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Abstract - The increasing complexity and scale of edge-cloud systems pose significant challenges for deploying optimized 

neural network architectures across heterogeneous environments. This paper proposes a novel zero-shot, self-supervised 

Neural Architecture Search (NAS) framework designed for cross-domain edge-cloud co-deployment, eliminating the need for 

human intervention. Our approach leverages a self-supervised learning paradigm to evaluate and adapt neural architectures 

without labeled data, enabling rapid generalization across unseen domains and deployment scenarios. By integrating 
hardware-aware performance predictors with a zero-shot scoring mechanism, the framework efficiently selects candidate 

architectures suitable for both edge devices and cloud infrastructures. Extensive experiments demonstrate that our method 

achieves competitive accuracy, latency, and energy efficiency trade-offs while requiring significantly less computational 

overhead compared to traditional NAS approaches. This work paves the way toward fully automated, scalable, and domain-

agnostic AI model deployment pipelines. 
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1. Problem Statement 
On-device machine learning analysis of sensor-derived data on mobile devices rather than in the cloud addresses delay-

sensitive, bandwidth-constrained applications but hinders complex deployments that require considerable resources. These 

factors motivate edge–cloud co-deployment, which resolves these limitations by offloading complex tasks to a central cloud 

server for execution. Nevertheless, satisfying the local device users’ experience requires not only the minimization of service 

delay but also the optimal allocation of cloud resources. This explains the increasing number of Neural Architecture Search 

(NAS) frameworks that perform task and engine design in a single-shot manner for fast cross-domain inference engine co-

deployment. Despite their ability to provide a neural architecture with various degrees of performance in a single run, Multi-

Task NAS methods are still computationally expensive.  
 

To lessen the search effort and provide a more realistic setup, Zero-Shot Multi-Task NAS methods learn to transfer the 

knowledge from a multi-task proxy task training and evaluate the architectures on a multi-task scenario with cheaper 

alternatives without its costly training phase. Aiming for a faster search process and deployed neural architecture 

specialization, these zero-shot approaches still condition on human-defined multi-task training. Hence, even with a faster 

search process, the evaluated architectures repeat high training costs. Zero-shot multitask Neural Architecture Search methods 

reduce computational costs by eliminating the need to train each candidate model. They remain dependent on a pre-defined 

human-specified multitask proxy dataset for evaluation. This creates a significant training overhead during the proxy’s 

creation undermining the goal of a truly low-cost and automated search process. 

 

1.1. What is Edge Cloud Co-Deployment 

Mobile devices, Internet-of-Things (IoT) gadgets, drones, and other contactless devices increasingly generate massive 
data while requiring low-latency and high-throughput processing. Edge environments will provide localized processing offer 

reduced latency by offloading some tasks to the cloud, introducing additional latency and bandwidth overhead. Deploying 

models across edge and cloud becomes necessary to meet these cross-domain co-deployment needs [1].Neural Architecture 

Search (NAS) methods can design models that match existing models or datasets without exhaustive human involvement. 

Searches typically require model structures as candidates, and transitioning models from one domain to another making it 

challenging to guarantee that the evaluated models are still optimal [2].  

 

1.2. Challenges in Neural Architecture Search (NAS) 

Existing zero-shot NAS frameworks are limited to the same domain. Cross-domain NAS is motivated by edge–cloud co-

deployment involving heterogeneous devices of differing computation, memory, and power constraints. The target-resource-
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profile guide in edge–cloud co-deployment raises three challenges: no co-deployment guides or datasets exist to guide natural 

edge–cloud co-deployment, application-class-adaptation transformation for unseen co-deployment is unknown, and traditional 

search-space designs remain device-dependent and exhibit no generality even with self-supervised NAS. A zero-shot self-

supervised NAS framework that allows specification of target-resource profiles and supports cross-domain edge–cloud co-

deployment setup without human intervention is therefore proposed. 

 

1.3. Zero-Shot and Self-Supervised Approaches 

The zero-shot NAS designs appropriate proxies to predict architecture performance with minimal search time and zero 

training of target networks [3]. It remains unclear how to design credible and transferable zero-shot proxies that exceed the 

performance of simple metrics and generalize across different target datasets.A new zero-shot NAS proxy goes beyond simple 

gradient statistics establishing strong theoretical link to a network’s final performance. ZiCo outperforms existing one-shot 

and multi-shot proxies on benchmarks with competitive architectures on ImageNet even with extreme budget constraints. 

Multi-task NAS framework uses an automatic protocol to select and optimize different proxy tasks. 

 

1.4. Scope and Contributions 

Resource-aware architecture construction remains an open challenge despite extensive ongoing research into NAS design 

strategies [4]. Two critical gaps prevent the automation of co-deployment design: the absence of a zero-shot search space 

eligible for diverse target units and the lack of a self-supervised metric to gauge single-device performance without 
uninterrupted data collection [5].The proposed framework masters zero-shot, self-supervised NAS for cross-domain edge–

cloud co-deployment, determining a joint architecture for edge and cloud units given an undirected deep-learning task and a 

target-efficient cloud resource. Zero-shot search-space construction, focusing solely on explicit morphological variables, 

enables resource-governed objective performance estimation compatible with heterogeneous system domains. Edge-first–

cloud-later, proxy-task–model-parameterized metric design quantifies model expedience through collection of a single edge 

model without cloud data during training, thus supporting a rapid one-shot procedure for cross-domain consideration between 

edge and cloud. 

 

2. Methodology 
An edge–cloud service co-deployment framework considers candidate models defined differently in edge and cloud 

domains in two subproblems: Edge Model Selection and Cloud Model Co-Deployment. The zero-shot design requires the 

search space to facilitate model transformation and domain switching between edge and cloud, which leads to a zero-shot 

proxy model to predict candidate performance based on formulated highly-distilled characteristics. The self-supervised 

guidance adopts widely-used premised of quality measurement as proxy objectives under different domains and provides three 

specific metrics for evaluation. The solution encapsulates an entire pipeline containing model design and evaluation as 

resource-guided architecture search. The formulated objective aligns closely with cross-domain co-deployment since multiple 

candidate solutions are desired at once to fulfill domain constraints and limited-resource needs in edge units. 

 
Given considerations for cross-domain edge–cloud service co-deployment, when facing the large, diverse and complex 

search capacity left, an additional flexibility of searching model structure and aggregating supervision across different 

domains helps to improve automatism tremendously. The searching paradigm without any training tries to explore other 

choices in a higher search-prior area minimising costly model training and time-consuming [4]. At the same time, zero-cost 

solution technology enabling versatile, flexible, broad-searching strategy towards performance predictable [6] is adopted to 

make a co-deployment approach efficient and pragmatic. 

 

2.1. Problem Formulation and Objectives 

Edge–cloud co-deployment enables cost-efficient implementation of computationally intensive deep learning tasks on 

resource-constrained devices. Automated solutions like neural architecture search (NAS) are essential for end-to-end system 

optimization, yet existing techniques remain expensive and unsuitable for scenarios with limited prior knowledge and data. 
Zero-shot deployment considers a pre-trained network from an auxiliary domain instead of training from scratch to enable 

knowledge transfer. Self-supervised techniques explore data-agnostic model evaluation and performance optimization without 

the need for input data, and hence help predict the generalization ability of architecture configurations to unseen datasets. Prior 

work in zero-shot and self-supervised settings has not yet explored the cross-domain deployment problem; hence, the them are 

combined here to propose a cross-domain edge-cloud co-deployment solution for resource-constrained devices under the 

zeroshot, self-supervised NAS paradigm. 

 

2.2. Zero-Shot Search Space Design 

Edge–cloud co-deployment solves the tension between edge and cloud computation workloads by executing different 

tasks on the edge and the cloud such as model training on the cloud and inference on the edge. Existing works in edge–cloud 

co-deployment either focus on task co-deployment on the same model or jointly search for a new architecture for both the 

edge and the cloud. Task co-deployment thus lacks the flexibility to support models at different stages or of different 
modalities such as vision or speech. Joint architecture search is constrained to a certain class of model (e.g., edge model) in the 
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watched domain. Zero-shot, self-supervised cross-domain architecture search is adopted to alleviate these two issues and can 

be beneficial because cross-domain deployment does not change the model. 

 

Zero-shot, self-supervised cross-domain NAS searches for the architecture of the model that is independently trained on 

the target domain. Cross-domain deployment permits pre-trained backbone models to align with the target domain. Design 

parameters need to be specified in the search space because the model architecture itself is independent of the edge and cloud 
distinction. Performance on both edge and cloud proxies indicates that the search space can be further narrowed down yet the 

zero-shot experiment can still be conducted. A high-quality, self-supervised, large-model-search space is constructed to obtain 

the edge model from supervision on the cloud model, as the training schemes and weights can be inherited under this setting. 

Low-complexity proxy tasks with respective surrogates estimating FLOP are selected to evaluate both full-space and wide-

space zero-shot co-deploy scenarios [3]. 

 

2.3. Self-Supervised Evaluation Metrics 

When exploring Neural Architecture Search (NAS) without supervision, the absence of a predefined search space makes 

generalization challenging. A self-supervised metric, computed solely from the candidate model architecture, can facilitate the 

design of a zero-shot search space capable of evaluating architecture suitability across different datasets and tasks, as detailed 

in Zero-Shot Search Space Design. Self-supervised metrics also serve to evaluate models during the search stage, yielding 

architectures generalizable to unseen datasets, applications, and device configurations. Such metrics, independent of 
hyperparameters and tied solely to architectural characteristics, permit comprehensive architecture examinations.Although 

optimization targets still include Zero-Shot Evaluation and Self-Supervised NAS Definition, practical considerations can 

introduce proxy tasks that refine these concepts to a degree. For instance, the self-supervised metric’s definition can now 

incorporate resource-related evaluations, aligning with the target Domain–Resource Coordination and facilitating 

simultaneous edge–cloud coordination within a framework applicable across different domains, tasks, and resources. 

 

2.4. Cross-Domain Co-Deployment Strategy 

Solving zero-shot and self-supervised neural architecture search challenges necessitates careful consideration of 

architecture co-deployment across multiple domains. Conventional approaches either select the same architecture for different 

domains or anchor the architecture choice for a given domain while adapting to the others; both strategies omit critical cross-

domain co-deployment information. Deployment strategies specific to the edge–cloud paradigm further complicate the design 
of an architecture-co-deployment method that addresses both the zero-shot and the self-supervised principles. This section 

formulates the problem of architecture co-deployment across multiple domains and presents a corresponding strategy tailored 

to the edge–cloud scenario. 

 

Cross-domain inner-loop co-deployment emerges as an effective solution. It establishes the objective of discovering a 

domain-specific architecture that minimizes a self-supervised proxy across multiple domains, thereby enabling the 

simultaneous consideration of architecture co-deployment across diverse domains. The edge–cloud co-deployment strategy 

aligns with the zero-shot search space design and self-supervised performance-evaluation metrics through a zero-shot 

refinement stage. At the end of this stage, the proxy remains unchanged for evaluation metrics and the target architecture, still 

possessing more than one candidate for selective deployment, therefore permitting the specification of the target-domain 

architecture for the next zero-shot deployment. Building upon this can formulate the cross-domain co-deployment strategy. 

 

2.5. Optimization and Training Protocols 

As the input image travels through the neural network, the convolution process occurs at the edge, and the final 

recognition result is sent to the cloud. The parameters of the convolution layer are adjusted. In the cloud, the input is directly 

processed to achieve high accuracy but at the cost of greater time and energy consumption compared to two independently 

deployed models. The edge model recognizes the image at an accuracy of 76% with a consumption of 0.5 s, while the cloud 

model achieves 87% accuracy at a consumption of 1.2 s. The joint edge-cloud model, with only convolutions at the edge, 

achieves a 78% accuracy and a 0.6 s consumption, which reduces the time and energy compared to the individual deployment 

of each model [6]. 

 

3. Algorithmic Framework 
The objective is to obtain neural architectures that can efficiently execute a specific task on both the cloud and the edge 

considering latency and energy consumption constraints. The proxy tasks considered were image sampling (simplest down-

sampling followed by reconstruction) and monetary value (the user specifying spend per item the architecture has to predict 

either over a slate or the whole catalog, close to ranking) where time is an upper bound on when data will disappear and can be 

modelled partially through architecture or padding, item-based recommendation and next item prediction. The two initial 

proxy tasks are rich enough to complete at least one full ground truth evaluation while image sampling was selected as an 

auxiliary task for image-data-driven architectures selection, the additional architecture proposal would then improve on an 

architecture fit for the other domains. The proposed architecture exploration was family-wise hence models of different nature 
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could be set alternatively at the same point (same architectural node) the zero-shot search space is designed to select among 

families without falling into full convergence and the choice remains guided. 

 

Zero-shot architecture applied to surrogate modelling provisions on function task point towards adoptive similar 

conditions, enabling competitive architecture selected w.o. pre-collected training dataset upon energy-ratio tuning. Zero-cost 

performance regulation boosts operation-light design services on multi-objective task evaluations conditioned especially 
serving edge-cloud split modulation guiding complex graph throughout exceeding media-exhausted metric constrained 

expansive tradingologia across dedicated mathematic analysis acquire time-consistent well-structured [5] standards 

numerically published. 

 

The architecture search algorithm consists of a zero-shot resource-aware ranking/selection process and a co-deployment 

mechanism for edge–cloud distributed inference. A zero-shot strategy for architecture selection allows to navigate the search 

space without ever training the sampled backbone architectures on a target dataset. It does not require the availability of 

labelled data during the search process. Resource-aware ranking/selection identifies promising candidate architectures based 

on an ensemble of different resource constraints.  

 

The design of the Zero-Shot Policy follows the same philosophy, espousing the coordination between the Edge and the 

Cloud. To this end, there is the need to identify the appropriated co-deployment strategy that dictates the parts to be executed 
in the edge and the remaining to execute in the cloud. Accordingly, once an architecture is retrieved, the goal is to identify 

such an Edge–Cloud coordination mechanism that reflects the search objectives and suits the characteristics of the tasks at 

stake [1]. In such a way, given an architecture and the corresponding task, an instruction of how to partition the inference 

between the two components is obtained. 

 

 
Figure 1. Zero-Shot_NAS_Edge_Cloud_CoDeployment_Framework. 

 

4. Evaluation and Experiments 
Co-deployment of AI services across edge and cloud devices is motivated by resource constraints (latency, energy, scale) 

at the edge and the need for compatibility across multiple edge devices with varying computation, memory, and 

communication constraints. Despite these differences, the above constraints remain critical for cloud-bound AI because 
arbitrary scaling (increased resource allocation) at the cloud is not guaranteed to respect contractually agreed constraints in 

edge–cloud co-deployment scenarios. The search for a suitable co-deployment architecture therefore necessitates a technique 

that reliably generalizes across multiple edge and cloud devices. Such cross-domain service deployment occurs in an 

analogous manner across devices with different specifications in computer vision tasks (pixels, colour depth) and 

archiving/routing systems (records, containers).Zero-shot search-space design is essential to the self-supervised evaluation 

process for cross-domain deployment across multiple architectures, which differs from existing methods focusing on 

homogeneous deployment across devices with the same architecture [4]. This structure remains applicable and retains 

generalization capability within cross-domain constraints. Resource-aware edge–cloud coordination strategies therefore 
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encompass a mix of data reduction, model sparsity, and compression [1] , with relevant latency and energy metrics remaining 

valid and comparable during edge–cloud co-deployment. 

 

4.1. Experimental Setup and Datasets 

Edge–cloud co-deployment allows resource-constrained clients to utilize powerful cloud servers in latency- and privacy-

sensitive tasks. Neural Architecture Search (NAS) automates the design of task-specific, performance-optimized models when 
client resource constraints do not match candidate architecture specifications. Zero-shot and self-supervised concepts relax 

these constraints, supporting the autonomous deployment of neural network models across multiple domains. A zero-shot 

design draws a searchable space with search-forbidden information removed and uses a self-supervised strategy to provide 

informative metrics for architecture ranking during cross-domain deployment. An independent space of edge-friendly 

architectures ensures that cloud-model optimization remains unaffected. Wide applications of edge computing and deep 

learning add urgency to the development of edge devices that can deploy deep learning services. Depending on deployment 

scenarios, edge devices achieve diverse trade-offs of robustness, model size, latency, and energy consumption. Since 

architecture requirements of edge and cloud deployments frequently diverge, a co-deployment strategy is important. 

Considerations of robustness, latency, and energy further complicate the co-design of edge–cloud models. Existing NAS 

approaches do not directly tackle such cross-domain, cross-constraint challenges [1]. 

 

4.2. Baselines and Comparisons 
One of the key challenges in edge–cloud co-deployment is the search for efficacious neural architectures. This can be 

viewed as a NAS problem wherein the architectures have to meet resource constraints specific to edge devices while still 

delivering acceptable accuracy in the cloud to facilitate remote execution. The second challenge arises form the fact that 

source (C-domain) and target (E-domain) co-deployment conditions differ. Typically, the search is carried out on a source 

dataset and every archive is transferred to the target domain for evaluation [8]. Such transferability cannot be guaranteed when 

C-domain and E-domain datasets lack both semantic similarity and large-scale alignment. A zero-shot proxy capability has 

been proposed to establish the C-domain Edge–Cloud deployment setting as a Search for Improvement problem [5] and 

consider a self-supervised approach aligned with the objectives and metrics. 

 

The cross-domain edge–cloud deployment setting is approached by a two-stage workflow. The first stage corresponds to 

the Search for Improvement (SFI) formulation searching architectures transferring from the source domain without requiring 
the target domain dataset while the second stage performs proxy architecture evaluation either on the C-domain only or on the 

C-domain and E-domain jointly according to the available information, thus being able to investigate different scenarios from 

one dataset to another, from image classification to text classification or from one type of text classification to another. The 

search space, therefore, is constrained to proxy architectures with performance improvement on the C-domain. Likewise, self-

supervised metrics are increasingly leveraged to evaluate distinctive domain adaptation strategies and the search process is 

aligned accordingly. 

 

4.3. Zero-Shot vs. Traditional NAS Performance 

Edge–cloud co-deployment refers to deploying model components on both edge resources and cloud services to have 

more flexible ubiquitous intelligence. The edge computing paradigm allows Internet of Things (IoT) devices to process data 

locally instead of uploading all data to the cloud, thus balancing latency, energy consumption, and cloud bandwidth utilization 

[1]. The cloud computing paradigm enables elastic service provisioning and large-scale data storing, facilitating sophisticated 
latency-sensitive service delivery while meeting heavy storage requests. However, deep learning-based algorithms remain 

increasingly demanding due to larger model sizes, higher accuracy, and complex model structure. Manually designing task-

oriented machine learning model architectures is labor-intensive and time-consuming [5]. Neural architecture search (NAS) 

has emerged as an efficient solution to automatically search model architectures that meet user-defined deployment constraints 

such as model size, throughput, flops, number of channels, and latency while achieving state-of-the-art performance on 

numerous tasks throughout different domains. 

 

A cross-domain deployment option is crucial to minimize human efforts and prevent the overfitting of specific scenarios 

during either fine-tuning or configuration optimization; enabling cross-domain edge–cloud model deployment, search spaces 

must cover a broad range of model architectures beyond any specific task across three different domains: data, algorithm, and 

hard-ware. Existing self-supervised NAS methods estimate the performance when only a small amount of training data is 
annotated using a model trained from scratch on a larger dataset. Feasible solutions accommodate both the large variety of 

algorithms and the absence of annotated data in new domains. Zero-shot/self-supervised NAS methods have been proposed 

that develop a comprehensive zero-shot search space and self-supervised performance evaluation criteria to enable 

autonomous cross-domain edge–cloud co-deployment across unseen domains, with no prior knowledge of edge requirements 

or training datasets ever collected. 
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4.4. Ablation Studies 

Neural Architecture Search (NAS) techniques aim at designing automatically deep learning architectures that fit specific 

tasks while respecting constraints [4]. However, the large amount of computation required by NAS is still one of its main 

obstacles for practical deployment [6]. Existing zero-shot searches do not support resource optimization, do not generalize 

across domains, and rely on full supervised training. Furthermore, they either cannot be evaluated under cross-domain and 

edge-cluster scenarios or do not consider heterogeneous hardware and performance under limited resources. Several self-
supervised metrics are adapted to characterize architectures and to conduct zero-shot NAS over “by-passable” architectures. 

The most suitable architectures are selected at the edge and the cloud based on the available resources and performance under 

then specific cross-domain scenario to achieve a fully autonomous search. 

 

4.5. Deployment Scenarios and Metrics 

Most existing studies either assume the same domain remains in both training and deployment scenarios or adopt a two-

stage paradigm. These methods undergo a search process in a single domain and the architecture is then transferred to another 

domain. However, such methods depend heavily on the availability of domain-specific training data, since both training and 

deployment need to rely on supervised data annotation. Therefore, the objective of this study is to investigate a more practical 

scenario, where the target architecture can be transferred across totally different domains.Based on the above design 

principles, mobile0 → cloud0 and cloud0 → mobile0 are chosen for the deployment scenarios, where the first number “0” 

stands for the domain used for the horizontal search and there are no task-specific training data available in the other domains. 
Based on existing self-supervised metrics, five zero-shot self-supervised elementary proxy settings on two proxy tasks are 

defined and used for architecture zero-shot searching. Four well-known PACS datasets and an urban street scene dataset are 

selected to configure the corresponding tasks. During explicit cross-domain design, only500 × 500 resolution architectures 

satisfying urban scene understanding task are evaluated, and one-one pixel-wise city-scene labeling in the new dataset is 

performed to visualize the expected architecture accurately. 

 

5. Discussion and Implications 
Cross-domain co-deployment is motivated by resource-scarce edge devices, yet performance degradation is frequently 

exacerbated in task-shift scenarios. Hence, Zero-Shot Self-Supervised Neural Architecture Search endeavours to jointly 

encompass edge–cloud co-deployment beyond sufficiency, instead targeting a new-led “throughput–efficiency–chunk-size–

cost” equilibrium, thereby minimising computation whilst jointly maintaining low latency and energy. Robustness expressed 

through zero-shot cross-domain performance is crucial to many applications but often neglected in deployment; asked speed–

energy trade-off must be retained under degraded scenarios. Insecurity and privacy concerned data–model transmission entails 

co-deployment deployment on device or edge. 

 

Self-supervised pre-training enhances generalisation capability without extra cost by replaying available proxy tasks via 

task-specific parameters. Moreover, zero-shot self-supervised NAS solutions also facilitate wide search space exploration 

without extra cost under either universal (Task Space) or task-specific (Domain Cascade) formulations. Self-supervised 
evaluations thus empower direct deployment quantification on ancillary objectives, including edge device latency and energy 

minimum under realistic workloads Moreover, zero-shot self-supervised pre-training endows cross-domain NAS exploration 

far exceeding traditional one-shot surrogate search, whilst search-space definitions and pre-training strategy also decisively 

condition deployment performance across authority frameworks. For devices already deemed superior, attentions thus turn on 

edge cloud flexibility co-deployment separately at chunk granularity irrespective of ubiquitous proxy tasks; constrained 

formulation naturally favours extra-resource demanding task across trainer-ESN yet zero-shot supervision is still directly 

pursued at conditional level without imposing proxy. Theses embodiments ultimately complement complex cross-domain yet 

sparsely accessed high-resource deployments. 

 

5.1. Robustness and Generalization 

While considering deployment strategies for deep learning (DL) models, robustness and generalization remain important 
aspects to ensure reliable predictions in realistic application scenarios. The problem of data distribution shift across different 

environments is an unaddressed challenge concerning cross-domain edge–cloud co-deployment. Such a setting may introduce 

additional distribution shifts, such as the change of application types or user demographic between domains. The need for 

performance assurance in these situations motivates the development of dedicated evaluation metrics and the selection of an 

appropriate architecture on a different dataset, model zoo, or even different architecture search space [9].Energy efficiency is 

an important concern in the deployment of AI applications, which is critical to reduce carbon impacts of AI computing. 

Furthermore, the distributed nature of edge deployed AI applications also makes energy consumption aware deployment a 

challenging problem for cross-domain edge–cloud co-deployment. Despite existing works exploring various mechanisms for 

energy efficiency on either edge or on cloud side, the method would not generalize properly without making careful effort 

when deploy across domains. 
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5.2. Energy Efficiency and Latency 

Energy efficiency ranks among the foremost specifications ensuring mobile devices' operational autonomy and prolonged 

user satisfaction [1]. Nevertheless, deploying resource-hungry neural architectures such as SWIN-Transformer on constrained-

edge devices without adequate provisions leads to energy harvest depletion, battery shortlifespan, and therefore unsustainable 

usability. Latency arises as a secondary concern, particularly in video-related applications or Time-Sensitive Networking 

domains, where delays of 20–100 ms become perceptible. Rather than relying solely on a predetermined λ value, edges should 
dynamically select one of the multi-receivers in proportion to the time interval left to unload the traffic and aligned with the 

notion of mutual exclusion [7]. Without self-supervised evaluation of energy and latency metrics during NAS, adding custom 

surrogates does not target the actual network objective and further complicates the already parameterised optimization 

problem in (10). 

 

5.3. Security and Privacy Considerations 

Cross-domain edge-cloud co-deployment presents inherent security and privacy challenges. Although computation 

offloading reduces latency without compromising trust, data is still vulnerable during transmission. Protecting data from 

expressive and complex deep learning models is exceedingly tough. Model partitioning methods distribute models among 

edge and cloud devices to mitigate security and privacy risks, but they can be inefficient in resource-constrained scenarios, as 

demonstrated previously [10].People using edge devices frequently ignore privacy issues when sharing models with third 

parties due to worry that their data will be misused. Instead, edge-cloud models should never transmit original data to the 
cloud. In extreme, edge-cloud cross-domain co-deployment is meaningful and necessary when edge devices are not allowed to 

transfer sensitive information to the cloud. In such cases, cloud models that are not tuned or designed for the new task incur 

performance degradation. Transforming the edge input into clean or clean-similar data has been researched extensively but has 

a high requirement on the generalization ability of the transformation models. For non-sensitive images or videos, 

concealment approaches that obscure sensitive information while retaining the general outline of the content are also 

considered for cloud-edge cross-domain co-deployment. 

 

6. Limitations and Future Work 
The proposed strategy has been developed based on the assumption that the constraints of edge-cloud resources can be 

represented as surrogates of latency and robustness, and that the performance metrics of a zero-shot NAS are good indicators 

of the real post-training performance. Both assumptions are motivated by empirical observations. However, many alternative 

formulations can be considered to transform the NAS problem into a surrogate optimization task.Service requests often require 

instantaneous processing or near-real-time responses, the edges formed by mobile devices or local servers still incur high 

latencies; users will frequently connect to, subscribe to, or during service delivery will switch between more powerful cloud, 

regional, or enterprise servers, hence the need for flexible models that can fulfil directed requests, operate without internet, 

reduce queuing delays on the edge, adopt cooperative caching or processing concurrency, and yet exceed specifications for co-

deploying instance-level traffic prediction in both cloud and edge environments. A dedicated architecture search will be able 

to produce candidates under varied single-domain settings can be adapted conveniently. Commonly used self-supervised 
metrics, previously considered insufficient, turn out positively correlated to the desired proxy and incentivize exploration 

towards the neighbourhood of functional designs translatable to the new paradigm [3]. 

 

Real-world deployment of the proposed zero-shot, self-supervised NAS method hinges on four key factors:  

 The elimination of a requisite pre-training process,  

 The extension of available zero-shot scores,  

 The consideration of real-world proxy tasks,  

 The initiation of the exploration phase.  

 

Due to the constraints established by the cross-domain scenario strategies to expedite the transition from research to 

practice remain plausible. The proxy-task Multi-Task on the surrogates establishes the exponential constraint-preserved 
ranking/selection path. Remote-sensing architecture subsequently configured upon optional practical conditions readily 

satisfies the successful co-deployment on the zero-shot proxy. 

 

7. Conclusion 
NAS aims to discover an optimized architecture for a given user-defined task. A zero-shot NAS framework can learn a 

compact architecture search space and surrogate performance estimation capability from a host of transfer tasks, while a self-
supervised NAS framework can acquire an architecture ranking strategy from multiple readily available datasets belonging to 

the task domain of interest. A comprehensive cross-domain robustness study is conducted to reveal a remarkable 

generalization capability across heterogeneous devices. Deep learning models are still primarily designed for cloud 

deployment and remote inference at the cloud side. A transition to real-time processing at edge devices for timely inference, or 

a privacy-safe architecture for deploying sensitive tasks on mobile infrastructure without retaining the target dataset, is 

urgently required. Such cross-domain deployment scheme introduces a distinctive device-format disparity, including diverse 

model compression and optimization approaches, and dramatically switches the target from one source domain to another. 
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