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Abstract - The data-driven world has led to the intervention of artificial intelligence and clinical decision support systems
technologies in the healthcare sector in the decision-making process. However supportive these advanced systems are, they
suffer from an issue of “black-box” or unexplainably of their working process, which hinders their utilisation in the health
sector. Explainable Artificial Intelligence can mitigate such challenges by providing automation models that are transparent to
healthcare individuals about their working procedures, which promises the clinical trust in healthcare systems and aids them
in efficient decision-making. The evaluation of the data and information through statistical analysis has outlined that
explainable artificial intelligence is the epitome of clinical data accuracy. In addition to this, the evaluation of the data
through graphical representation has also outlined that, specifically, gender-based specialisation, the male patients mostly
face problems due to respiratory conditions, along with heart conditions, while most of the female patients have faced
diabetes. Explainable artificial intelligence has the capability in enhancing the data accuracy of the patients and developing
treatments according to it.
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1. Introduction
1.1. Background

Clinical Decision Support Systems (CDSS) are being influenced by Machine Learning (ML) powered Artificial
Intelligence (Al) methods, which assist healthcare professionals in the prediction of the probable outcome of patients. Al-based
CDSS often result in minimal improvement since the course of action of the Al systems is undefined, and it becomes difficult
to convince the healthcare professionals to consider the recommended system [1]. The lack of transparency among the Al
models imposes challenges of interpretation of approaches behind their decisions, and it becomes harder to gain clinical trust
[2]. Explainable Al models bridge the gap between complex algorithms and interpretability, which is essential for supporting
clinical decisions.

1.2. Problem Statement

It is crucial to take into consideration that many Al models are referred to as “black-boxes” since the internal working
processes of the model remain opaque to individuals. The lack of exposure of the functional algorithm of the Al models
hinders the implementation of CDSS, as it is not trustworthy. Clinical experts avoid the assumption of risks to patient health
based on modernisation. The benefits of explainable Al Models act as an interface between human beings and Al systems [3].
This means that Al systems are comprehensible to healthcare professionals.

1.3. Objective of the paper

Explain ability of Al systems holds a greater value in the Clinical Decision Support System (CDSS). Explaining the inner
working processes helps to judge whether the Al models are reliable or not. The adoption of Explainable Artificial Intelligence
(XAI) helps in addressing the challenges faced by Al models in terms of transparency and comprehensibility [4]. The field
aims at the development of Al models that provide accurate predictions along with explainable Al algorithms for an efficient
decision-making process. The paper aims at the objectification of shortcomings where the Al systems lack in retaining
trustworthiness among the healthcare systems and how these problems can be addressed by Explainable Al (XAl).

1.4. Contributions

Clinical Decision Support System (CDSS) aids in providing assistance to the individuals responsible for patient care with
efficient decisions that will be impactful for healthcare proceedings. The digital transformation in the public sector has resulted
in the entry of Al systems in healthcare. Explainable Al or ML models are assisting CDSS in many aspects, like the generation
of patterns from historical data and contributing to improving patient healthcare [5]. Explainable Artificial Intelligence (XAl)
comes along with key factors like ensuring trustworthiness and identification of biases for generalisation of Al models, which
is discussed later in this work.
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2. Related Work
2.1. Overview of Al in Healthcare

Al has been growing its interest in healthcare for a decade, and healthcare systems are adopting machine learning
approaches such as deep neural networks [6]. Efficient Al systems in healthcare institutions are divided into fragments and
distributed among enormous datasets with the vision of boosting healthcare proceedings. By utilising the business intelligence
(BI) tools, technicians lay the foundation of advanced automation models that would benefit the healthcare system. Advanced
Al tools are instrumental in the early detection of critical abnormalities like cardiovascular diseases and cancer. The
intervention of Al has led to the swift generation of patient reports. Despite being advantageous in various healthcare fields, Al
approaches have not been welcomed in several health sectors due to their shortcomings.

2.2. Challenges in the adaptation of Al

An Al-based application utilises the historical records from the healthcare systems and analyses these datasets to propose
an efficient automation architecture in order to promote better patient care. These datasets originate from the sensitive patient
records, and these records are utilised for developing smart Al models, which will optimise the traditional working procedure
of the healthcare systems. These applications impose a threat to data privacy and the security of sensitive health care data [7].
In major instances, Al models are unexplainable about their decision-making process, which is a major obstacle in the
establishment of the Clinical Data Support System (CDSS). Lack of interpretable Al models can lead to an inclination towards
traditional processes of patient care, hindering the advancement of Al in the healthcare system.

2.3. Conceptualisation of Explainable Al (XAl)

It is essential for the advancement of clinical decision-making processes in the evolving healthcare landscape. One of the
transformation technologies includes Explainable Artificial Intelligence (XAl), which is responsible for creating a conjunction
between individuals and Al systems. XAl represents a paradigm transformation that offers insights to clinicians about the
working process of the Al models and fosters an understanding of its effect on patient health [2].

2.4. XAl in Clinical Decision Support Systems

The advancement of big data analytics and Al has led to the implementation of these techniques in CDSS. Al-based
CDSSs are instrumental in simplifying diagnosis, reports and cure by Al models. However, the black-box aspect of Al-based
models hinders the intervention of CDSS, as there is hardly any insight available about the algorithm upon which the model is
acting. Explainable Al, or XAl, proposes ML techniques that are responsible for developing more explainable models along
with sustaining higher performance. XAl-based CDSS is capable of responding to the decision-making process and benefits
healthcare professionals in providing solutions to real-world problems [8].

2.5. Literature Gap

The Al-based CDSS has certain limitations that require future research. The majority of the available Al-based CDSS are
dependent only on text data. If the data usage range is extended over intervals, only one additional type is used. One of the
major issues faced by these advanced systems is that the cost of maintenance and installation is too high to be affordable for
smaller healthcare bodies [8]. These challenges prevent the effective utilisation of these advanced technologies.

3. Methodology
3.1. Data source

The methodology system directs the interpretation of the research importance and its effects on the findings [9]. To learn
how explainable Al can be relevant to clinical decision support systems 1000 entries of patients were analysed. The integration
of such entries proved efficient in acquiring appropriate insight into the purpose of explainable Al in accruing CDSS by
assessing the information of the patients and devising the solutions to improve their treatments. This was a highly accurate and
effective methodological valuation in the identification of the models that were associated with this emerging technology and
its use in facilitating optimal operation of CDSS.

3.2. Method of analysis

The analysis technique that will be used in this study is the use of logistic regression and a support vector machine. The
SVMs stand as the abbreviation of support vector machines, which is the supervised variant of a machine learning algorithm,
resulting in the categorization of the data that is able to maximise the prediction of the data variables [10]. This fusion of
models was correct in achieving an understanding of the explains Al manifestation in improving the competence of CDSS. The
rationality of SVM consists of the accretion of implicit regulations and the control of the linear and non-linear data through
clarity, and then enhancing the efficiency of the data and information.

3.3. Ethical consideration

Ethical consideration is the epitome of maintaining the morality of the research through proper validation of the resources
[11]. The anonymity of the healthcare professionals was maintained during the time of collecting data. In addition to this, the
collected data was securely stored in the system of the researcher with a valid password and antivirus software. The sole
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purpose of using the responses is to gain a strong understanding of how XAl have a strong influence within the various
operations of healthcare. Further explanation illustrated that the data and information are kept confidential under the General
Data Protection Regulations. Lastly, post completion of the research, the data and information are going to be de-identified.

4. Analysis of the Results and Discussion
4.1. Statistical analysis
4.1.1. Descriptive Statistics
Descriptive statistics are known as the summarisation of the data by describing its main features through the analysis and
evaluation of the data set over a long period.

Table 1. Descriptive Statistics
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The analysis of the table has revealed that the average age of the patients is 54.2, with moderate variability as calculated
from the standard deviation, has amounts to 20.5. Most of the vitals have mainly fallen under normal range, though among
them, cholesterol has showcased a high standard deviation of 39.2. The mean value being 0.8 has also illustrated a strong
model confidence, and the prediction of the diseases was balanced as well. A well distribution of the clinical domains was also
observed among the 6 categories, and the data quality appears to have minimal skewness across most of the variables.

4.1.2. Correlation
Correlation is responsible for measuring the direction and strength of a linear relationship that was constructed between
two variables, and this linear relationship always ranges between -1 to +1.

Table 2. Correlation
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The table containing the evaluation of the correlation between the variables has predominantly reduced a weak
relationship, suggesting that maximum of the clinical variables opt for independent operational excellence. In addition to this,
the table has also illustrated a notable relationship through a moderate but positive correlation between interpretability metrics.
Contrary to this, a weak correlation was observed between feature importance and glucose, and the overall evaluation
explained that there was no strong correlation with the existing prediction of diseases. Therefore, it has been indicated that the
models of explainable artificial intelligence depend on complicated interactions rather than dependencies on single variables.

4.1.3. ANOVA

Analysis of variance is the full form of ANOVA, responsible for testing the statistical significance between means
encapsulated in more than three groups. An extreme significance was showcased through the results presented in the table
between the clinical variables and their critical value exceeding 1.64. This indicates that there is a substantial variation between
the barrier metrics related to the patients, confirming that such clinical features are the representation of distinct measurements
having various Central tendencies across the population accumulated in the dataset.

Table 3. Anova

Amova: Single Factor

SUMMARY
Groups Count S Average Variarnce
Age 1000 34193 34 421
Gender 1000 1498 1 0
Blood_Pressure 1000 130168 130 214
Heart_Rate 1000 803553 81 101
Glucose_Level 1000 108686 109 900
Cholesterol 1000 200483 200 1537
Body_Temperature 1000 37024 37 0
WEBC_Count 1000 7970 g 4
Oxygen_Saturation 1000 95998 96 4
BMI 1000 26791 27 16
Medel Confidence 1000 754 1 0
Feature_Importance_Score 1000 630 1 0
Explanation Clarity_Score 1000 751 1 0
Local_Interpretability 1000 701 1 0
Global_Transparency_Score 1000 6o 1 0
Disease_Prediction 1000 504 1 0
Clinical Domain 1000 3311 4 3
ANOVA
Source of Variarion 55 af AE F F-value Ferit
Between Groups 56590656.51 16.00 3536916.03 18787.14 0.00 1.64
Within Groups 319726330 1698300 18826
Total 5978791982 16999 00
4.1.4. Evaluation of the data through graphical representations
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Figure 1. Blood Pressure as Per Gender and Age

The summation of the blood pressure of male and female individuals according to age is maximum for the male
individuals when compared with the female individuals.

115



Chitiz Tayal / IJETCSIT, 5(1), 112-118, 2024

Sum of Age Sum of Heart_Rate Sum of Glucose Level Sum of Cholesterol  Sum of Body_Temperature  Sum of WBC_Count

120000
Values
100000
B Sum of Age
80000 B Sum of Heart_Rate
60000 u Sum of Glucose_Level
m Sum of Cholesterol
40000
B Sum of Body_Temperature
20000
B Sum of WBC_Count
0
F M
Gender ~

Figure 2. WBC Count, Temperature, Cholesterol, Glucose and Heart Rate Level as Per Age and Gender.

In a similar manner from the evaluation of the heart rate, glucose, cholesterol, temperature and WBC count, it has been
observed that the increase of cholesterol is maximum for the male individuals.
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Figure 3. Oxygen Saturation, Model Confidence, and Feature Importance Score According to Gender and Age

A similar oxygen saturation was observed between the male and female patients, as shown in the above-mentioned figure.
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Figure 4. Explanation of the clarity score and interpretability as per gender and age

The explanation of the clarity and interpretability score as per the gender and age of the patients illustrated that the male
patients are inclined towards diseases such as diabetes, heart disease and respiratory conditions, while female patients mostly
face respiratory conditions and diabetes.
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Therefore, the utilisation of the clinical decision support system through XAl is accurate in understanding the condition of
the patients and generating better treatments as per the condition.

4.2. Evaluation of Support Vector Machine through performance metrics

From the evaluation of the dataset, the following are the important calculations:
True Positive (TP): Actual is 1, predicted is 1= 244 * (1000/632) = 386
False Positive (FP): Actual is 0, predicted is 1 = 75 * (1000/632) = 119
False Negative (FN): Actual is 1, predicted is 0 =72 * (1000/632) = 114
True Negative (TN): Actual is 0, predicted is 0 = 241 * (1000/632) = 381

4.2.1. Calculation of the performance metrics

Accuracy
TP + TN
Accuracy =
TP + TN + FP + FN
Accuracy: 386+381/1000= 0.767
Precision
Precision — TP
recision — m
Precision: 386/386+119= 0.7644
Recall
Recall = i
TP + FN

Recall: 386/386+114=0.772

F1-Score

Precision x Recall
Precision + Recall

F1-Score = 2 x

F1-Score= 2* (0.7644*0.772)/(0.7644+0.772)= 0.768

Therefore, the final evaluation of the SVM performance metrics for 1000 entries is described in the following table:
Table 4. Finalisation of the Performance Metrics of SVM

Metrics | Value

Accuracy | 0.767

Precision | 0.764

Recall 0.772

F1-Score | 0.768

The consistent utilisation of the SVM model indicated that 76.7% is the percentage of all correct predictions. 76.4%
outlined accurate but positive predictions; similarly, 77.2% is the amount of actual diseases detected. Finally, 76.8% is the
accumulation of the balanced score between recall and precision.

4.3. Discussion

The performance evaluation of the statistical data demonstrated that explainable artificial intelligence has the capability of
achieving predictive but balanced performance, along with the maintenance of interpretability within the clinical setting. The
use of the model called support vector machine has a consistent accuracy of 76.7% and F1 score, during 76.8% aligned with
the findings that explainable artificial intelligence has the capability of maintaining clinical accuracy by presenting transparent
but accurate reasoning [12]. The week correlation here has also outlined a limited relationship between the support of the
clinical variables conceptualising the fact that medical diagnoses are strongly dependent on complicated but multi-factorial
introduction dependencies on single variables.

The demographic patterns revealed through the graphical analysis particularly centralising on gender specific inclinations,

outline the fact that explainable artificial intelligence is the epitome of presenting personalised support in developing accurate
clinical decisions [13]. The substantial utilisation of variables through ANOVA has also validated the fact that clinical
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diversity is important for robust generalisation of the model. Further evaluation of this information outlines the balanced
performance of recall and precision, indicating the importance of fair construction of algorithms within the healthcare system
through the utilisation of artificial intelligence, particularly in the area of equal detection rates in the area of patient sub-groups.

However, the evaluation of the data and information has also highlighted the fact that balancing interpretability followed
by the power of prediction is very important for gaining accurate insight from the moderate performance of the dataset. The
demonstration of the model support vector machine has outlined the importance of clinical utility and understanding the knee
for expert accuracy in diagnosis for a better clinical decision support system. Therefore, the alternative advancement of
artificial intelligence in the diagnostic system has the capability of strengthening not only the clinical expertise but also to
present proper treatment Strategies for the patients.

5. Conclusion and Future Work
5.1. Conclusion

The Al-based solutions are more powerful in terms of solving the medical decision-making processes. However, they are
very far in case of its application in real world. The implementation of Al systems in healthcare is conditioned by a number of
factors. Axenicity and explicability of Al models are part of the requirements of encouraging clinical reliability [14].
Explainable Al and CDSS must work in order to guarantee the improvement of patient healthcare. Improvement of such
intelligence systems in the health sector has the ability to introduce a global change in the mode of treatment.

5.2. Future work

Medical community is tasked with the role of introducing the optimal means of nurturing patient care [14]. Further
researchers can point at several features of XAl-based CDSS in resolving the most important healthcare challenges such as
abdominal surgeries and heart transplantations. This would be a new door of opportunities to the upcoming surgeons to
perform a critical surgery in the coming days.
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