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Abstract - In modern networks, where stronger ultra-low
latency and data throughput are needed, Multi-Access Edge
Computing (MEC) becomes a necessary architecture for
5G/6G networks that support real-time applications.
Nevertheless, a dynamic edge ecosystem, diverse device
properties, and privacy preservation needs interfere with MEC
resource management. This paper proposes a new Federated
Learning (FL) framework to predict resource allocation in
MEC that removes such barriers by enabling decentralized
model training to be performed directly at the network edge. In
contradiction to conventional centralized strategies, our
approach significantly reduces communication costs by up to
90% while providing competitive performance due to the
efficient use of non-1ID data at edge locations. Feeding
lightweight CNNs and reducing the whole energy demand is
achieved by the balanced computational requirements in the
design aggregation through FedOpt aggregation. Based on the
results of outcome analysis on MNIST and Fashion-MNIST, we
observe accelerated convergence, increased energy savings
and performance scalability, where energy consumption per
training round is 29% lower than in centralized systems. This
approach shows impressive results in processing non-11D data
due to reliable performance on different edge devices. Such
discoveries show that FL has a high potential to transform
MEC resource allocation and thus contribute to more
adaptive, protected, and efficient edge computing architecture.

Keywords - Federated Learning, Multi-Access Edge
Computing, Resource Allocation, 5G/6G Networks, Non-11D
Data, Distributed Machine Learning, Energy Efficiency, Model
Aggregation.

1. Introduction

Modern networking has been greatly boosted with Multi-
Access Edge Computing (MEC), enabling increased
computational and storage aspects nearer to the end users. [1-3]
The reduced distance between users and resources in MEC
networks results in lower latency levels, excludes network
bottlenecks and improves the quality of service for such
latency-sensitive  applications as augmented  reality,
autonomous vehicles and industrial control systems. However,
the explosion of connected devices and data-devouring
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applications creates a new requirement to manage and perform
the distribution of resources at the network’s edge.
Conventionally, bandwidth constraints, high latency, and the
limitations of centralized processing present obstacles that tend
to plague such cloud-centric systems with these requirements,
challenges that are especially difficult to solve.

Efficient use of distributed resources in the MEC
environments calls for rapid, data-driven decisions to
maximize performance. Centralized deployment of machine
learning models places many restrictions on their capability to
address the requirements of MEC environments.
Conventionally centralized methods necessitate continuous
sending of data from the end nodes to the main server, which
puts heavy demands on the bandwidth and opens doors to
privacy concerns. Such concerns are particularly acute across
such industries as healthcare, finance, and critical
infrastructure where data confidentiality is an issue of the
highest priority. In order to address this, Federated Learning
(FL) has been designed as a decentralized approach that allows
edge devices to collaborate and train machine learning models,
which remain private at the edge. Federated learning addresses
privacy because local storage of confidential data is only
shared on the server if parameters of well-trained models are
utilized. Federated learning that has less consumption
bandwidth and improved privacy provides an efficient solution
for the desirable performance of MEC systems. Embedding
federated learning into resource allocation systems allows edge
networks to produce more accurate, current predictions while
maintaining strict privacy requirements. This paper introduces
the proposed federated learning framework that balances
resource allocation in MEC contexts. Our framework uses
local processing to make accurate predictions with the least
dependence on network bandwidth. Our method has improved
latency, resource distribution, and network efficiency through
rigorous simulation and practical test cases. With such a
foundation, this paper’s focus bridges the gap between
progressive edge intelligence methodologies and practical edge
computing deployments.
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2. Related Work

To realize the full potential of Multi-Access Edge
Computing (MEC) in future networks requires sophisticated
allocation of resources and adaptive task management. [4-6]
This article focuses on important progressions in three basic
areas. Resource allocation methodologies in MEC focus on
machine learning-based approaches to efficiently adapt
resources and review federated learning as a viable, secure
option for training in distributed regimes.

2.1. Resource Allocation in MEC

As the deployment of 5G and 6G continues to accelerate,
resource allocation of MEC systems has become increasingly
important to meet the requirement of ultra-low latency and
high reliability. However, in the early stages, mathematical
optimization methods such as Mixed-Integer Linear
Programming (MILP) were adopted for task offloading
management, energy efficiency management, and server load
balancing. The in-depth survey conducted by Annisa et al.
centered on dynamic resource orchestration for Ultra-Reliable
Low-Latency Communication (URLLC), outlining the
complexities of being in a multi-tenant edge setting.
Traditional optimization techniques usually fail when
implemented against large-scale MEC operations' fast-paced
and distributed nature, which is a key aspect of success in
managing smaller networks.

Recent days have seen a synergizing effect of stochastic
control techniques such as Lyapunov optimization and MILP
to enhance stability and reduce the cost of implementation in
Ultra-Dense Networks (UDNs). For example, the LYMOC
algorithm reduced system costs by 30% through dynamic
allocation of mobile devices to the most suitable MEC servers,
depending on current traffic conditions. These strategies are
especially suitable for environments with many connected
devices via managing the trade-offs between latency, energy
savings and computational overhead. However, as more
complex and larger networks emerge, traditional optimization
methodologies are failing to deliver and lead researchers to
seek more flexible and data-informed alternatives.

2.2. Machine Learning in MEC

Machine Learning (ML) has played out as a powerful tool
for managing resources in MEC, whereby systems can learn
smoothly to accommodate shifting network situations.
Reinforcement Learning (RL) differs in its ability to facilitate
autonomous and unsupervised long-term decision-making.
Techniques from deep reinforcement learning, such as RAPG-
DDPG, have significantly reduced latency and energy expenses
through repeated learning of optimal task offloading policies
with continuous interaction with the network environment.
These approaches outperform traditional heuristics, reducing
latency by 15-20% through adaptive offloading of the
computation tasks to local devices and edge servers. The
application of supervised learning algorithms enables the
forecasting of network congestion and server occupancy,

enabling resource management to respond faster. The
integration of RL with Graph Neural Networks (GNNs) has
been explored to increase the scalability of edge-cloud systems
in environments with heterogeneous devices. These systems
can effectively model the complex network structures of MEC
environments, thus yielding promising results in multi-tier
edge computing scenarios that require low latency and efficient
power usage. Even though there has been an improvement in
the rate at which there have been improvements, the resource
constraints encountered by edge devices continue to present
challenges to real-time model training and inference, leading to
increased efforts to develop more efficient learning techniques.

2.3. Federated Learning Techniques

Federated Learning (FL) is a promising solution for MEC
because it offers an efficient alternative to centralized learning
despite challenges such as data privacy and communication
overhead. The edge devices that use FL can train a common
model in concert by merely sending the gradients or even the
parameters without the need to send raw data, which, in turn,
will reduce the bandwidth requirements and protect the users'
privacy. Federated learning is critical for IloT applications
when sensitive operational data remain local and do not have to
traverse networks. Advanced FL architectures have been
developed to optimize training efficiency in MEC contexts. For
instance, utilizing local edge devices on nearby MEC servers to
perform partial computation in M-layer FE architectures can
reduce training latency by about 40% compared to classical
centralized models. These frameworks are able to meet the
need for tight latency restrictions by adaptively allocating
computational and bandwidth resources and thus preserve high
model performance while speeding up training. Lyapunov-
based Federated Learning (FL) systems have been proposed to
control energy usage and have an equitable distribution of
resources, making them suitable for dense and heterogeneous
network environments. We work towards improving FL in a
real-time scenario with a minimal resource state, as present in
the MEC architectures, greatly.

3. System Model and Problem Formulation
3.1. MEC System Architecture

The architecture for federated learning-based resource
allocation in MEC consists of three main layers: The system
effectiveness and performance are driven by such key building
blocks as End Devices, Edge Layer (MEC Nodes) and
Cloud/Model Training Layer. [7-10] This layered approach
reflects the MEC systems' actual hierarchy, directing data from
end devices toward edge nodes and, finally, to the cloud for
complete model processing and continuous data storage. This
approach distributes computations efficiently, minimizes
latency, and enhances data privacy. The base layer is the End
Devices Layer, which is composed of many loT devices that
generate and use colossal amounts of real-time data. The loT
devices have regularly sent the local context and usage metrics
such as CPU load, memory status and network traffic to their
respective edge node. It is essential for decision-making
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regarding resource distribution at this level to accurately track
site-specific data here. As such, it becomes the foundation for
the federated learning clients that ingest this data at the edge to
carry out their training activities. The Edge Layer (MEC
Nodes) serves as the intermediate tier that houses the Federated
Learning clients (FL Clients), making it possible for data to be
processed. Each edge node has a Local Resource Monitor that
monitors the real-time CPU, RAM & network bandwidth
allocations. Edge-based FL Clients train their models based on
local data collection and produce them to the central FL
aggregator, which aggregates and improves them.

By implementing this distributed training regime, there is
a substantial reduction in the need to transfer raw data elements
that strengthen privacy and save bandwidth. At the highest
level of the hierarchy is the Cloud/Model Training layer which
can be considered a central repository for holding the backup
for models and record of previous data logs. This node controls
the FL Aggregator and the Global Resource Allocation
Module, making it possible to aggregate and optimize models
produced by edge nodes that participate. Refinement of the
updated global model is then distributed across each edge
node, leading to better predictions of resource distribution.
Moreover, the layer involves a Policy Engine that utilizes pre-
set rules in order to disperse computational loads and
encourage an efficient sharing of resources on the entire MEC
network. The architecture enables efficient, private
management of resources through federated learning by
coordinating allocations among a huge heterogeneous network
of edge devices. By eliminating centralized data handling and
storage, this architecture provides lower latency and more
resilience, which increases MEC systems' scalability and
flexibility for the expanding number of loT and real-time
applications.

3.2. Dynamic Resource Allocation in MEC Nodes

Dynamic resource allocation in MEC nodes is necessary
for efficient and responsive edge computing. Unlike traditional
cloud settings, MEC nodes must accommodate frequently
changing workload demands while providing low latency and
high throughput. The real-time adaptation of computational,
storage, and networking resources is needed to suit the varying
demands and the network environments observed at MEC
nodes. Being supportive of such applications as augmented
reality, industrial automation, and real-time analytics, MEC
nodes face major challenges in ensuring adequate resource
management optimisation. MEC nodes can adjust resource
allocation strategies without human intervention by leveraging
immediate data from end devices such as CPU and memory
utilization and network traffic patterns. This strategy reduces
the overhead of communication required to facilitate central
control and increases the rate of the responses. To offer another
instance, MEC nodes include resource monitors that track

current resource availability and utilization patterns and are
further considered by machine learning models to predict
optimal resource distribution. Federated learning, however,
augments this by enabling MEC nodes to collectively train
global models while keeping the individual data private and
reducing network traffic. By employing self-directed resource
management, nodes in the MEC architecture gain optimal
efficiency and thus increase overall system performance.

Dynamic resource allocation should consider the wide
range of capabilities of connected devices in MEC, including
various levels of computational power, energy storage and data
production rates. With many device capabilities, MEC systems
should use dynamic, context-aware resource management
strategies to optimize service to any edge node and
application's unique conditions and user requirements. While
real-time monitoring accompanies predictive algorithms in
empowering MEC systems, optimising resource distribution
reduces latency and improves overall service delivery.

3.3. Optimization-Based Resource Management Formulation
Optimization-based methods form a core approach towards
resource allocation in MEC platforms, promoting systematic
balancing of various objectives such as reducing latency,
saving energy and increasing throughput. Conventional
methods frame resource allocation as a constrained
optimization exercise to find an optimal distribution of
computational and networking resources with respect to system
specifications and end-user expectations. Mathematically, [11-
13] this corresponds to a multi-objective optimization
framework where the objective function embodies the
dynamics among key performance indicators like response
speed, computational demands and bandwidth availability. A
common objective is to optimize in terms of the quickest
completion of all tasks at MEC nodes, as well as energy
consumption  under  specified  boundaries.  Properly
characterizing task arrival rates, processing delays, and
resource availability such that how they interact can be clear is
key but complicated by the dynamic and uncertain conditions
that pervade edge networks. As a reaction to such challenges,
methods such as Lyapunov optimization and deep
reinforcement learning have developed, using instantaneous
changes in the network and analytical forecasts for
optimization. Continuous adjustment of resource allocation in
regard to the real-time network metrics allows these
approaches to continue providing successful task scheduling in
densely populated edge networks. Moreover, the combination
of machine learning in entity optimization strategies has shown
its potential to improve scalability and real-time response, thus
making such hybrid methods an ideal solution for upcoming
MEC systems.
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Figure 1. Federated Learning Architecture for Resource Allocation in MEC
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3.4. System Constraints and Assumptions

A robust framework for resource distribution in MEC
systems relies on taking insights for granting room to operation
limitations and assumptions that prevail around the system.
These restrictions are often a function of edge infrastructure
physical confines, bandwidth restrictions of the network,
susceptibility to low latency and the great disparity of
performance  specification across connected devices.
Consequently, the MEC nodes often face power constraints,
which is why resource-saving algorithms aiming at optimizing
efficiency and the maintenance of high-quality service
provision should be developed. End devices in MEC systems
are highly diverse, from low-powered resources in I0T sensors
to high-performance industrial controls, complicating the
management of resources. So many variations between the end
devices result in significant variations in data creation,
computational capacity, and network availability that present
challenges in devising standard resource allocation guidelines.

Furthermore, bandwidth and latency networks are also
commonly edged in remote or congested urban environments,
increasing resource allocation's complexity tremendously. In
many MEC systems, uniformity of the network and stable
performance are assumed, even though the former is rarely
aligned with the diverse and changing realities of deployed
systems. However, advanced models incorporate random
variables to reflect edge networks' stochastic nature, increasing
resource distribution techniques' accuracy and robustness. With
the addition of mobility, volatile connectivity, and fluctuating
workloads, these models deliver workable and deployable
solutions in realistic environments.

4. Federated Learning Framework

Federated Learning (FL) identifies itself as a
groundbreaking approach towards distributed machine learning
since it enables collaborative learning practices without
compromising private data security. [14-16] The framework is
best in Multi-Access Edge Computing (MEC) environments,
which have multiple 10T devices, sensors, and mobile
applications that provide data at the network’s edge. By
training local models on these edge devices and only sharing
incremental updates, FL significantly reduces communication
costs, ensures sensitive information is secured against leakage
and reduces threats involving data exposure.

The FL framework in MEC is designed to address unique
issues associated with edge networks, including restricted
bandwidth, variances regarding device capabilities, and highly
variable network conditions. Instead of sending data for upload
to a cloud server during the training process, which is
commonly practiced in normal learning paradigms, FL allows
edge nodes to train and process their local data. Using a
decentralized system, the framework reduces the need for
constant data transfers. It allows for real-time learning, critical
to applications requiring low latency, such as autonomous
vehicles, healthcare systems and manufacturing processes. In

order to deal with the tension between model accuracy and
communication demands, federated learning platforms usually
employ state-of-the-art aggregation algorithms. By way of
example, federated averaging (FedAvg) uses local training
epochs and data volume to collect updates from edge devices,
enabling efficient communication with model integrity.
Progressions such as hierarchical federated learning
incorporate several aggregation stages inside the MEC nodes
and,7 subsequently, enhance bandwidth efficiency and
computational performance. This approach does not only
incorporate the distributed nature of edge computing
architecture but also caters to the requirements of applications
that increasingly need a fast response time and robust data
protection.

4.1. Overview of Federated Learning

Federated Learning allows for collaborative training of a
single global model that belongs to different devices with the
specific advantage of not using private data. Traditional
centralized learning has difficulty achieving privacy and
scalability; Federated Learning reduces the problem as the
training procedure is localized. In a regular FL procedure,
devices locally train the models on private datasets and send
their emerging parameters (for instance, weights and gradients)
to a central server for aggregation purposes. The server
computes the aggregated updates, updates the global model,
and forwards the updated global model back to all devices
participating in the training to continue the process.

This decentralized training comes with several important
advantages. In essence, FL reduces the communication burden
by only acting from model update exchange, eliminating the
need to transfer full datasets. This method becomes very useful
for MEC systems, where bandwidth is often constrained, and
immediate response is critical. Second, the decentralized
character of FL inherently provides data privacy protection by
storing sensitive information on a local device and reducing the
probability of data leaks and compliance issues. The fact is that
FL is well-suited for healthcare, finance and smart city
applications, where strict data confidentiality is needed.
Moreover, FL systems are arranged flexibly, accommodating
different computational powers and data distributions on the
edge devices, and, in turn, each node trains its model on its
own. As FL is framed to operate with varied device properties,
it is thus better equipped to tolerate variation in performance
between 10T devices, smartphones, and industrial sensors, thus
increasing the overall network stability and effectiveness.
Additional challenges employed when FL is implemented
include the management of non-11D data reliability of devices
and adapting to the asynchronous training, all of which must be
handled effectively to retain consistent model accuracy in the
network.

In response to the above problems, several -creative
optimization techniques have been developed, which include
personalized FL, gradient compression, and asynchronous
aggregation, all aimed at enhancing model convergence,
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reducing data transfer requirements and improving the overall
flexibility of the systems. This, therefore, makes FL critically
important in facilitating intelligent and real-time decision-

making in MEC systems that, in turn, underpin the
development of sophisticated, perceptually against, secure and
scalable edge computing networks.

Start

Local Data Collection

Model Training on Edge Devices

Local Model Update

Model Aggregation at MEC Server

Global Model Update

Model Distribution to Edge Devices

Convergence Check (Yes: Stop, No: Return to Local Data
Collection)

Figure 2. Federated Learning Workflow in MEC Systems

4.2. Client and Server Interaction in MEC

Multi-Access Edge Computing (MEC) client-server
communication differs entirely from typical cloud-based
configurations. Decentralization of the data processing and
storage in MEC enables organizations to significantly reduce
latencies and increase the real-time processing efficiency for
end users. Such an architectural approach is indispensable if
autonomous vehicles, augmented reality, and industrial Internet
of Things devices are to effectively deploy latency-critical
applications that require quick data interaction and low latency.

Mobile and fixed-line consumers, such as smartphones,
connected vehicles, and smart buildings, are the major data
providers in this configuration, continually transporting
contextual data, sensor information, and user activity to local
MEC servers. Edge servers inside Edge Compute Data Centers
are the primary access channel for handling local
computational work, reducing round-trip latency common in
conventional cloud-based systems. By being near the data
source, these solutions promote faster decisions and local data

analysis, leading to an improved end-user experience. The
promotion of an Edge Compute Data Center configuration
includes the following areas: MEC servers for computational
purposes, Firewall/NAT for security, VSRX Secure Gateways
to preserve data transmission, and MEC Hosting Infrastructure
for the virtualization of network services. Combining these
elements enables low-latency, resource-rich data processing at
the edge, eliminating the necessity of long network travel to
reach a centralized cloud. Locally processing data is imperative
as the applications require fast response and continuity of high-
bandwidth. When the edge process is complete, data is
forwarded to the Core Network for further data aggregation,
long-term storage, or analytical analysis in a centralized cloud-
based environment. By its layered construction, MEC solutions
can ensure responsive processes and provide comprehensive
data processing to improve general network resource
management. Further, the MEC layer is critical in linking the
edge processing capabilities and the internet to ensure no data
exchange disruption.

42



Ramesh Kasarla / IJETCSIT, 6(4), 37-48, 2025

MEC Hosting
Infrastructure

Cloud

I

Core

h@
= D
Edge Compute Data Center
/\\ |j Firewall / NAT '
# VSRX Secure  Server
23 Gateway Apps
Mobile and
Fixed Line
Consumers

Network

Figure 3. MEC Client-Server Interaction Architecture

The interaction model provided in MEC brings a
significant difference from a cloud-based system, thus helping
to make the data infrastructure much more dynamic, timely and
secure. This design enables real-time processing and
strengthens network resilience and scalability, making it an
integral part of the 5G/6G network architecture.

4.3. Model Aggregation Strategy (e.g., FedAvg or Other
Variants)

The strategy for aggregation of models used within
Federated Learning (FL) for MEC has a massive effect on
global model efficiency and accuracy. [17-20] Federated
Averaging (FedAvg) is one of the most popular approaches, in
which the updates from local training sessions of edge devices
are utilized to develop a common global model. This strategy
reduces communication burden, as devices can train locally
several times before sharing their weights, thus reducing the
number of rounds required for convergence, as reported by
McMaham et al. FedAvg performs optimally in situations
where MEC systems are subject to restricted bandwidths, and
there are high requirements for low latency. Usually, the
FedAvg algorithm goes through the following three important
stages: The process starts with the distribution of the global
model to all devices and then individual training of the global
model on each device’s private dataset. The final step is
aggregation in which the central server will average the
weights received from the updated models from all devices so
as to produce the next global model. FedAvg implies the
effective trade-off between the requirements for processing and
data transmission. The algorithm is appropriate for small-
bandwidth and high-latency MEC applications dealing with
heterogeneous devices and data patterns. FedAvg also poses
challenges off-site, mainly because it relies on non-1ID data
and, thus, biased data models among various devices.

To address such problems, there have been versions of the
FedAvg set. For instance, FedProx introduces a proximal term
when optimizing the local objective function, improving
convergence stability against client differences. FedNova and
SCAFFOLD approaches address client drift by smoothing

model updates with global gradient information, enhancing
fairness and efficiency throughout the training cycle. In view
of the diversity of device attributes, including processing
capacity, energy resources, and data quality, these advanced
strategies are essential in MEC environments. The success of
federated learning in MEC systems depends on choosing an
acceptable aggregation method.
44. Data Privacy and Communication
Considerations

The improved data privacy is the main motivation for
using federated learning in MEC environments. Regular
centralized solutions require frequent data transfers to a
centralized body, while federated learning puts data on the
device to preserve privacy, only exchanging model updates and
not raw data. Such architecture greatly reduces data leakage
risks and helps adhere scrupulously to regulations such as
GDPR and HIPAA, essential to industries such as healthcare,
finance, and smart manufacturing. However, there are various
challenges in promoting privacy in federated learning.
Although the actual data is not sent directly, updates of models
may inadvertently leak privacy since they can be vulnerable to
gradient leakage or a model inversion attack. To address
potentially objectionable privacy concerns, the FL frameworks
now utilize a number of sophisticated privacy protection
methods. Differential Privacy (DP), for example, purposefully
injects noise into model updates to protect against the
inferences of personal information from the aggregate result.
Homomorphic  Encryption and  Secure  Multi-Party
Computation provide cryptographic protection to enable model
aggregation without compromising individual update privacy.

Efficiency

Efficient communication is also essential in achieving
success in MEC-based federated learning. Limited and
unstable bandwidth availability is common in edge networks,
so minimising data exchanged per communication round is
essential. Efforts such as model compression, gradient
sparsification and weight quantization reduced the amount of
data to be transferred considerably, alleviating training and
network  bandwidth  requirements.  Moreover, Top-k
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sparsification guarantees that only the most influential model
updates are sent, and weight pruning is used to eliminate
redundant links to maximize the network resources. The
system achieves better resource utilization and efficiency by
tuning the communication intervals to network, device and task
requirements. By merging these privacy-preserving and
communication-efficient approaches, MEC-based federated
learning can allow high performance, scaling, and secure
machine learning and thus emerge as a viable solution to real-
time, data-intense applications.

5. Proposed Approach

The proposed method considers that using Federated
Learning (FL) in Multi-Access Edge Computing (MEC) will
allow efficiency and protection from privacy resource
allocation. By combining distributed machine learning with
edge computing, this model allows for reduced latency,
curtailed bandwidth needs, and ensures privacy of user
information, thereby making it ideal for high-speed
applications with high volumes of data. This architectural
design is customized to address challenges posed by non-I1D
data, different device capabilities and changing network
conditions to ensure consistent performance in different MEC
setups.

5.2. Feature Selection and Data Preprocessing

Data Collection
from Edge Devices

5.1. Architecture of the Proposed FL-Based Model

The proposed FL-based model's architecture uses the
hierarchical nature of MEC systems, wherein data is generated
at the edge, made locally available, and aggregated on a central
server. Three essential layers support architecture. The End
Devices Layer, the Edge Node Layer, and the Aggregation
Server Layer. 10T devices and mobile clients at the base stage
aggregate and analyze real-time data locally and use that
information to train their distinct models. The loT devices and
mobile clients present at the base level make up the essential
data providers for the FL system and help train the common
model.

The Edge Node Layer acts as a middle ground, collecting
model updates from connected devices, performing partial
aggregate and adjusting the allocation of resources according
to local information. This layer processes updates around the
boundaries, easing communication weights off the central
server accelerating scalability and response time. The
Aggregation Server Layer normally resides within the core
MEC controller or can be reached remotely on a cloud server
and performs the final step of global model aggregation by
aggregating all the data from the associated edge nodes into a
complete, system-wide model. By splitting functionality into
three layers, the solution optimises resource utilisation, reduces
network traffic, and increases the system’s reliability.

Data Preprocessing

Feature Selection

Local Model
Training

Model Aggregation
at MEC Server

Convergence Check
(Yes: Resource
Allocation
Decision, No:
Return to Data
Collection)

Global Model
Update

Figure 4. Proposed Resource Allocation Approach Using FL

Feature selection and data preprocessing optimization are
paramount to obtaining the best results from an FL model in

MEC environments. As a result of a network-centric
implementation of FL, edge devices usually get data of
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heterogeneous quality, volume and distribution. Such
variability can threaten the accuracy of the model unless
controlled. The proposed approach utilizes local and global
feature selection techniques to maximize the training procedure
by only selecting the most important and representative
features. Devices clean noisy data, fill in missing values, and
normalize features to satisfy the requirements of the global
model within each data set. Devices employ min-max scaling,
standardization, and outlier detection techniques to ensure the
preprocessed data is consistent throughout all edge nodes.
Furthermore, using domain-specific feature engineering, the
approach can extract substantial meaning from raw sensor data;
for instance, it can spot network congestion, device mobility
trends, and necessary application latencies.

The aggregation server improves feature selection by
identifying universal trends among devices, reducing the
dimensionality of data and pruning features that are not
relevant. Applying this two-stage feature selection method
enhances the model's precision and reduces hardware demands
for data transfer, thus reducing needless information
transferred between training rounds.

5.3. Training and Update Mechanism

The training and updating cycles in the proposed FL
framework rely on periodic model interchange among the edge
devices and the central server. The Edge devices make use of
their data to individually train local models and perform many
local updates before moving the model’s parameters to the
central aggregator. With the use of decentralized model
development, the number of times data is sent to the central
server is reduced and, in effect, reduces the costs involved in
communication and maintaining privacy-worthy personal
information. The proposed scheme enhances model
performance and decreases convergence time by using an
adaptive learning rate and tuning batching parameters to align
with the distinct functionality of single-edge devices. Such
flexibility allows the low-power edge devices to be operational
without burdening already constrained resources. Moreover,
state-of-the-art gradient aggregation methods such as FedAvg
or FedProx are applied to ensure that the global model
accounts for the diverse data of MEC applications and captures
their profiles. Updates made at edge devices are accumulated,
and the central server updates the global model, considering
differences in the number of data, device condition, and
network situation. The process remains effective, with final
iterations, so that the global model eventually converges to an
optimal state and the resulting federated learning framework
can support real-time edge applications efficiently and at scale.

5.4. Convergence and Complexity Analysis

The testing of convergence and complexity is central to
proving the scalable and efficient performance of the proposed
FL-based framework. Centralized models do not suffer from
the problems of delayed gradients, non-I11D data distributions
and asynchronous updates compared to federated systems that

are vulnerable to these considerations that impact model
accuracy and training efficiency. The proposed method utilizes
convergence acceleration techniques to improve performance
and reliability, including momentum optimization, adaptive
learning rate, and gradient correction.

Several factors (such as the number of devices
participating, the size of local training datasets and the
frequency of global aggregation) affect overall convergence
time. The framework achieves efficiency and accuracy by
changing parameters, ensuring that MEC applications with
tight latency constraints respond within acceptable time
frames. Complexity analysis shows that computational hunger
in this setting is significantly lower than in classic centralized
architectures because a large fraction of training is done on the
edge while offloading most computation tasks from the central
server. The hierarchical aggregation's structure assists in
minimizing communication delay that is part and parcel of FL,
thus enhancing the system's scalability and robustness against
failures. The distributed design will enable faster convergence
and reduce energy requirements, making it suitable for large-
scale MEC deployments.

6. Performance Evaluation

A sequence of thorough experiments showed the
feasibility of the proposed FL-based resource allocation model
using a realistic MEC simulation environment. Performance
was assessed based on key metrics such as convergence rate,
communication  efficiency, energy consumption, and
classification rate, which is a good representation of the
operational constraints of the MEC network. In this section, the
experiment setup is described, the evaluation criteria are
presented, and the proposed model is compared with the classic
baseline approaches.

6.1. Experimental Setup

Experimental evaluation was carried out within
Kubernetes-managed edge clusters to replicate the distributed
architecture of MEC systems with a variety of heterogeneous
10T devices and MEC servers that reflect integrated real-world
configurations. Two of the best-known image datasets were
used in the training process: MNIST, with 60,000 samples, and
Fashion-MNIST, containing 70,000 grayscale images, were
each composed of non-l1ID distributions using a Dirichlet
distribution with a concentration parameter o=0.1\alpha =
0.10=0.1 The data partitioning creates intended heterogeneity,
mirroring the differentiated, personalized data structure in the
real practical MEC situations.

The neural network design employed lightweight CNNs
optimized for edge computing with support for FedOpt to
allow effective global model synchronization and provide
higher convergence chances during asynchronous training.
Deployment of 10-20 edge nodes with 4 cores and 4 GB RAM
per node and 2 MEC servers with 8 cores and 16 GB RAM
was performed to maintain an appropriate balance of
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processing power. The training parameters were configured to
equal 10-20 local training cycles for a user, 10-15 global
iterations, and asynchronous model updates for the resource-
constrained 10T devices, encouraging scalability.

6.2. Evaluation Metrics

Four primary efficiency metrics were used to evaluate the
proposed Federated Learning (FL) model's effectiveness in the
Mobile Edge Computing (MEC) environment, which all
focused on different aspects of system performance. The
Convergence Speed indicator measures how quickly the model
achieves stability, that is, in terms of training epochs. It is
essential for metric-driven assessment of training efficiency
that agile adaptation in dynamic MEC environments is possible
to lower latency and save resources. There is also a crucial
metric, which is referred to as communication overhead, the
quantity of data transferred between devices during training,
which is especially important when working with a restricted
amount of bandwidth available. Communication overhead is
reduced, and system performance and processing of larger data
volumes are sustained. We measured both Micro and Macro F1

heterogeneous situations as they measure generalizability and
maintain unbiased class treatment; Macro F1 pays attention to
the individual performance of classes, and Micro F1 reflects
overall accuracy. Monitoring energy consumption, illustrated
in joules per training iteration, demonstrates the model’s
capability to continuously operate devices with restricted
capital. Energy consumption minimization allows us to gain
long-lasting devices and reduce operating expenses, which also
helps increase the overall sustainability of MEC-FL in the long
term. By analyzing these metrics in total, we can
comprehensively understand how well the proposed model
performs in terms of efficiency, fairness, scalability, and
energy efficiency.

6.3. Benchmark Comparisons

The performance of the proposed FL-based approach was
tested by comparing it against both conventional centralized
learning methods and the best FL techniques. Evaluates the
effectiveness of centralized and federated learning in mobile
edge computing; it emphasizes significant decreases in
communication and energy caused by FL (federated learning).

These are

scores within the different classes to evaluate the model's
advantageous  for

particularly

Performance

comparisons
including FedMeta2Ag and MEC-AI HetFL.

with  popular

Table 1. Benchmark Comparisons - Centralized vs. Federated Learning

Metric Centralized Learning | Federated Learning Improvement

Convergence Speed 12 epochs 16 epochs -33% (slower)
Communication Overhead 500 MB 50 MB +90% (reduction)
Energy Consumption 120 J/round 85 J/round +29% (reduction)

Table 2. Comparison of Proposed Model with State-of-the-Art Approaches

Model Test Accuracy (%) | Training Time (min) | Resource Efficiency Score
FedMeta2Ag 92.0 22 8.7/10
MEC-AI HetFL 945 18 9.2/10
EdgeFed (Baseline) 89.3 28 7.1/10

6.4. Results and Discussion

The analysis of the experiments shows distinct FL
approach advantages of applying it. The proposed model
drastically reduced communication overhead by sending just
50 MB during each training round instead of 500 MB in
centralized models, thereby accruing a data transfer reduction
of 90%. Such efficiency is particularly important in MEC
networks with limited bandwidth because decreasing
communication costs directly influences the service’s
scalability and operational costs. By mitigating non-11D data
difficulties, the proposed solution achieved consistent
performance with a 5% fluctuation in macro F1 scores, while
centralized solutions suffered a 15-20% reduction. Such
stability is indispensable for practical use cases where edge
devices provide wunique, non-uniform information. In
particular, the method made substantial savings on energy,
with the model running at a rate of 85 joules per round, i.e. a
29% cut against centralized alternatives. Such an upgrade
significantly extends the battery's lifespan on loT devices,

making this one of the main advantages of continuous,
decentralized operations. Scalability assessment revealed that
the model’s convergence had a 35% cut-off when more than 50
nodes were implemented, mainly due to gradient staleness and
challenges in doing asynchronous computation. This implies
that for a large-scale MEC deployment, it is critical to modify
the client selection and aggregation strategies to maintain
performance.

7. Discussion

A Federated Learning (FL) technique for optimization of
resources in MEC systems shares high levels of improvement
in communication efficiency, scalability, and energy
utilization. By processing training procedures in numerous
edge nodes, the system makes managing massive amounts of
data transfers to consolidated servers lighter, significantly
lowering  requirements on communication  resources.
Evaluation results show a 90% reduction in data dispersion
using the proposed model compared to centralized techniques,
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showing that it fits ultra-dense networks with strict bandwidth
limitations and latency requirements. Through this capability,
the system is able to alleviate one of the major issues in MEC —
the need to balance low latency with consistent accuracy and
timely performance. However, the results indicate some
inherent limitations to this approach. Requiring lower energy
spending and quicker results, the model experiences a
convergence slowdown when over 50 edge nodes are involved.
This reduced convergence speed is primarily attributed to
gradient staleness and the asynchronous nature of
communications, which result in differences in model global
model update. Further research should consider more exact
client selection and aggregation methods, supported by instant
feedback or adaptive learning correction, to improve global
model synchronization. The presented approach effectively
managed non-1ID data distributions, common in real-world
MEC systems, where the edge devices generate data with
different characteristics. Consistent performance, even in bad
data contexts, is evidence of the reliability of the proposed
solution. The need to explore sophisticated model aggregation
techniques, which can include utilization of reinforcement
learning or adaptive changes, to avoid excessive latency and
energy overhead is still essential to see when the model can
handle diverse data patterns. Testing the framework in actual
operational MEC networks is required to evaluate the capacity
to scale, handle faults, and maintain security in the field.
Moreover, exploring the synergy between FL and edge
caching, or proactive resource prediction, may deliver more
efficient systems capable of responding better and providing
reliable operation.

8. Conclusion

A federated learning approach for resource allocation
optimization in Multi-Access Edge Computing (MEC) was
described to address data privacy, communication expense, and
system scalability issues. The results of the experiments
showed that the introduced framework reduces by up to 90%
the amount of data transmission compared to traditional
centralized learning, and the same levels of accuracy and
energy efficiency are retained. Considering these aspects, the
method is perfect for ultra-dense MEC infrastructures flooded
with  bandwidth scarcity and real-time performance
requirements. The framework could handle non-1ID data
distributions and device capabilities and provide reliable
performance for a broad spectrum of edge devices. While
scalability showed shortcomings when measured above 50
nodes, the approach still dominated over classical models in
terms of energy efficiency and training speed, thus fitting for
deployment at a large scale. To enhance scalability and
sensitivity, future research will include the development of
dynamic client selection algorithms and sophisticated model
aggregation strategies to make the framework more flexible for
the dynamic environment of MEC systems. Federated learning
is rethinking MEC architectures through a scalable and
privacy-protected method for next-generation 5G/6G networks.
This research lays a strong foundation for developing

decentralized Al, creating space for advanced intelligent edge
computing applications.

9. Future Work
9.1. Scalability and Dynamic Client Selection

Performance of Federated Learning (FL) in serving
extensive MEC network architectures. Convergence by the
global model slows down with an increase in edge nodes’
attachment, primarily because of outdated gradients and
variable local optimization updates. Subsequent studies may
create adaptive algorithms for client selection that assess nodes
based on the size of resource capacity, network latency and
data quality to enable smoother aggregation of global models.
Furthermore, integrating reinforcement learning or using multi-
agent collaboration techniques might allow the system to adjust
to changes in the network better, which will shrink the training
times and increase model accuracy in general.

9.2. Advanced Aggregation and Privacy Mechanisms

To address the challenges of non-1ID data and device
characteristics that vary, there is a need to explore more
complex strategies when it comes to aggregation. The future
solutions might be improved by incorporating personalized FL
techniques such as cluster-based aggregation and meta-learning
to better accommodate the variety of data distribution
distributions in the practical MEC environments. To provide
users with better privacy, as a possible solution to employ,
arguing with differential privacy, secure multi-party
computation, or homomorphic encryption could introduce
strong security to sensitive data with the high accuracy of the
model being maintained. Such advancements would lead to
robust, secure, and scalable FL platforms that would be
prominent for edge computing. They will allow the wider
adoption of healthcare, smart city and industrial 10T solutions.

9.3. Real-World Deployment and Performance Optimization

Finally, while this study provided promising results in
simulated environments, real-world validation remains critical.
The construction of the proposed framework should continue
with the implementation of the same to operational MEC
networks, measuring performances under various network
environments and managing real-time data. This involves
realigning approaches to allocating resources to account for
such as energy management, device movement, and changes in
the demands of the users. By applying predictive analytics and
edge caching, we can increase system responsiveness and
move forward to fully autonomous intelligent MEC systems
which can support next-generation 5G/6G services.
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