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Abstract - The Area Under the Receiver Operating Characteristic Curve (AUC) is the dominant evaluation metric in machine
learning classification. However, AUC alone cannot capture important properties such as calibration, stability, and practical
separability at thresholds. This paper presents an empirical comparison of AUC with Somers’ D, the Kolmogorov—Smirnov
(KS) statistic, Log Loss, and the Population Stability Index (PSI) across three benchmark datasets: (1) the Breast Cancer
dataset from scikit-learn, (2) the Heart Failure dataset from Kaggle, and (3) the Lending dataset from Kaggle. Our results
show that for the Cancer dataset, Logistic Regression achieves near-perfect discrimination (AUC = 0.999, KS = 0.977) with
low log loss and stable PSI, outperforming more complex models. In the Heart dataset, Gradient Boosting offers the best
balance between discrimination (AUC = 0.943, KS = 0.784) and stability (PSI = 0.076), while Random Forest, though highly
accurate, shows instability (PSI = 0.183). In the Lending dataset, all models show modest discrimination (AUC = 0.70), but
Logistic Regression and Gradient Boosting offer the best trade-off between simplicity, interpretability, and stability. These
findings emphasize the importance of a multi-metric evaluation framework that goes beyond AUC, integrating discrimination,
calibration, and stability metrics for trustworthy machine learning in regulated domains such as finance and healthcare.

Keywords - Credit risk, Model evaluation, AUC, KS-statistic, Somers’ D, Population Stability Index, Log Loss, Healthcare
prediction.

1. Introduction

Machine learning models are increasingly deployed in high-stakes decision-making, including consumer credit scoring
and healthcare diagnostics. While the Area Under the ROC Curve (AUC) is widely used to evaluate classification models, it is
insufficient on its own. AUC measures overall separability but ignores probability calibration, decision threshold effects, and
population drift.

This paper evaluates models using additional metrics: Somers’ D, KS-statistic, Log Loss, and Population Stability Index
(PSI). Somers’ D provides a rank-based measure of discriminatory power, KS quantifies distributional separation at thresholds,
Log Loss measures probability quality, and PSI captures stability across populations. Together, these metrics provide a holistic
framework for evaluating models in regulated domains where reliability and interpretability are critical.

2. Literature Review
2.1. Traditional Metrics in Model Evaluation

Credit risk modeling historically relied on logistic regression—based scorecards, with AUC and Gini (Somers’ D)
coefficients as primary evaluation tools [1, 2]. While these metrics are well understood, they primarily capture discrimination
and neglect other important properties of model behavior. In healthcare, AUC has similarly dominated evaluations of
diagnostic and prognostic models.

2.2. Limitations of AUC

Although popular, AUC has several shortcomings. It is threshold-independent and thus provides no guidance for
operational decision-making such as loan cutoffs or diagnostic thresholds. Moreover, it cannot detect probability
miscalibration or model degradation due to population drift. Studies such as [3] show that in highly imbalanced datasets, AUC
may remain deceptively high even when precision, calibration, or subgroup performance degrade.

2.3. Calibration and Reliability

Calibration metrics address these shortcomings by assessing whether predicted probabilities align with observed
outcomes. Van Calster et al. [4] argue that calibration is often the “Achilles heel” of predictive analytics. Recent work has
introduced conformal prediction and reliability analysis for healthcare process monitoring, highlighting the importance of
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probability calibration for trustworthy Al in clinical applications [5]. Deployed models in hospital settings further demonstrate
that well-calibrated probabilities are necessary for fairness and risk communication [6].

2.4, Stability and Drift in Practice

In financial applications, models must remain stable across time and subpopulations. The Population Stability Index (PSI)
has long been used in industry to monitor drift but lacked formal theoretical grounding until recent work by Sudjianto and
Burakov [7]. Their framework situates PSI within information-theoretic divergence measures, strengthening its validity as a
monitoring tool. Despite its widespread use in banking, PSI remains underutilized in academic publications [8].

2.5. Fairness and Interpretability

Modern regulations increasingly demand interpretable and fair models. Feature engineering techniques such as Weight of
Evidence (WOE) transformations are designed to align model interpretability with regulatory standards. In healthcare,
recalibration of models to local populations has been shown to improve calibration and reduce bias [9]. These developments
highlight the need to evaluate models not just on accuracy but also on interpretability, fairness, and stability.

2.6. Research Gap

While metrics such as KS-statistic, PSI, and calibration scores are used in industry, academic studies still emphasize AUC
almost exclusively. Few comparative evaluations systematically benchmark alternative metrics across multiple domains. This
gap motivates the present study, which applies a multi-metric evaluation framework to datasets from finance and healthcare.

3. Methodology

3.1. Datasets

We evaluate four models Logistic Regression, Random Forest, Gradient Boosting, and a Neural Networkacross three datasets:
e  Cancer dataset (scikit-learn): Binary classification of malignant vs. benign tumors.
e Heart dataset (Kaggle): Predicting presence of heart disease.
e Lending dataset (Kaggle): Credit default prediction.

3.2. Evaluation Metrics
Area Under ROC Curve (AUC):

1
AUC = J TPR(FPR™*(x))dx
0

Measures global separability between classes.

Somers’ D:
SD=2xAUC—-1
Provides a rank-based measure of discrimination.

KS-statistic:
KS = max, |Fgood(x) = Fpaa ()|
Measures maximum distributional separation.

Log Loss:

N
1 A A
LogLoss = _Nz [yilog(p,) + (1-y;)log(1-p,)]
i=1
Captures probability calibration.

Population Stability Index (PSI):
k

PSI = Z (pi —q)ln (%)

n L
i=1
Measures stability across populations.
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3.3. Metric Comparison
Table 1. Comparison of evaluation metrics: strengths, limitations, thresholds, and domains

Metric Definition Strengths Limitations Typical Thresholds
AUC Probability that a randomly Robust, threshold- Ignores calibration, None
chosen positive ranks higher than independent, widely misleading under
a negative. recognized. drift.
Somers’ Rank correlation between Intuitive rank correlation; | Same limitations as None
D predictions and outcomes (SD =2 complements AUC. AUC.
*AUC - 1).
KS Maximum separation between Useful for cutoff-based Threshold-sensitive; KS >0.4 strong, <0.2
Statistic cumulative distributions of analysis; simple. not global. weak.
positives and negatives.
Log Loss Penalizes incorrect and Captures calibration, Sensitive to Lower is better; no
overconfident predictions using penalizes overconfidence. imbalance; less absolute cutoff.
Ccross-entropy. intuitive.
PSI Compares distribution of scores Detects drift and Needs binning; <0.1 stable, 0.1-0.25

between two populations.

instability; regulatory use.

thresholds heuristic.

moderate, >0.25 major

shift.

3.4. Experimental Setup

Models were trained using a 70/30 train-test split. Hyperparameters for tree-based models were tuned via cross-
validation. All metrics were computed on test sets. PSI compared development (training) with validation (test) distributions to
assess population shift.

4. Results

This section presents the results of model evaluation across the three datasets: Cancer, Heart, and Lending. Each dataset is
analyzed using five metrics (AUC, Log Loss, Somers’ D, KS, PSI), supported by ROC curves that provide a visual summary
of discrimination.

4.1. Cancer Dataset
Table 2. Cancer Dataset Results

Model AUC Log Somers’ D | KS PSI
Loss
Logistic Regression | 0.999 0.081 0.997 0.977 0.051
Random Forest 0.996 0.096 0.993 0.949 0.122
Gradient Boosting 0.991 0.093 0.983 0.949 0.345
Neural Net 0.994 | 0.123 0.988 0.949 0.411

The Cancer dataset is linearly separable, and this is reflected in the near-perfect performance of Logistic Regression,
which achieves an AUC of 0.999, KS of 0.977, and the lowest log loss. Random Forest and Gradient Boosting also perform
well in discrimination but show reduced stability, with PSI values exceeding 0.1 and 0.25 respectively. The Neural Net
performs competitively on AUC but suffers from higher log loss and severe instability (PSI = 0.411), suggesting overfitting.

4.2. Heart Dataset
Table 3. Heart Dataset Results

Model AUC Log Somers’ D KS PSI
Loss
Logistic Regression | 0.902 | 0.409 0.804 0.711 | 0.085
Random Forest 0.943 0.329 0.887 0.819 | 0.183
Gradient Boosting | 0.943 | 0.321 0.885 0.784 | 0.076
Neural Net 0.885 | 0.475 0.770 0.687 | 0.075
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Receiver Operating Characteristic (ROC) Curve

1.0
-
-
-
-
-
-
r”
-
-
0.8 4 -
. -
-
L
-
.
-
e
-
-
-
¥ 0.6 -
&0 Lo
2 e
s -
=2 "
3 -~
& L
@ -
E -
= 0.4 e
.
-
-
L
-
.
.
-
-
L’
0.2 e
.
-
-
-
-
',-’ Logistic Regression (AUC = 1.00)
Rl Random Forest (AUC = 1.00)
-~ —— Gradient Boosting (AUC = 0.99)
007 Neural Net (AUC = 0.99)

T T T T T T
0.0 0.2 0.4 0.6 0.8 10
False Positive Rate

Figure 1. ROC curves for all models on the Cancer dataset. Logistic Regression dominates with near-perfect

separation.
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Figure 2. ROC curves for all models on the Heart dataset. Gradient Boosting and Random Forest show the strongest
discrimination.

For the Heart dataset, discrimination is strong across most models, with Random Forest and Gradient Boosting achieving
the highest AUC (0.943). However, Random Forest shows reduced stability (PSI = 0.183), while Gradient Boosting maintains
stability (PSI = 0.076), making it the preferred model. Logistic Regression achieves reasonable discrimination (AUC = 0.902)
with stable PSI, but lags behind in separation. Neural Net underperforms in both discrimination (AUC = 0.885) and calibration
(highest log loss).

4.3. Lending Dataset

The Lending dataset presents a more challenging classification problem, reflected in modest AUC values around 0.70 for
all models. Gradient Boosting achieves the highest AUC (0.704) with low log loss and stable PSI. Logistic Regression
provides similar performance with the added benefit of interpretability and the lowest PSI (0.004). Random Forest offers no
significant advantage, and its higher PSI values suggest potential instability under population shifts.
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Table 4: Lending Dataset Results
Model AUC Log Somers’ D | KS PSI
Loss
Logistic Regression | 0.700 | 0.459 0.400 0.315 | 0.004

Random Forest 0.703 0.459 0.406 0.312 | 0.014
Gradient Boosting | 0.704 | 0.457 0.408 0.308 | 0.005
Neural Net 0.697 | 0.462 0.395 0.313 | 0.005

Receiver Operating Characteristic (ROC) Curve
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Figure 3. ROC curves for all models on the Lending dataset. All models perform similarly with overlapping ROC

curves.

5. Discussion
The results reveal distinct dynamics across domains, emphasizing that no single metric or model suits all contexts.

Cancer dataset: Logistic Regression clearly dominates, achieving near-perfect discrimination and the lowest log loss
with stable PSI. More complex models such as Gradient Boosting and Neural Networks slightly underperform in
stability (PSI > 0.25), suggesting overfitting.

Heart dataset: Gradient Boosting offers the best compromise between discrimination and stability (AUC = 0.943,
PSI = 0.076). Random Forest achieves similar AUC but is less stable (PSI = 0.183). Logistic Regression is more
stable but less discriminative. Neural Networks perform the worst on both discrimination and calibration.

Lending dataset: All models achieve only modest discrimination (AUC =~ 0.70, KS =~ 0.31). Differences in log loss
are small, but Logistic Regression and Gradient Boosting offer the best trade-offs due to interpretability and low PSI.
Random Forest adds little improvement while sacrificing stability.

Cross-domain insights: In highly separable problems like Cancer detection, simple linear models suffice. In
moderately complex healthcare prediction tasks, boosting methods improve performance while maintaining stability.
In financial credit risk, where discrimination is inherently modest, stability and interpretability dominate, favoring
Logistic Regression.

6. Conclusion
This study demonstrates that relying solely on AUC is insufficient for robust model evaluation. Complementary metrics reveal
key insights:

Cancer dataset: Logistic Regression is best due to high discrimination and stability.

Heart dataset: Gradient Boosting achieves the optimal balance between predictive power and stability.

Lending dataset: Logistic Regression and Gradient Boosting are most appropriate given their stability and
interpretability.

Key takeaway: AUC should be supplemented with rank-based metrics (Somers’ D), cutoff-based metrics (KS),
calibration metrics (Log Loss), and stability metrics (PSI). This multi-metric framework provides a more
comprehensive and trustworthy evaluation, aligning with regulatory and clinical standards. Future research should
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integrate fairness metrics and perform stress-testing under adverse data conditions to further validate model
robustness.
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