
International Journal of Emerging Trends in Computer Science and Information Technology 

ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246/ ICRTCSIT-113  

Eureka Vision Publication | ICRTCSIT'25-Conference Proceeding 

 

 

 

Original Article 

 

Model Evaluation Beyond AUC: A Comparative Study of 

Somers’ D, Log Loss, Population Stability Index (PSI), and 

Kolmogorov–Smirnov (KS) Statistic in Credit Risk and 

Healthcare Prediction Models 
  

Sai Prashanth Pathi  
Senior Data Scientist, Merrick Bank, USA. 

  

Abstract - The Area Under the Receiver Operating Characteristic Curve (AUC) is the dominant evaluation metric in machine 

learning classification. However, AUC alone cannot capture important properties such as calibration, stability, and practical 

separability at thresholds. This paper presents an empirical comparison of AUC with Somers’ D, the Kolmogorov–Smirnov 
(KS) statistic, Log Loss, and the Population Stability Index (PSI) across three benchmark datasets: (1) the Breast Cancer 

dataset from scikit-learn, (2) the Heart Failure dataset from Kaggle, and (3) the Lending dataset from Kaggle. Our results 

show that for the Cancer dataset, Logistic Regression achieves near-perfect discrimination (AUC = 0.999, KS = 0.977) with 

low log loss and stable PSI, outperforming more complex models. In the Heart dataset, Gradient Boosting offers the best 

balance between discrimination (AUC = 0.943, KS = 0.784) and stability (PSI = 0.076), while Random Forest, though highly 

accurate, shows instability (PSI = 0.183). In the Lending dataset, all models show modest discrimination (AUC ≈ 0.70), but 

Logistic Regression and Gradient Boosting offer the best trade-off between simplicity, interpretability, and stability. These 

findings emphasize the importance of a multi-metric evaluation framework that goes beyond AUC, integrating discrimination, 

calibration, and stability metrics for trustworthy machine learning in regulated domains such as finance and healthcare. 

 

Keywords - Credit risk, Model evaluation, AUC, KS-statistic, Somers’ D, Population Stability Index, Log Loss, Healthcare 
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1. Introduction  
Machine learning models are increasingly deployed in high-stakes decision-making, including consumer credit scoring 

and healthcare diagnostics. While the Area Under the ROC Curve (AUC) is widely used to evaluate classification models, it is 

insufficient on its own. AUC measures overall separability but ignores probability calibration, decision threshold effects, and 

population drift. 

 

This paper evaluates models using additional metrics: Somers’ D, KS-statistic, Log Loss, and Population Stability Index 

(PSI). Somers’ D provides a rank-based measure of discriminatory power, KS quantifies distributional separation at thresholds, 

Log Loss measures probability quality, and PSI captures stability across populations. Together, these metrics provide a holistic 

framework for evaluating models in regulated domains where reliability and interpretability are critical.  

 

2. Literature Review 
2.1. Traditional Metrics in Model Evaluation  

Credit risk modeling historically relied on logistic regression–based scorecards, with AUC and Gini (Somers’ D) 

coefficients as primary evaluation tools [1, 2]. While these metrics are well understood, they primarily capture discrimination 

and neglect other important properties of model behavior. In healthcare, AUC has similarly dominated evaluations of 

diagnostic and prognostic models. 

 

2.2. Limitations of AUC  

Although popular, AUC has several shortcomings. It is threshold-independent and thus provides no guidance for 

operational decision-making such as loan cutoffs or diagnostic thresholds. Moreover, it cannot detect probability 

miscalibration or model degradation due to population drift. Studies such as [3] show that in highly imbalanced datasets, AUC 

may remain deceptively high even when precision, calibration, or subgroup performance degrade. 

 

2.3. Calibration and Reliability  

Calibration metrics address these shortcomings by assessing whether predicted probabilities align with observed 

outcomes. Van Calster et al. [4] argue that calibration is often the “Achilles heel” of predictive analytics. Recent work has 

introduced conformal prediction and reliability analysis for healthcare process monitoring, highlighting the importance of 



Sai Prashanth Pathi / ICRTCSIT'25, 106-111, 2025 

107 

probability calibration for trustworthy AI in clinical applications [5]. Deployed models in hospital settings further demonstrate 

that well-calibrated probabilities are necessary for fairness and risk communication [6]. 

 

2.4. Stability and Drift in Practice  

In financial applications, models must remain stable across time and subpopulations. The Population Stability Index (PSI) 

has long been used in industry to monitor drift but lacked formal theoretical grounding until recent work by Sudjianto and 
Burakov [7]. Their framework situates PSI within information-theoretic divergence measures, strengthening its validity as a 

monitoring tool. Despite its widespread use in banking, PSI remains underutilized in academic publications [8]. 

 

2.5. Fairness and Interpretability  

Modern regulations increasingly demand interpretable and fair models. Feature engineering techniques such as Weight of 

Evidence (WoE) transformations are designed to align model interpretability with regulatory standards. In healthcare, 

recalibration of models to local populations has been shown to improve calibration and reduce bias [9]. These developments 

highlight the need to evaluate models not just on accuracy but also on interpretability, fairness, and stability. 

 

2.6. Research Gap  

While metrics such as KS-statistic, PSI, and calibration scores are used in industry, academic studies still emphasize AUC 

almost exclusively. Few comparative evaluations systematically benchmark alternative metrics across multiple domains. This 
gap motivates the present study, which applies a multi-metric evaluation framework to datasets from finance and healthcare.  

 

3. Methodology  
3.1. Datasets  

We evaluate four models Logistic Regression, Random Forest, Gradient Boosting, and a Neural Networkacross three datasets:   

 Cancer dataset (scikit-learn): Binary classification of malignant vs. benign tumors.   

 Heart dataset (Kaggle): Predicting presence of heart disease. 

 Lending dataset (Kaggle): Credit default prediction.  

 

3.2. Evaluation Metrics  

Area Under ROC Curve (AUC): 

    ∫
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Measures global separability between classes.  
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3.3. Metric Comparison  

Table 1. Comparison of evaluation metrics: strengths, limitations, thresholds, and domains 

Metric Definition Strengths Limitations Typical Thresholds 

AUC Probability that a randomly 

chosen positive ranks higher than 

a negative. 

Robust, threshold-

independent, widely 

recognized. 

Ignores calibration, 

misleading under 

drift. 

None 

Somers’ 

D 

Rank correlation between 

predictions and outcomes (SD = 2 

*AUC - 1). 

Intuitive rank correlation; 

complements AUC. 

Same limitations as 

AUC. 

None 

KS 
Statistic 

Maximum separation between 
cumulative distributions of 

positives and negatives. 

Useful for cutoff-based 
analysis; simple. 

Threshold-sensitive; 
not global. 

KS >0.4 strong, <0.2 
weak. 

Log Loss Penalizes incorrect and 

overconfident predictions using 

cross-entropy. 

Captures calibration, 

penalizes overconfidence. 

Sensitive to 

imbalance; less 

intuitive. 

Lower is better; no 

absolute cutoff. 

PSI Compares distribution of scores 

between two populations. 

Detects drift and 

instability; regulatory use. 

Needs binning; 

thresholds heuristic. 

<0.1 stable, 0.1–0.25 

moderate, >0.25 major 

shift. 

 

3.4. Experimental Setup  

Models were trained using a 70/30 train-test split. Hyperparameters for tree-based models were tuned via cross-

validation. All metrics were computed on test sets. PSI compared development (training) with validation (test) distributions to 

assess population shift. 

 

4. Results  
This section presents the results of model evaluation across the three datasets: Cancer, Heart, and Lending. Each dataset is 

analyzed using five metrics (AUC, Log Loss, Somers’ D, KS, PSI), supported by ROC curves that provide a visual summary 

of discrimination.  

 

4.1. Cancer Dataset  

Table 2. Cancer Dataset Results 

Model AUC Log 
Loss 

Somers’ D KS PSI 

Logistic Regression 0.999 0.081 0.997 0.977 0.051 

Random Forest 0.996 0.096 0.993 0.949 0.122 

Gradient Boosting 0.991 0.093 0.983 0.949 0.345 

Neural Net 0.994 0.123 0.988 0.949 0.411 

 

The Cancer dataset is linearly separable, and this is reflected in the near-perfect performance of Logistic Regression, 
which achieves an AUC of 0.999, KS of 0.977, and the lowest log loss. Random Forest and Gradient Boosting also perform 

well in discrimination but show reduced stability, with PSI values exceeding 0.1 and 0.25 respectively. The Neural Net 

performs competitively on AUC but suffers from higher log loss and severe instability (PSI = 0.411), suggesting overfitting. 

 

4.2. Heart Dataset  

Table 3. Heart Dataset Results 

Model AUC Log 

Loss 

Somers’ D KS PSI 

Logistic Regression 0.902 0.409 0.804 0.711 0.085 

Random Forest 0.943 0.329 0.887 0.819 0.183 

Gradient Boosting 0.943 0.321 0.885 0.784 0.076 

Neural Net 0.885 0.475 0.770 0.687 0.075 
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Figure 1. ROC curves for all models on the Cancer dataset. Logistic Regression dominates with near-perfect 

separation. 

 

 
Figure 2. ROC curves for all models on the Heart dataset. Gradient Boosting and Random Forest show the strongest 

discrimination. 

 

For the Heart dataset, discrimination is strong across most models, with Random Forest and Gradient Boosting achieving 

the highest AUC (0.943). However, Random Forest shows reduced stability (PSI = 0.183), while Gradient Boosting maintains 

stability (PSI = 0.076), making it the preferred model. Logistic Regression achieves reasonable discrimination (AUC = 0.902) 

with stable PSI, but lags behind in separation. Neural Net underperforms in both discrimination (AUC = 0.885) and calibration 

(highest log loss).  

 

4.3. Lending Dataset  

The Lending dataset presents a more challenging classification problem, reflected in modest AUC values around 0.70 for 

all models. Gradient Boosting achieves the highest AUC (0.704) with low log loss and stable PSI. Logistic Regression 
provides similar performance with the added benefit of interpretability and the lowest PSI (0.004). Random Forest offers no 

significant advantage, and its higher PSI values suggest potential instability under population shifts. 
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Table 4: Lending Dataset Results 

Model AUC Log 

Loss 

Somers’ D KS PSI 

Logistic Regression 0.700 0.459 0.400 0.315 0.004 

Random Forest 0.703 0.459 0.406 0.312 0.014 

Gradient Boosting 0.704 0.457 0.408 0.308 0.005 

Neural Net 0.697 0.462 0.395 0.313 0.005 

 

 
Figure 3. ROC curves for all models on the Lending dataset. All models perform similarly with overlapping ROC 

curves. 

 

5. Discussion  
The results reveal distinct dynamics across domains, emphasizing that no single metric or model suits all contexts.  

 Cancer dataset: Logistic Regression clearly dominates, achieving near-perfect discrimination and the lowest log loss 

with stable PSI. More complex models such as Gradient Boosting and Neural Networks slightly underperform in 

stability (PSI > 0.25), suggesting overfitting.  

 Heart dataset: Gradient Boosting offers the best compromise between discrimination and stability (AUC = 0.943, 
PSI = 0.076). Random Forest achieves similar AUC but is less stable (PSI = 0.183). Logistic Regression is more 

stable but less discriminative. Neural Networks perform the worst on both discrimination and calibration.  

 Lending dataset: All models achieve only modest discrimination (AUC ≈ 0.70, KS ≈ 0.31). Differences in log loss 

are small, but Logistic Regression and Gradient Boosting offer the best trade-offs due to interpretability and low PSI. 

Random Forest adds little improvement while sacrificing stability.  

 Cross-domain insights: In highly separable problems like Cancer detection, simple linear models suffice. In 

moderately complex healthcare prediction tasks, boosting methods improve performance while maintaining stability. 

In financial credit risk, where discrimination is inherently modest, stability and interpretability dominate, favoring 

Logistic Regression.  

 

6. Conclusion  
This study demonstrates that relying solely on AUC is insufficient for robust model evaluation. Complementary metrics reveal 

key insights:  

 Cancer dataset: Logistic Regression is best due to high discrimination and stability. 

 Heart dataset: Gradient Boosting achieves the optimal balance between predictive power and stability.  

 Lending dataset: Logistic Regression and Gradient Boosting are most appropriate given their stability and 

interpretability.  

 Key takeaway: AUC should be supplemented with rank-based metrics (Somers’ D), cutoff-based metrics (KS), 

calibration metrics (Log Loss), and stability metrics (PSI). This multi-metric framework provides a more 

comprehensive and trustworthy evaluation, aligning with regulatory and clinical standards. Future research should 
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integrate fairness metrics and perform stress-testing under adverse data conditions to further validate model 

robustness. 

 

References  
[1] D. J. Hand and W. E. Henley, “Statistical classification methods in consumer credit scoring,” J. Royal Statistical Society 

A, vol. 160, 1997.  

[2] L. Thomas, Consumer Credit Models: Pricing, Profit, and Portfolios, Oxford Univ. Press, 2009.  

[3] S. García et al., “Evaluating classifier performance with highly imbalanced Big Data,” Journal of Big Data, vol. 10, 2023.  

[4] B. Van Calster et al., “Calibration: the Achilles heel of predictive analytics,” BMC Medicine, vol. 17, no. 1, 2019.  

[5] M. Majlatow et al., “Uncertainty-Aware Predictive Process Monitoring in Health- care,” Applied Sciences, vol. 15, no. 

14, 2025.  

[6] M. L. Desai et al., “Assessing calibration and bias of a deployed machine learning malnutrition prediction model,” 

JAMIA, 2023.  
[7] A. Sudjianto and D. Burakov, “An Information-Theoretic Framework for Credit Risk Modeling,” arXiv:2509.09855, 

2025.  

[8] M. L. D. Santos et al., “Machine Learning for Credit Risk Prediction: A Systematic Literature Review,” Preprints.org, 

2023.  

[9] B. Van Calster et al., “Calibration of risk prediction models: impact on decision- analytic performance,” Medical 

Decision Making, vol. 39, no. 5, 2019.  

[10] N. Siddiqi, Credit Risk Scorecards: Developing and Implementing Intelligent Credit Scoring, Wiley, 2005. 


