
International Journal of Emerging Trends in Computer Science and Information Technology
 ISSN: 3050-9246 | https://doi.org/10.63282/30509246/IJETCSIT-V1I4P101

Eureka Vision Publication | Volume 1, Issue 4, 1-10, 2020

Original Article

Edge Computing Architectures for Real-Time Distributed

Processing

Dr. Lazarus

School of Computing, Universiti Teknologi Malaysia, Malaysia

Abstract - Edge computing has emerged as a critical paradigm in the realm of distributed computing, particularly for real-time

applications that require low latency and high reliability. This paper provides a comprehensive overview of edge computing

architectures designed for real-time distributed processing. We delve into the fundamental concepts, key challenges, and state-of-

the-art solutions in the field. The paper also explores various edge computing models, including fog computing, hierarchical edge

computing, and hybrid cloud-edge architectures. We present a detailed analysis of the algorithms and techniques used for task

offloading, resource allocation, and data management in edge computing environments. Additionally, we discuss the performance

metrics and evaluation methodologies for assessing the effectiveness of these architectures. Finally, we highlight future research

directions and potential applications of edge computing in various domains such as IoT, autonomous vehicles, and smart cities.

Keywords - Edge computing, real-time applications, resource management, latency, fog computing, hierarchical edge computing,

hybrid cloud-edge, machine learning, security, interoperability

1. Introduction
The rapid proliferation of Internet of Things (IoT) devices and the increasing demand for real-time applications have

introduced significant challenges to traditional cloud computing models. As more and more devices are connected to the internet,

generating vast amounts of data, the reliance on centralized cloud servers for processing and storage has become increasingly

problematic. Cloud computing, while powerful in terms of its ability to handle large datasets and complex computations, often

suffers from high latency and network congestion. These issues can be particularly detrimental to real-time applications such as

autonomous vehicles, industrial automation, and augmented reality, where immediate responses are critical for safety, efficiency,

and user experience.

For instance, autonomous vehicles require instantaneous processing of sensor data to make split-second decisions to avoid

accidents. Industrial automation systems need real-time feedback to control machinery and optimize production processes.

Augmented reality applications must seamlessly integrate virtual elements with the real world to provide immersive and responsive

user experiences. In each of these scenarios, the delay caused by sending data to a remote cloud server and waiting for a response

can be unacceptable, leading to potential safety risks, productivity losses, and user dissatisfaction. Edge computing addresses these

challenges by decentralizing the computational and storage capabilities, bringing them closer to the edge of the network—i.e., the

location where data is generated and consumed. By processing data locally or at nearby edge devices, edge computing significantly

reduces the time it takes for data to travel to and from the cloud. This not only minimizes latency but also alleviates network

congestion, as less data needs to be transmitted over long distances. Moreover, edge computing enhances the overall efficiency and

reliability of distributed systems by enabling faster decision-making and reducing the dependency on a central cloud infrastructure.

This paradigm shift is crucial for the advancement of IoT and the deployment of sophisticated real-time applications, ensuring that

they can operate smoothly and effectively in a variety of environments.

2. Fundamental Concepts and Challenges
2.1 Definition and Overview

Edge computing is a distributed computing paradigm that extends cloud computing by bringing computation and storage

closer to the data sources and end-users. Unlike traditional cloud computing, where all processing is centralized in distant data

centers, edge computing distributes computational resources across various nodes situated at the network’s edge. This approach

reduces the need for long-distance data transmission, significantly lowering latency and bandwidth consumption. By leveraging

localized processing, edge computing enhances real-time applications that require immediate responsiveness, such as autonomous

vehicles, industrial automation, and smart healthcare systems. It creates a continuum of computing resources, spanning from

centralized cloud infrastructure to edge devices such as IoT sensors, gateways, and micro data centers, ensuring efficient and

scalable computing solutions.

https://doi.org/10.63282/30509246/IJETCSIT-V1I4P101

Dr. Lazarus / IJETCSIT, 1(4), 1-10, 2020

2

2.2 Key Challenges

2.2.1. Latency and Reliability

One of the most critical challenges in edge computing is ensuring low latency and high reliability. Many real-time

applications, such as autonomous driving and industrial process control, require instantaneous decision-making to function

effectively. Any delay in processing or transmitting data can lead to system failures or safety hazards. Edge computing mitigates

latency by processing data closer to its source, but it must also ensure reliable communication between devices, edge nodes, and

cloud servers. Network disruptions, data packet losses, and dynamic network conditions can degrade system performance,

requiring robust networking protocols and failover mechanisms to maintain continuous operation.

2.2.2. Resource Management

Managing computational, storage, and energy resources efficiently is another significant challenge in edge computing.

Unlike centralized cloud environments that have vast resources, edge nodes operate under constrained conditions with limited

processing power, memory, and energy supply. Optimizing resource allocation is essential to prevent overload on certain edge

nodes while ensuring efficient utilization across the entire network. Task offloading strategies, where certain computations are

shifted between the edge and the cloud based on resource availability, play a vital role in maintaining an optimal balance.

Additionally, dynamic workload scheduling and intelligent resource provisioning techniques must be developed to adapt to

changing application demands in real-time.

2.2.3. Scalability

As the number of IoT devices and connected applications continues to grow exponentially, edge computing systems must

be designed for scalability. Unlike traditional cloud architectures that can scale by adding more data center resources, edge

computing faces unique challenges in scaling due to the distributed and heterogeneous nature of edge nodes. A scalable edge

architecture must support dynamic resource management, efficient load balancing, and autonomous coordination among edge

nodes. This requires advanced solutions such as containerized deployments, microservices architectures, and decentralized

computing frameworks that enable seamless scaling without compromising performance or increasing complexity.

2.2.4. Security and Privacy

Ensuring data security and privacy is a fundamental concern in edge computing. Since data is processed and stored closer

to the source, edge nodes become potential targets for cyberattacks, unauthorized access, and data breaches. Unlike centralized

cloud data centers, which have robust security mechanisms in place, edge devices often operate in less secure environments and

may lack the computational power to implement complex security protocols. Protecting sensitive data requires end-to-end

encryption, secure authentication mechanisms, and intrusion detection systems that can identify and mitigate security threats in

real-time. Furthermore, privacy-preserving techniques such as federated learning and homomorphic encryption can help process

data at the edge without exposing sensitive information.

2.2.5. Interoperability

Edge computing environments consist of a diverse range of devices, software, and communication protocols. Ensuring

seamless interoperability among heterogeneous devices is a major challenge, as different vendors and manufacturers use

proprietary technologies that are not always compatible. Standardizing communication protocols, developing middleware

solutions, and adopting open-source frameworks can help bridge the interoperability gap. Additionally, edge systems must support

adaptive communication mechanisms that allow devices to interact dynamically based on changing network conditions and

application requirements. Without proper interoperability, edge computing deployments may face integration challenges, limiting

their scalability and effectiveness in real-world scenarios.

3. Edge Computing Models
3.1 Fog Computing

Fog computing is a decentralized computing architecture designed to extend cloud capabilities closer to the data sources,

typically at the edge of the network. The core idea behind fog computing is to bridge the gap between cloud computing and edge

devices by introducing an intermediate layer of fog nodes. These fog nodes are strategically placed between the cloud and edge

devices, allowing for local processing, storage, and data management. By performing computation and data analysis closer to the

source, fog computing reduces the burden on the cloud, thereby improving response times, reducing network congestion, and

enhancing overall system performance. Additionally, this approach allows for more efficient utilization of bandwidth, as data that

requires real-time analysis can be processed locally rather than being sent to centralized cloud data centers. Fog computing is

particularly beneficial for applications where low latency and high reliability are essential.

3.1.1 Architecture

The fog computing architecture is typically divided into three layers:

Dr. Lazarus / IJETCSIT, 1(4), 1-10, 2020

3

• Cloud Layer: The cloud layer consists of centralized data centers that provide extensive computational and storage

resources. This layer is primarily responsible for handling large-scale data analysis and storage that cannot be processed

efficiently at the edge.

• Fog Layer: The fog layer consists of fog nodes, which are distributed computing entities that are closer to the end

devices, such as sensors or mobile devices. These nodes perform tasks such as data aggregation, filtering, and pre-

processing, reducing the need for cloud-based processing.

• Edge Layer: The edge layer comprises the end devices that generate and consume data. These can include IoT sensors,

actuators, mobile devices, and other edge-connected devices. While these devices can perform some computation, they

mainly rely on fog nodes for processing complex tasks that require low latency.

Figure 1. Fog Computing Architecture

3.1.2 Applications

Fog computing is particularly suited for applications where reducing latency is critical and where data must be processed

in real-time or near real-time. Some key applications include:

• Industrial Automation: In industrial settings, fog computing can enable real-time monitoring and control of processes,

allowing for rapid responses to system changes and operational adjustments.

• Smart Grids: Fog computing helps manage the distribution and consumption of energy by processing data locally from

smart meters, sensors, and other devices. This enables quicker detection of faults, more efficient energy usage, and

improved system reliability.

• Smart Cities: Real-time traffic management, public safety monitoring, and environmental sensing in smart cities can all

benefit from fog computing, as it allows for immediate responses to dynamic conditions like traffic congestion or

emergencies.

3.2 Hierarchical Edge Computing

Hierarchical edge computing introduces a multi-level architecture that organizes edge devices into clusters. Each cluster

has a designated cluster head, responsible for managing the tasks and resources within the cluster. This hierarchical approach

enhances resource efficiency and enables better task offloading to higher levels in the system, such as to cloud-based or fog nodes.

By creating clusters with local leaders, hierarchical edge computing helps in managing large-scale distributed systems more

effectively, reducing the complexity of communication and improving the overall responsiveness of edge networks.

3.2.1 Architecture

The hierarchical edge computing architecture typically consists of three primary layers:

• Cloud Layer: At the highest level, the cloud provides centralized resources for large-scale data analysis and storage. It

handles tasks that require significant computational power or are not time-sensitive.

Dr. Lazarus / IJETCSIT, 1(4), 1-10, 2020

4

• Cluster Head Layer: Cluster heads are responsible for managing the local resources within each cluster, coordinating

task allocation, and performing initial data processing. They act as intermediaries between the cloud and edge devices

within their cluster.

• Edge Layer: At the lowest level, the edge layer consists of the actual end devices, such as sensors, actuators, and IoT

devices, which collect data and perform some level of local processing before sending it to the cluster head for further

analysis or offloading to the cloud.

Figure 2. Hierarchical Edge Computing Architecture

3.2.2 Applications

Hierarchical edge computing is particularly useful for applications that require efficient resource management across

distributed networks. These include:

• IoT Networks: Managing a large number of IoT devices in a distributed environment becomes more efficient with

hierarchical edge computing, as cluster heads handle local management tasks and reduce the communication overhead

with the cloud.

• Autonomous Vehicles: Real-time data processing is crucial for autonomous vehicles. Hierarchical edge computing allows

local edge devices (e.g., cameras, sensors) to communicate efficiently with cluster heads for processing data, and then

offload complex computations to the cloud when necessary.

• Healthcare: Real-time health monitoring systems, such as wearable medical devices, can benefit from hierarchical edge

computing. Cluster heads can aggregate data from multiple devices, perform preliminary analysis, and send critical

information to cloud servers for further processing.

3.3 Hybrid Cloud-Edge Architectures

Hybrid cloud-edge architectures combine the strengths of both cloud and edge computing, leveraging the powerful

computational resources of the cloud alongside the low-latency capabilities of edge devices. This model provides a balanced

approach to computing, allowing for efficient task offloading based on the specific needs of applications. For example, time-

sensitive tasks requiring immediate processing can be handled at the edge, while more complex, computationally intensive tasks

can be offloaded to the cloud. This hybrid approach ensures that real-time applications benefit from both the scalability of the

cloud and the low-latency advantages of edge computing.

3.3.1 Architecture

A typical hybrid cloud-edge architecture consists of three primary layers:

• Cloud Layer: The cloud layer hosts centralized resources for complex computation, large-scale data storage, and machine

learning tasks. It handles applications requiring significant computational power, such as big data analysis and AI-driven

tasks.

• Edge Layer: The edge layer consists of edge devices responsible for real-time processing, such as sensors and local

processing units. These devices handle time-critical tasks and offload less time-sensitive tasks to the cloud.

Dr. Lazarus / IJETCSIT, 1(4), 1-10, 2020

5

• Middleware Layer: The middleware layer facilitates communication between the cloud and edge layers. It ensures

smooth coordination of resources, task offloading, and data synchronization between the cloud and edge devices.

Middleware plays a crucial role in optimizing system performance and ensuring effective interaction across heterogeneous

devices.

Figure 3: Hybrid Cloud-Edge Architecture

3.3.2 Applications

Hybrid cloud-edge architectures are ideal for applications that require a blend of low-latency processing and high

computational power. Some key applications include:

• Augmented Reality (AR): AR applications require real-time data processing, such as tracking user movements and

overlaying digital content. Edge devices handle the immediate processing of visual and sensory data, while the cloud

supports heavy computations like 3D rendering.

• Video Streaming: Real-time video streaming platforms benefit from hybrid architectures, where edge devices can handle

local content delivery and caching, while the cloud manages content storage and global distribution.

• Financial Services: Real-time transaction processing, fraud detection, and high-frequency trading benefit from hybrid

cloud-edge architectures. Edge devices can monitor transactions locally, while the cloud provides deep learning models

and analytical tools for advanced data analysis.

4. Algorithms and Techniques
4.1 Task Offloading

Task offloading is a critical aspect of edge computing, where tasks are dynamically offloaded from edge devices to fog

nodes or the cloud based on resource availability and application requirements. Various algorithms and techniques have been

proposed to optimize task offloading.

4.1.1 Greedy Algorithms

Greedy algorithms make locally optimal choices at each step to achieve a global optimum. For task offloading, a greedy

algorithm might offload tasks to the nearest available resource with sufficient capacity.

Algorithm 1: Greedy Task Offloading

def greedy_task_offloading(tasks, resources):

 for task in tasks:

 best_resource = None

 min_distance = float('inf')

 for resource in resources:

 if resource.capacity >= task.requirements and resource.distance < min_distance:

 best_resource = resource

 min_distance = resource.distance

 if best_resource:

 best_resource.assign_task(task)

Dr. Lazarus / IJETCSIT, 1(4), 1-10, 2020

6

4.1.2 Genetic Algorithms

Genetic algorithms are inspired by the process of natural selection and evolution. They use techniques such as mutation,

crossover, and selection to optimize task offloading.

Algorithm 2: Genetic Task Offloading

def genetic_task_offloading(tasks, resources, population_size, generations):

 population = [random_solution(tasks, resources) for _ in range(population_size)]

 for _ in range(generations):

 fitness_scores = [fitness(solution, tasks, resources) for solution in population]

 selected_population = select_population(population, fitness_scores)

 new_population = []

 for _ in range(population_size):

 parent1, parent2 = random.sample(selected_population, 2)

 child = crossover(parent1, parent2)

 child = mutate(child)

 new_population.append(child)

 population = new_population

 best_solution = max(population, key=lambda x: fitness(x, tasks, resources))

 return best_solution

4.2 Resource Allocation

Resource allocation involves distributing computing, storage, and energy resources among edge devices, fog nodes, and the cloud.

Various algorithms and techniques have been proposed to optimize resource allocation.

4.2.1 Auction-Based Algorithms

Auction-based algorithms use market mechanisms to allocate resources. Each edge device or fog node bids for resources based on

its requirements and the available resources are allocated to the highest bidders.

Algorithm 3: Auction-Based Resource Allocation

def auction_based_resource_allocation(tasks, resources):

 bids = []

 for task in tasks:

 bid = task.bid_for_resources(resources)

 bids.append((task, bid))

 bids.sort(key=lambda x: x[1], reverse=True)

 for task, bid in bids:

 best_resource = None

 min_distance = float('inf')

 for resource in resources:

 if resource.capacity >= task.requirements and resource.distance < min_distance:

 best_resource = resource

 min_distance = resource.distance

 if best_resource:

 best_resource.assign_task(task)

4.2.2 Game-Theoretic Algorithms

Game-theoretic algorithms model resource allocation as a strategic game where edge devices and fog nodes make decisions based

on their utility functions. The goal is to reach a Nash equilibrium where no player can improve its utility by unilaterally changing

its strategy.

Algorithm 4: Game-Theoretic Resource Allocation

def game_theoretic_resource_allocation(tasks, resources):

 strategies = [random_strategy(task, resources) for task in tasks]

 while not is_nash_equilibrium(strategies, tasks, resources):

 for i, task in enumerate(tasks):

 best_strategy = None

 max_utility = float('-inf')

Dr. Lazarus / IJETCSIT, 1(4), 1-10, 2020

7

 for strategy in possible_strategies(task, resources):

 utility = compute_utility(strategy, strategies, tasks, resources)

 if utility > max_utility:

 best_strategy = strategy

 max_utility = utility

 strategies[i] = best_strategy

 return strategies

4.3 Data Management

Data management in edge computing involves storing, processing, and transmitting data efficiently. Various algorithms and

techniques have been proposed to optimize data management.

4.3.1 Data Caching

Data caching involves storing frequently accessed data in local caches to reduce the need for repeated data transfers. This can

significantly improve performance and reduce latency.

Algorithm 5: Data Caching

def data_caching(data, caches, access_pattern):

 for item in data:

 best_cache = None

 min_distance = float('inf')

 for cache in caches:

 if cache.capacity >= item.size and cache.distance < min_distance:

 best_cache = cache

 min_distance = cache.distance

 if best_cache:

 best_cache.store_data(item)

4.3.2 Data Compression

Data compression involves reducing the size of data to improve storage and transmission efficiency. Various compression

algorithms can be used, such as lossless and lossy compression.

Algorithm 6: Data Compression

def data_compression(data, compression_algorithm):

 compressed_data = []

 for item in data:

 compressed_item = compression_algorithm.compress(item)

 compressed_data.append(compressed_item)

 return compressed_data

5. Performance Metrics and Evaluation Methodologies
5.1 Performance Metrics

The performance of edge computing architectures can be effectively evaluated using a set of key metrics. These metrics

offer insights into how well the system meets the requirements of real-time, distributed processing.

• Latency: Latency is one of the most crucial performance metrics for edge computing. It refers to the time delay between

the initiation of a task and the completion of the task, including the time taken for data transmission and processing. In

real-time applications such as autonomous vehicles or industrial automation, low latency is critical to ensure timely

decision-making and responsiveness.

• Throughput: Throughput measures the number of tasks or data units that a system can process within a specified time

frame. A higher throughput indicates that the system can handle more tasks simultaneously, making it a vital metric for

applications with high data volumes, such as video streaming or large-scale sensor networks.

• Energy Consumption: Energy efficiency is a key concern in edge computing, particularly for resource-constrained

devices like sensors, actuators, and fog nodes. Monitoring energy consumption helps optimize resource utilization, extend

battery life, and reduce the environmental footprint of edge networks. Low energy consumption is essential for

applications in remote or off-grid areas where power resources are limited.

Dr. Lazarus / IJETCSIT, 1(4), 1-10, 2020

8

• Resource Utilization: This metric refers to how efficiently the system utilizes its computing, storage, and communication

resources. Efficient resource utilization ensures that edge devices, fog nodes, and cloud servers are not underutilized or

overburdened, contributing to better performance and reduced operational costs.

• Reliability: Reliability indicates the consistency and fault tolerance of a system in performing tasks over time. High

reliability is essential in real-time applications, as system failures or errors can lead to disastrous consequences, especially

in critical domains like healthcare or autonomous vehicles. Reliable systems ensure minimal downtime and predictable

performance.

5.2 Evaluation Methodologies

To accurately assess the performance of edge computing architectures, several evaluation methodologies can be

employed. These methodologies help simulate, emulate, and benchmark the behavior of edge computing systems in various real-

world and theoretical scenarios.

• Simulation: Simulation involves creating models of edge computing environments using software tools to mimic real-

world scenarios. Tools such as OMNeT++ and ns-3 are commonly used to simulate edge networks, providing insights into

how systems will behave under different conditions, such as varying network loads, node failures, or resource constraints.

Simulations allow for controlled experiments and offer flexibility in testing multiple configurations without the need for

physical hardware.

• Emulation: Emulation goes a step beyond simulation by replicating the behavior of edge computing systems in a more

realistic setting. This can involve using testbeds and real-world devices to emulate the interaction between edge nodes, fog

nodes, and cloud services. Emulation provides a closer approximation to how the system will perform in real-world

environments and is particularly useful for evaluating performance in actual deployment scenarios.

• Benchmarking: Benchmarking involves comparing the performance of different edge computing architectures using

standard benchmarks. These benchmarks typically assess key metrics such as latency, throughput, energy efficiency, and

scalability. By applying these standard tests, researchers and practitioners can make objective comparisons between

various edge computing models and select the most suitable one for their specific application requirements.

6. Future Research Directions
6.1 Advanced Machine Learning Techniques

The integration of advanced machine learning techniques into edge computing is poised to significantly enhance the

performance of real-time applications. With the growing complexity and volume of data generated at the edge, machine learning

models can be employed to optimize key functions such as resource allocation, task offloading, and data processing. Research in

this area could focus on developing machine learning models that are not only highly accurate but also adaptable to the dynamic

conditions typical of edge environments, where resources, network conditions, and workloads can fluctuate. Additionally, machine

learning can enable predictive analytics at the edge, allowing systems to anticipate demands, optimize task scheduling, and

enhance the overall responsiveness of real-time applications.

6.2 Edge AI

Edge AI represents a promising direction in edge computing, where artificial intelligence (AI) models are deployed

directly on edge devices to perform real-time data processing and decision-making. This approach can reduce the reliance on cloud

services for computational tasks, lowering latency and improving the responsiveness of applications. Research in this domain can

focus on creating lightweight AI models that are optimized for resource-constrained environments, such as mobile devices, IoT

sensors, or embedded systems. Furthermore, exploring techniques like federated learning, where AI models are trained

collaboratively across edge devices while maintaining data privacy, could unlock new possibilities for privacy-preserving AI in

edge computing.

6.3 5G and Beyond

The deployment of 5G and future generations of wireless networks, such as 6G, is expected to revolutionize edge

computing by providing high-bandwidth, low-latency connectivity, and enhanced reliability. These advancements will enable

faster data transfer, more reliable connections, and the ability to support more connected devices simultaneously. As a result, edge

computing architectures will need to be optimized to take full advantage of these improved network capabilities. Future research

can focus on designing edge computing models that seamlessly integrate with 5G and beyond networks, leveraging their advanced

features to support applications like autonomous vehicles, augmented reality, and smart cities. Optimizing task offloading and

resource management strategies for such high-speed, low-latency networks will be key to unlocking the full potential of edge

computing in the coming years.

Dr. Lazarus / IJETCSIT, 1(4), 1-10, 2020

9

6.4 Security and Privacy

As edge computing grows in adoption, ensuring the security and privacy of data and applications will become an

increasingly critical challenge. The distributed nature of edge computing, with data and computing resources spread across

numerous devices and locations, creates vulnerabilities that must be addressed. Future research could focus on developing novel

security protocols that ensure data integrity and confidentiality across the edge-to-cloud continuum. Privacy-preserving techniques

such as homomorphic encryption, differential privacy, and secure multi-party computation could be explored to protect sensitive

information processed at the edge. Additionally, as edge devices are often deployed in untrusted environments, security

mechanisms must be designed to protect these devices from physical and cyber threats.

6.5 Interoperability and Standardization

The success of edge computing hinges on the ability of heterogeneous devices and systems to work together seamlessly.

With the proliferation of IoT devices, sensors, actuators, and fog nodes, ensuring interoperability among these diverse components

is a significant challenge. Research in this area can focus on developing standardized communication protocols, data formats, and

APIs that allow devices from different manufacturers and with different capabilities to exchange information and cooperate

efficiently. Standardization can also play a crucial role in simplifying the deployment and scaling of edge computing systems, as it

would provide a common framework for building and integrating edge solutions. Moreover, efforts towards creating universal

standards can promote the widespread adoption of edge computing technologies across industries, from healthcare to

manufacturing.

7. Conclusion
Edge computing is transforming the landscape of distributed computing, particularly for real-time applications where low

latency and high reliability are paramount. Throughout this paper, we have examined various edge computing architectures,

including fog computing, hierarchical edge computing, and hybrid cloud-edge models, highlighting their applications and key

advantages. We have also analyzed algorithms and techniques for optimizing task offloading, resource management, and data

handling in edge environments. Furthermore, performance metrics and evaluation methodologies have been discussed to measure

the effectiveness of these architectures in real-world scenarios. Looking forward, the future of edge computing holds immense

potential, with opportunities to integrate advanced machine learning, leverage 5G technologies, and address challenges in security,

privacy, and interoperability. As the technology matures, edge computing is poised to play a pivotal role in shaping the next

generation of real-time distributed systems, enabling smarter cities, more efficient industries, and innovative IoT applications.

References
[1] Bigelow, S. J. (n.d.). What is edge computing? Everything you need to know. TechTarget. Retrieved from

https://www.techtarget.com/searchdatacenter/definition/edge-computing

[2] Run:ai. (n.d.). Edge computing architecture: A practical guide. Retrieved from https://www.run.ai/guides/edge-

computing/edge-computing-architecture

[3] Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the internet of things. In Proceedings

of the first edition of the MCC workshop on Mobile cloud computing (pp. 13-16). ACM.

[4] Forti, S., & Brogi, A. (2020). Secure cloud-edge deployments, with trust. Future Generation Computer Systems, 102, 775-

788.

[5] Brogi, A., & Forti, S. (2017). QoS-aware deployment of IoT applications through the fog. IEEE Internet of Things Journal,

4(5), 1185-1192.

https://www.techtarget.com/searchdatacenter/definition/edge-computing
https://www.run.ai/guides/edge-computing/edge-computing-architecture
https://www.run.ai/guides/edge-computing/edge-computing-architecture

