies, but not as
effectively as LSTM.

Attention-GRU

Attention-based GRU model
that improves efficiency and
forecasting accuracy by

Improves long-range dependency
capture.

Higher computational cost
than basic GRU.
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incorporating attention
mechanisms.

Attention-based model
initially developed for
natural language processing,
captures long-range
dependencies without
recurrence.

Transformer Self-attention — past instances
influence future outcomes. Efficient,
captures long-range dependencies,
balances relevance of input sequence

segments.

High computational cost.
Difficulty in capturing
temporal dynamics.
Overfitting. Impractical for
real-world scenarios.

Combines statistical and
deep learning techniques
(e.g., ARIMA + LSTM,
LSTM + CNN, Transformer
+ RNN).

Hybrid Models Leverages strengths of multiple
methods, enhances accuracy. Better
interpretability. More robust to noise

and missing data.

Complexity in model design,
risk of overfitting.

3.3. Deep Reinforcement Learning

Terven (2025) highlights that DRL formalises sequential decision making as an agent interacts with environment to maximise
reward. The environment is typically modelled as Markov decision process defined by states, actions, transition probabilities and
reward functions. Key DRL models are discussed as follows;

3.3.1. Deep Q-Network (DQN)

Value-based DRL method where neural network learns by estimating expected reward (Q-value) of taking each action in a
given state (Terven, 2025). Usually, DOQN is used for discrete action spaces. In forecasting contexts, one approach is to discretize
forecast outcomes or decisions and use DQN to pick best option. For example, DQN can be used to decide among a set of
predictive models or to issue categorical predictions such as predicting if demand will rise, fall, or stay flat. In case study on
currency exchange forecasting, Madhulatha and Ghori (2025) used LSTM to predict the next exchange rate and DQN agent took
an action based on that prediction such as adjusting forecast or making trading decision. Thereafter, the agent received a reward
based on the subsequent market movement. This LSTM-DQN hybrid agent was able to iteratively improve its policy thus
achieving higher prediction accuracy than other baseline models. The authors reported the hybrid model is significantly better
than CNN or RNN on the same data. Such results underscore that adding reinforcement learning layer on top of deep sequence
models can enhance accurate predictions.

3.3.2. Policy-Gradient and Actor-Critic Methods (PPO, A3C)

Policy-based DRL algorithms well-suited for continuous or high-dimensional action spaces which aligns with forecasting
real-valued quantities. Proximal Policy Optimization (PPO) and Advantage Actor-Critic (A3C) have been considered for
problems like algorithmic trading where the agent outputs continuous buy and sell signals based on time series inputs (Terven,
2025). The continuous-action setting of policy-gradient methods is a natural fit for predicting quantities. One challenge,
however, is training stability where algorithms like PPO are often preferred for their robustness in training which could be
beneficial when learning from noisy time series.

3.3.3. Deep Recurrent Q-Learning (DRQN)

Variant of DQN integrates an LSTM into Q-network to allow the agent to maintain an internal state and handle partial
observability in sequential data (Chen et al., 2024). This is useful for time series with long memory as LSTM can carry
information from prior time steps when estimating Q-values. In water flow runoff forecasting, DRQN has predicted reservoir
releases by observing rainfall-runoff time series through combining LSTM’s sequence modelling with Q-learning’s decision-
making (Amin, 2024).

Terven (2025) provided summarized overview of DRL models and their usefulness in TSF as shown in table 2 below.

Table 2. Comparison of Deep Reinforcement Learning (DRL) Models for Time Series Forecasting

DRL Model

Core ldea

Use in Time Series
Forecasting

Advantages

Limitations

DQN & Variants
(Double, Dueling,
Rainbow)

Value-based learning via
Q-function
approximation

Discrete decision
forecasting (finance:
buy/sell; supply chain:
stock levels)

Stable, well-tested;
strong in discrete
domains

Poor for continuous

actions; needs
discretization

Policy Gradients
(REINFORCE)

Directly parameterize
policy and optimize with
gradient ascent

Continuous control
forecasting (e.g.,
adjusting time-varying
demand levels)

Handles continuous
spaces naturally

High variance, low
sample efficiency

Actor—Critic (A2C,

Combines value learning

Parallelized multivariate

Reduces variance;

Sensitive to

95




Srinivasa Kalyan Vangibhurathachhi / ICRTCSIT'25, 92-99, 2025

A3C)

(critic) and policy
optimization (actor)

forecasting tasks (real-
time retail, traffic flow)

efficient parallelism

hyperparameters

PPO (Proximal
Policy Optimization)

On-policy with clipped
objective for stability

Healthcare, retail, energy
demand prediction

Stable, robust,
industry-adopted

Slower per iteration

DDPG (Deep Deterministic policy for High-dimensional Effective in Brittle, tuning-
Deterministic Policy | continuous action spaces | forecasting (multi-factor continuous, high- sensitive
Gradient) energy/climate models) dim spaces

Hierarchical RL
(Option-Critic,
FeUdal)

Decomposes tasks into
subtasks/policies

Multi-scale forecasting
(short vs. long horizon
trends)

More interpretable,
reusable skills

Complex credit
assignment

Evolutionary
Strategies (ES,

Black-box optimization
of policy parameters

Hyper parameter tuning,
irregular forecasting tasks

Parallelizable,
gradient-free

Sample-inefficient,
resource-intensive

CMA-ES)

4. Performance Evaluation of Deep Learning and DRL with Attention Based Mechanisms in Real-

World Forecasting Applications
This section compares performance of deep learning, DRL and attention-based models using publicly available datasets
and empirical research in finance, retail and supply chain, climate and healthcare are evaluated.

4.1. Finance

Forecasting stock prices has been difficult due to high volatility and noisy signals. Pan et al. (2024) argues that traditional
models like ARIMA and GARCH capture linear dependencies but fail to incorporate sentiment and complex interactions. This
was exemplified by Alharbi et al. (2025) who found that attention-based LSTM maodels significantly outperform ARIMA for
exchange rate and stock price prediction by capturing non-linear temporal dependencies. In the same context, Du and Shen
(2024) explored DRL method using Q-learning combined convolutional neural networks and sentiment analysis from social
media to predict Chinese stock prices. The model processed historical closing prices, volumes and comment texts and the DRL
agent produced trading actions that achieved superior returns on two test sets compared with traditional methods and other
deep learning model. Results showed that DRL variants like DRQNSs provided better results than classic Q-learning because
they could handle sequential data.

4.2. Retail and Supply Chain

In retail, demand forecasting is a time-series problem due to variations in seasonality, promotions and external factors. In a
study by Gu et al. (2022), attention-LSTM showed strong performance on supply chain demand data which supports
operational decision-making with accuracy better than more complex hybrid models. Precisely, the attention component
enabled the model to pinpoint key past demand like recent spikes or seasonal events that should inform the next prediction.
This model has been applied in retail sales forecasting (to capture promotions or holidays effects) and in supply chain for
inventory demand (focusing on recent changes in demand trends) (Bhuiyan et al., 2025). Accordingly, attention models not
only boost accuracy but also yield insights. Overall, attention-LSTM architectures generally outperform plain LSTMs on
multivariate time series where certain observations have outsized importance on the forecast.

4.3. Climate and environmental forecasting

Climate systems exhibit spatiotemporal dependencies across multiple scales. Standard time-series models struggle to
integrate spatial heterogeneity and dynamic interactions among variables like temperature, precipitation and land use. A recent
deep learning approach for climate resilience combines graph neural networks (GNNSs) with spatiotemporal attention (Chen &
Dong, 2025). The model learns dynamic graphs which represents interactions between climate variables and regions, and uses
attention to focus on relevant spatial-temporal dependencies. Multi-task learning helps in predicting short- and long-term
outcomes, enabling early warning of extreme events. The authors note that transformers and attention mechanisms such as the
Temporal Fusion Transformer provide global and local interpretability, addressing the limitations of RNNSs. In hydrology
application, P6lz et al. (2024) compared Transformer versus LSTM to forecast karst spring water discharge. They found that
for a spring with long memory and slow dynamics, the Transformer achieved significantly better accuracy than the LSTM
(about 9% lower error on average). However, on spring with very short-term response, the LSTM slightly outperformed the
Transformer by approximately 4% error difference. This indicates that Transformers outperform when long-range
dependencies are present but may fail to automatically win on every dataset if the data is limited.

4.4, Healthcare

Forecasting patient trajectories is critical for early detection of deterioration and personalised treatment. Forghani and
Forouzanfar (2024) used Transformer-based model to forecast heart rate from ECG data and compared it to LSTM. From the
findings, Temporal Fusion Transformer achieved 3.8 beats/min predicting heart rate 2 minutes ahead as compared to 4.3
beats/min with LSTM. The Transformer not only had lower error but also trained faster and captured subtle patterns in heart
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rate variability that LSTM missed. On this account, it can be deduced that in complex biomedical signals, the ability to attend
to long-term patterns like circadian rhythms or accumulated sleep debt effects gave Transformers an edge.

Additionally, the Digital Twin—Generative Pretrained Transformer (DT-GPT) leverages large language models to forecast
patient health trajectories without requiring data imputation or normalisation (Makarov et al., 2025). DT-GPT outperformed
other models on datasets covering non-small cell lung cancer, intensive care unit stays and Alzheimer’s disease thus reducing
scaled mean absolute error by 1.3-3.4%. Overall, the interpretability of attention weights in transformers helps clinicians
understand which variables drive model predictions.

5. Proposed hybrid architecture integrating attention mechanisms and DRL

To fully exploit the strengths of deep learning and DRL, a hybrid architecture that integrates attention-based forecasting
module with DRL agent for multivariate TSF and decision-making is a proposed. The design emphasises interpretability and
modularity and can be adapted to various sectors such as retail, climate, environment, energy and health. The proposed
architecture comprises three components as shown in figure 3 below. First, an attention-based forecasting module ingests
historical series, static covariates (demographics, customer attributes), and dynamic covariates (weather, calendars),
transforming them into embeddings. Models like TFT or Informer variants deploy multi-head attention to capture long-range
dependencies and highlight critical time steps and variables. This module outputs probabilistic multi-step forecasts along with
interpretable attention weights. Second, DRL agent receives the forecasted trajectories and current state of the system. Using
algorithms like PPO or DQN, the agent selects actions such as order quantities, energy dispatch, or treatment plans. Attention
layers within the policy network further refine focus on salient aspects of the state. Third, the environment evolves based on
the agent’s actions and returns rewards aligned with domain goals (profit, service levels, patient outcomes). Forecasting and
control can be trained sequentially or jointly, with reinforcement signals refining both. Overall, this integration leverages
supervised forecasting accuracy, DRL’s adaptive decision-making, and attention’s interpretability, though challenges remain in
computational efficiency, differentiable joint training, and reward design.

Hybrid Architecture Combining Attention-based Forecasting and Deep Reinforcement Learning

Forecasting Module predictet] features Deep RL Agent
(Attention-based) {Attention-based)

historical data state, reward actions

¥

Environment System
(Real-world)

Figure 3. Proposed hybrid structure (Author)

6. Challenges and Future Research Directions

While deep learning and DRL with attention architectures have shown promise for time-series forecasting, several
challenges remain. Kong et al. (2025) categorised the challenges into data-related, model structure and task-related issues as
shown in figure 3 below.

o Data-related issues: can arise from mining data, anomalous data, noise data and data privacy leakage (Kong et al.,
2025). High-quality, labelled time-series data are needed for training complex models. Models like DT-GPT
demonstrate that transformers can handle missing data without imputation but further research is needed to generalise
these techniques (Cheng et al., 2025). Also, forecasting models may introduce biases or amplify inequalities in
healthcare or financial services. future researchers should ensure fairness and privacy preservation through techniques
like differential privacy, federated learning or fairness constraints.

o Model structure issues: can arise from non-interpretability, non-continuity and computing resource (Kong et al.,
2025). Attention weights provide some interpretability, but they do not necessarily correspond to causal importance.
Future researchers should combine attention with causal inference or counterfactual analysis to provide more
meaningful explanations.

o Task-related issues: can arise from parallel computing and variable types. Kong et al. (2025) argues that parallel
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computing in TSF faces challenges of resource constraints, scalability limits, high GPU costs and inefficiency in
achieving real-time online forecasting which future researchers should address using DRL models and attention

mechanisms
Challenges for TSF
] 1
[ Data-Related Issues ] [ Model Structure Issues ] [ Task-Related [ssues ]
I I
[ [ |

[Missing DatﬂJ [Anomﬂlous DataJ [Noise Data) [Dalﬂ Privacy Leakage) [Non-interpretabi]ity] (Non—CnntinuityJ [Computing Resource) [Pan]llel ComputingJ [Variable Type]
Figure 4. Challenges for TSF (Kong et al., 2025)

7. Conclusion

As seen above, TSF is a major concern with far-reaching implications across finance, supply chains, climate science and
healthcare. Deep learning models like RNNs, CNNs, transformer-based architectures and emerging DRL variants have
dramatically advanced the state of the art by learning complex temporal patterns and cross-variable interactions. Arguably,
attention mechanisms enable models to focus on relevant features and time steps thus improving accuracy and interpretability.
DRL extends these advances by enabling agents to convert forecasts into actions that maximise long-term reward. Case studies
across finance, retail and supply chain, climate, and healthcare demonstrate that combining attention-based forecasting with
DRL leads to significant improvements over traditional approaches.

The proposed hybrid architecture integrates an attention-based forecasting module with DRL agent to create modular
pipeline that can be adapted to various domains. While challenges exist, future researchers can overcome these obstacles
through innovations in model design, training strategies and ethical guidelines. Overall, researchers can build intelligent
systems that not only predict the future but also make informed decisions for businesses and society at large.
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