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Abstract - In modern networks, where stronger ultra-low 

latency and data throughput are needed, Multi-Access Edge 

Computing (MEC) becomes a necessary architecture for 

5G/6G networks that support real-time applications. 

Nevertheless, a dynamic edge ecosystem, diverse device 

properties, and privacy preservation needs interfere with MEC 

resource management. This paper proposes a new Federated 

Learning (FL) framework to predict resource allocation in 

MEC that removes such barriers by enabling decentralized 

model training to be performed directly at the network edge. In 

contradiction to conventional centralized strategies, our 

approach significantly reduces communication costs by up to 

90% while providing competitive performance due to the 

efficient use of non-IID data at edge locations. Feeding 

lightweight CNNs and reducing the whole energy demand is 

achieved by the balanced computational requirements in the 

design aggregation through FedOpt aggregation. Based on the 

results of outcome analysis on MNIST and Fashion-MNIST, we 

observe accelerated convergence, increased energy savings 

and performance scalability, where energy consumption per 

training round is 29% lower than in centralized systems. This 

approach shows impressive results in processing non-IID data 

due to reliable performance on different edge devices. Such 

discoveries show that FL has a high potential to transform 

MEC resource allocation and thus contribute to more 

adaptive, protected, and efficient edge computing architecture. 

 

Keywords - Federated Learning, Multi-Access Edge 

Computing, Resource Allocation, 5G/6G Networks, Non-IID 

Data, Distributed Machine Learning, Energy Efficiency, Model 

Aggregation.  

 

1. Introduction 
Modern networking has been greatly boosted with Multi-

Access Edge Computing (MEC), enabling increased 

computational and storage aspects nearer to the end users. [1-3] 

The reduced distance between users and resources in MEC 

networks results in lower latency levels, excludes network 

bottlenecks and improves the quality of service for such 

latency-sensitive applications as augmented reality, 

autonomous vehicles and industrial control systems. However, 

the explosion of connected devices and data-devouring 

applications creates a new requirement to manage and perform 

the distribution of resources at the network’s edge. 

Conventionally, bandwidth constraints, high latency, and the 

limitations of centralized processing present obstacles that tend 

to plague such cloud-centric systems with these requirements, 

challenges that are especially difficult to solve. 

 

Efficient use of distributed resources in the MEC 

environments calls for rapid, data-driven decisions to 

maximize performance. Centralized deployment of machine 

learning models places many restrictions on their capability to 

address the requirements of MEC environments. 

Conventionally centralized methods necessitate continuous 

sending of data from the end nodes to the main server, which 

puts heavy demands on the bandwidth and opens doors to 

privacy concerns. Such concerns are particularly acute across 

such industries as healthcare, finance, and critical 

infrastructure where data confidentiality is an issue of the 

highest priority. In order to address this, Federated Learning 

(FL) has been designed as a decentralized approach that allows 

edge devices to collaborate and train machine learning models, 

which remain private at the edge. Federated learning addresses 

privacy because local storage of confidential data is only 

shared on the server if parameters of well-trained models are 

utilized. Federated learning that has less consumption 

bandwidth and improved privacy provides an efficient solution 

for the desirable performance of MEC systems. Embedding 

federated learning into resource allocation systems allows edge 

networks to produce more accurate, current predictions while 

maintaining strict privacy requirements. This paper introduces 

the proposed federated learning framework that balances 

resource allocation in MEC contexts. Our framework uses 

local processing to make accurate predictions with the least 

dependence on network bandwidth. Our method has improved 

latency, resource distribution, and network efficiency through 

rigorous simulation and practical test cases. With such a 

foundation, this paper’s focus bridges the gap between 

progressive edge intelligence methodologies and practical edge 

computing deployments. 
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2. Related Work 
To realize the full potential of Multi-Access Edge 

Computing (MEC) in future networks requires sophisticated 

allocation of resources and adaptive task management. [4-6] 

This article focuses on important progressions in three basic 

areas. Resource allocation methodologies in MEC focus on 

machine learning-based approaches to efficiently adapt 

resources and review federated learning as a viable, secure 

option for training in distributed regimes. 

 

2.1. Resource Allocation in MEC 

As the deployment of 5G and 6G continues to accelerate, 

resource allocation of MEC systems has become increasingly 

important to meet the requirement of ultra-low latency and 

high reliability. However, in the early stages, mathematical 

optimization methods such as Mixed-Integer Linear 

Programming (MILP) were adopted for task offloading 

management, energy efficiency management, and server load 

balancing. The in-depth survey conducted by Annisa et al. 

centered on dynamic resource orchestration for Ultra-Reliable 

Low-Latency Communication (URLLC), outlining the 

complexities of being in a multi-tenant edge setting. 

Traditional optimization techniques usually fail when 

implemented against large-scale MEC operations' fast-paced 

and distributed nature, which is a key aspect of success in 

managing smaller networks. 

 

Recent days have seen a synergizing effect of stochastic 

control techniques such as Lyapunov optimization and MILP 

to enhance stability and reduce the cost of implementation in 

Ultra-Dense Networks (UDNs). For example, the LYMOC 

algorithm reduced system costs by 30% through dynamic 

allocation of mobile devices to the most suitable MEC servers, 

depending on current traffic conditions. These strategies are 

especially suitable for environments with many connected 

devices via managing the trade-offs between latency, energy 

savings and computational overhead. However, as more 

complex and larger networks emerge, traditional optimization 

methodologies are failing to deliver and lead researchers to 

seek more flexible and data-informed alternatives. 

 

2.2. Machine Learning in MEC 

Machine Learning (ML) has played out as a powerful tool 

for managing resources in MEC, whereby systems can learn 

smoothly to accommodate shifting network situations. 

Reinforcement Learning (RL) differs in its ability to facilitate 

autonomous and unsupervised long-term decision-making. 

Techniques from deep reinforcement learning, such as RAPG-

DDPG, have significantly reduced latency and energy expenses 

through repeated learning of optimal task offloading policies 

with continuous interaction with the network environment. 

These approaches outperform traditional heuristics, reducing 

latency by 15-20% through adaptive offloading of the 

computation tasks to local devices and edge servers. The 

application of supervised learning algorithms enables the 

forecasting of network congestion and server occupancy, 

enabling resource management to respond faster. The 

integration of RL with Graph Neural Networks (GNNs) has 

been explored to increase the scalability of edge-cloud systems 

in environments with heterogeneous devices. These systems 

can effectively model the complex network structures of MEC 

environments, thus yielding promising results in multi-tier 

edge computing scenarios that require low latency and efficient 

power usage. Even though there has been an improvement in 

the rate at which there have been improvements, the resource 

constraints encountered by edge devices continue to present 

challenges to real-time model training and inference, leading to 

increased efforts to develop more efficient learning techniques. 

 

2.3. Federated Learning Techniques 

Federated Learning (FL) is a promising solution for MEC 

because it offers an efficient alternative to centralized learning 

despite challenges such as data privacy and communication 

overhead. The edge devices that use FL can train a common 

model in concert by merely sending the gradients or even the 

parameters without the need to send raw data, which, in turn, 

will reduce the bandwidth requirements and protect the users' 

privacy. Federated learning is critical for IIoT applications 

when sensitive operational data remain local and do not have to 

traverse networks. Advanced FL architectures have been 

developed to optimize training efficiency in MEC contexts. For 

instance, utilizing local edge devices on nearby MEC servers to 

perform partial computation in M-layer FE architectures can 

reduce training latency by about 40% compared to classical 

centralized models. These frameworks are able to meet the 

need for tight latency restrictions by adaptively allocating 

computational and bandwidth resources and thus preserve high 

model performance while speeding up training. Lyapunov-

based Federated Learning (FL) systems have been proposed to 

control energy usage and have an equitable distribution of 

resources, making them suitable for dense and heterogeneous 

network environments. We work towards improving FL in a 

real-time scenario with a minimal resource state, as present in 

the MEC architectures, greatly. 

 

3. System Model and Problem Formulation 
3.1. MEC System Architecture 

The architecture for federated learning-based resource 

allocation in MEC consists of three main layers: The system 

effectiveness and performance are driven by such key building 

blocks as End Devices, Edge Layer (MEC Nodes) and 

Cloud/Model Training Layer. [7-10] This layered approach 

reflects the MEC systems' actual hierarchy, directing data from 

end devices toward edge nodes and, finally, to the cloud for 

complete model processing and continuous data storage. This 

approach distributes computations efficiently, minimizes 

latency, and enhances data privacy. The base layer is the End 

Devices Layer, which is composed of many IoT devices that 

generate and use colossal amounts of real-time data. The IoT 

devices have regularly sent the local context and usage metrics 

such as CPU load, memory status and network traffic to their 

respective edge node. It is essential for decision-making 
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regarding resource distribution at this level to accurately track 

site-specific data here. As such, it becomes the foundation for 

the federated learning clients that ingest this data at the edge to 

carry out their training activities. The Edge Layer (MEC 

Nodes) serves as the intermediate tier that houses the Federated 

Learning clients (FL Clients), making it possible for data to be 

processed. Each edge node has a Local Resource Monitor that 

monitors the real-time CPU, RAM & network bandwidth 

allocations. Edge-based FL Clients train their models based on 

local data collection and produce them to the central FL 

aggregator, which aggregates and improves them.  

 

By implementing this distributed training regime, there is 

a substantial reduction in the need to transfer raw data elements 

that strengthen privacy and save bandwidth. At the highest 

level of the hierarchy is the Cloud/Model Training layer which 

can be considered a central repository for holding the backup 

for models and record of previous data logs. This node controls 

the FL Aggregator and the Global Resource Allocation 

Module, making it possible to aggregate and optimize models 

produced by edge nodes that participate. Refinement of the 

updated global model is then distributed across each edge 

node, leading to better predictions of resource distribution. 

Moreover, the layer involves a Policy Engine that utilizes pre-

set rules in order to disperse computational loads and 

encourage an efficient sharing of resources on the entire MEC 

network. The architecture enables efficient, private 

management of resources through federated learning by 

coordinating allocations among a huge heterogeneous network 

of edge devices. By eliminating centralized data handling and 

storage, this architecture provides lower latency and more 

resilience, which increases MEC systems' scalability and 

flexibility for the expanding number of IoT and real-time 

applications. 

 

3.2. Dynamic Resource Allocation in MEC Nodes 
Dynamic resource allocation in MEC nodes is necessary 

for efficient and responsive edge computing. Unlike traditional 

cloud settings, MEC nodes must accommodate frequently 

changing workload demands while providing low latency and 

high throughput. The real-time adaptation of computational, 

storage, and networking resources is needed to suit the varying 

demands and the network environments observed at MEC 

nodes. Being supportive of such applications as augmented 

reality, industrial automation, and real-time analytics, MEC 

nodes face major challenges in ensuring adequate resource 

management optimisation. MEC nodes can adjust resource 

allocation strategies without human intervention by leveraging 

immediate data from end devices such as CPU and memory 

utilization and network traffic patterns. This strategy reduces 

the overhead of communication required to facilitate central 

control and increases the rate of the responses. To offer another 

instance, MEC nodes include resource monitors that track 

current resource availability and utilization patterns and are 

further considered by machine learning models to predict 

optimal resource distribution. Federated learning, however, 

augments this by enabling MEC nodes to collectively train 

global models while keeping the individual data private and 

reducing network traffic. By employing self-directed resource 

management, nodes in the MEC architecture gain optimal 

efficiency and thus increase overall system performance. 

 

Dynamic resource allocation should consider the wide 

range of capabilities of connected devices in MEC, including 

various levels of computational power, energy storage and data 

production rates. With many device capabilities, MEC systems 

should use dynamic, context-aware resource management 

strategies to optimize service to any edge node and 

application's unique conditions and user requirements. While 

real-time monitoring accompanies predictive algorithms in 

empowering MEC systems, optimising resource distribution 

reduces latency and improves overall service delivery. 

 

3.3. Optimization-Based Resource Management Formulation 

Optimization-based methods form a core approach towards 

resource allocation in MEC platforms, promoting systematic 

balancing of various objectives such as reducing latency, 

saving energy and increasing throughput. Conventional 

methods frame resource allocation as a constrained 

optimization exercise to find an optimal distribution of 

computational and networking resources with respect to system 

specifications and end-user expectations. Mathematically, [11-

13] this corresponds to a multi-objective optimization 

framework where the objective function embodies the 

dynamics among key performance indicators like response 

speed, computational demands and bandwidth availability. A 

common objective is to optimize in terms of the quickest 

completion of all tasks at MEC nodes, as well as energy 

consumption under specified boundaries. Properly 

characterizing task arrival rates, processing delays, and 

resource availability such that how they interact can be clear is 

key but complicated by the dynamic and uncertain conditions 

that pervade edge networks. As a reaction to such challenges, 

methods such as Lyapunov optimization and deep 

reinforcement learning have developed, using instantaneous 

changes in the network and analytical forecasts for 

optimization. Continuous adjustment of resource allocation in 

regard to the real-time network metrics allows these 

approaches to continue providing successful task scheduling in 

densely populated edge networks. Moreover, the combination 

of machine learning in entity optimization strategies has shown 

its potential to improve scalability and real-time response, thus 

making such hybrid methods an ideal solution for upcoming 

MEC systems. 
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Figure 1. Federated Learning Architecture for Resource Allocation in MEC 
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3.4. System Constraints and Assumptions 

A robust framework for resource distribution in MEC 

systems relies on taking insights for granting room to operation 

limitations and assumptions that prevail around the system. 

These restrictions are often a function of edge infrastructure 

physical confines, bandwidth restrictions of the network, 

susceptibility to low latency and the great disparity of 

performance specification across connected devices. 

Consequently, the MEC nodes often face power constraints, 

which is why resource-saving algorithms aiming at optimizing 

efficiency and the maintenance of high-quality service 

provision should be developed. End devices in MEC systems 

are highly diverse, from low-powered resources in IoT sensors 

to high-performance industrial controls, complicating the 

management of resources. So many variations between the end 

devices result in significant variations in data creation, 

computational capacity, and network availability that present 

challenges in devising standard resource allocation guidelines. 

 

Furthermore, bandwidth and latency networks are also 

commonly edged in remote or congested urban environments, 

increasing resource allocation's complexity tremendously. In 

many MEC systems, uniformity of the network and stable 

performance are assumed, even though the former is rarely 

aligned with the diverse and changing realities of deployed 

systems. However, advanced models incorporate random 

variables to reflect edge networks' stochastic nature, increasing 

resource distribution techniques' accuracy and robustness. With 

the addition of mobility, volatile connectivity, and fluctuating 

workloads, these models deliver workable and deployable 

solutions in realistic environments. 

 

4. Federated Learning Framework 
Federated Learning (FL) identifies itself as a 

groundbreaking approach towards distributed machine learning 

since it enables collaborative learning practices without 

compromising private data security. [14-16] The framework is 

best in Multi-Access Edge Computing (MEC) environments, 

which have multiple IoT devices, sensors, and mobile 

applications that provide data at the network’s edge. By 

training local models on these edge devices and only sharing 

incremental updates, FL significantly reduces communication 

costs, ensures sensitive information is secured against leakage 

and reduces threats involving data exposure. 

 

The FL framework in MEC is designed to address unique 

issues associated with edge networks, including restricted 

bandwidth, variances regarding device capabilities, and highly 

variable network conditions. Instead of sending data for upload 

to a cloud server during the training process, which is 

commonly practiced in normal learning paradigms, FL allows 

edge nodes to train and process their local data. Using a 

decentralized system, the framework reduces the need for 

constant data transfers. It allows for real-time learning, critical 

to applications requiring low latency, such as autonomous 

vehicles, healthcare systems and manufacturing processes. In 

order to deal with the tension between model accuracy and 

communication demands, federated learning platforms usually 

employ state-of-the-art aggregation algorithms. By way of 

example, federated averaging (FedAvg) uses local training 

epochs and data volume to collect updates from edge devices, 

enabling efficient communication with model integrity. 

Progressions such as hierarchical federated learning 

incorporate several aggregation stages inside the MEC nodes 

and,7 subsequently, enhance bandwidth efficiency and 

computational performance. This approach does not only 

incorporate the distributed nature of edge computing 

architecture but also caters to the requirements of applications 

that increasingly need a fast response time and robust data 

protection. 

 

4.1. Overview of Federated Learning 

Federated Learning allows for collaborative training of a 

single global model that belongs to different devices with the 

specific advantage of not using private data. Traditional 

centralized learning has difficulty achieving privacy and 

scalability; Federated Learning reduces the problem as the 

training procedure is localized. In a regular FL procedure, 

devices locally train the models on private datasets and send 

their emerging parameters (for instance, weights and gradients) 

to a central server for aggregation purposes. The server 

computes the aggregated updates, updates the global model, 

and forwards the updated global model back to all devices 

participating in the training to continue the process. 

 

This decentralized training comes with several important 

advantages. In essence, FL reduces the communication burden 

by only acting from model update exchange, eliminating the 

need to transfer full datasets. This method becomes very useful 

for MEC systems, where bandwidth is often constrained, and 

immediate response is critical. Second, the decentralized 

character of FL inherently provides data privacy protection by 

storing sensitive information on a local device and reducing the 

probability of data leaks and compliance issues. The fact is that 

FL is well-suited for healthcare, finance and smart city 

applications, where strict data confidentiality is needed. 

Moreover, FL systems are arranged flexibly, accommodating 

different computational powers and data distributions on the 

edge devices, and, in turn, each node trains its model on its 

own. As FL is framed to operate with varied device properties, 

it is thus better equipped to tolerate variation in performance 

between IoT devices, smartphones, and industrial sensors, thus 

increasing the overall network stability and effectiveness. 

Additional challenges employed when FL is implemented 

include the management of non-IID data reliability of devices 

and adapting to the asynchronous training, all of which must be 

handled effectively to retain consistent model accuracy in the 

network. 

In response to the above problems, several creative 

optimization techniques have been developed, which include 

personalized FL, gradient compression, and asynchronous 

aggregation, all aimed at enhancing model convergence, 



Ramesh Kasarla / IJETCSIT, 6(4), 37-48, 2025 

42 

reducing data transfer requirements and improving the overall 

flexibility of the systems. This, therefore, makes FL critically 

important in facilitating intelligent and real-time decision-

making in MEC systems that, in turn, underpin the 

development of sophisticated, perceptually against, secure and 

scalable edge computing networks. 

 

 
Figure 2. Federated Learning Workflow in MEC Systems 

4.2. Client and Server Interaction in MEC 

Multi-Access Edge Computing (MEC) client-server 

communication differs entirely from typical cloud-based 

configurations. Decentralization of the data processing and 

storage in MEC enables organizations to significantly reduce 

latencies and increase the real-time processing efficiency for 

end users. Such an architectural approach is indispensable if 

autonomous vehicles, augmented reality, and industrial Internet 

of Things devices are to effectively deploy latency-critical 

applications that require quick data interaction and low latency. 

 

Mobile and fixed-line consumers, such as smartphones, 

connected vehicles, and smart buildings, are the major data 

providers in this configuration, continually transporting 

contextual data, sensor information, and user activity to local 

MEC servers. Edge servers inside Edge Compute Data Centers 

are the primary access channel for handling local 

computational work, reducing round-trip latency common in 

conventional cloud-based systems. By being near the data 

source, these solutions promote faster decisions and local data 

analysis, leading to an improved end-user experience. The 

promotion of an Edge Compute Data Center configuration 

includes the following areas: MEC servers for computational 

purposes, Firewall/NAT for security, vSRX Secure Gateways 

to preserve data transmission, and MEC Hosting Infrastructure 

for the virtualization of network services. Combining these 

elements enables low-latency, resource-rich data processing at 

the edge, eliminating the necessity of long network travel to 

reach a centralized cloud. Locally processing data is imperative 

as the applications require fast response and continuity of high-

bandwidth. When the edge process is complete, data is 

forwarded to the Core Network for further data aggregation, 

long-term storage, or analytical analysis in a centralized cloud-

based environment. By its layered construction, MEC solutions 

can ensure responsive processes and provide comprehensive 

data processing to improve general network resource 

management. Further, the MEC layer is critical in linking the 

edge processing capabilities and the internet to ensure no data 

exchange disruption. 
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Figure 3. MEC Client-Server Interaction Architecture 

 

The interaction model provided in MEC brings a 

significant difference from a cloud-based system, thus helping 

to make the data infrastructure much more dynamic, timely and 

secure. This design enables real-time processing and 

strengthens network resilience and scalability, making it an 

integral part of the 5G/6G network architecture. 

 

4.3. Model Aggregation Strategy (e.g., FedAvg or Other 

Variants) 

The strategy for aggregation of models used within 

Federated Learning (FL) for MEC has a massive effect on 

global model efficiency and accuracy. [17-20] Federated 

Averaging (FedAvg) is one of the most popular approaches, in 

which the updates from local training sessions of edge devices 

are utilized to develop a common global model. This strategy 

reduces communication burden, as devices can train locally 

several times before sharing their weights, thus reducing the 

number of rounds required for convergence, as reported by 

McMaham et al. FedAvg performs optimally in situations 

where MEC systems are subject to restricted bandwidths, and 

there are high requirements for low latency. Usually, the 

FedAvg algorithm goes through the following three important 

stages: The process starts with the distribution of the global 

model to all devices and then individual training of the global 

model on each device’s private dataset. The final step is 

aggregation in which the central server will average the 

weights received from the updated models from all devices so 

as to produce the next global model. FedAvg implies the 

effective trade-off between the requirements for processing and 

data transmission. The algorithm is appropriate for small-

bandwidth and high-latency MEC applications dealing with 

heterogeneous devices and data patterns. FedAvg also poses 

challenges off-site, mainly because it relies on non-IID data 

and, thus, biased data models among various devices. 

 

To address such problems, there have been versions of the 

FedAvg set. For instance, FedProx introduces a proximal term 

when optimizing the local objective function, improving 

convergence stability against client differences. FedNova and 

SCAFFOLD approaches address client drift by smoothing 

model updates with global gradient information, enhancing 

fairness and efficiency throughout the training cycle. In view 

of the diversity of device attributes, including processing 

capacity, energy resources, and data quality, these advanced 

strategies are essential in MEC environments. The success of 

federated learning in MEC systems depends on choosing an 

acceptable aggregation method. 

 

4.4. Data Privacy and Communication Efficiency 

Considerations 

The improved data privacy is the main motivation for 

using federated learning in MEC environments. Regular 

centralized solutions require frequent data transfers to a 

centralized body, while federated learning puts data on the 

device to preserve privacy, only exchanging model updates and 

not raw data. Such architecture greatly reduces data leakage 

risks and helps adhere scrupulously to regulations such as 

GDPR and HIPAA, essential to industries such as healthcare, 

finance, and smart manufacturing. However, there are various 

challenges in promoting privacy in federated learning. 

Although the actual data is not sent directly, updates of models 

may inadvertently leak privacy since they can be vulnerable to 

gradient leakage or a model inversion attack. To address 

potentially objectionable privacy concerns, the FL frameworks 

now utilize a number of sophisticated privacy protection 

methods. Differential Privacy (DP), for example, purposefully 

injects noise into model updates to protect against the 

inferences of personal information from the aggregate result. 

Homomorphic Encryption and Secure Multi-Party 

Computation provide cryptographic protection to enable model 

aggregation without compromising individual update privacy. 

 

Efficient communication is also essential in achieving 

success in MEC-based federated learning. Limited and 

unstable bandwidth availability is common in edge networks, 

so minimising data exchanged per communication round is 

essential. Efforts such as model compression, gradient 

sparsification and weight quantization reduced the amount of 

data to be transferred considerably, alleviating training and 

network bandwidth requirements. Moreover, Top-k 
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sparsification guarantees that only the most influential model 

updates are sent, and weight pruning is used to eliminate 

redundant links to maximize the network resources. The 

system achieves better resource utilization and efficiency by 

tuning the communication intervals to network, device and task 

requirements. By merging these privacy-preserving and 

communication-efficient approaches, MEC-based federated 

learning can allow high performance, scaling, and secure 

machine learning and thus emerge as a viable solution to real-

time, data-intense applications. 

 

5. Proposed Approach 
The proposed method considers that using Federated 

Learning (FL) in Multi-Access Edge Computing (MEC) will 

allow efficiency and protection from privacy resource 

allocation. By combining distributed machine learning with 

edge computing, this model allows for reduced latency, 

curtailed bandwidth needs, and ensures privacy of user 

information, thereby making it ideal for high-speed 

applications with high volumes of data. This architectural 

design is customized to address challenges posed by non-IID 

data, different device capabilities and changing network 

conditions to ensure consistent performance in different MEC 

setups. 

 

 

5.1. Architecture of the Proposed FL-Based Model 

The proposed FL-based model's architecture uses the 

hierarchical nature of MEC systems, wherein data is generated 

at the edge, made locally available, and aggregated on a central 

server. Three essential layers support architecture. The End 

Devices Layer, the Edge Node Layer, and the Aggregation 

Server Layer. IoT devices and mobile clients at the base stage 

aggregate and analyze real-time data locally and use that 

information to train their distinct models. The IoT devices and 

mobile clients present at the base level make up the essential 

data providers for the FL system and help train the common 

model. 

 

The Edge Node Layer acts as a middle ground, collecting 

model updates from connected devices, performing partial 

aggregate and adjusting the allocation of resources according 

to local information. This layer processes updates around the 

boundaries, easing communication weights off the central 

server accelerating scalability and response time. The 

Aggregation Server Layer normally resides within the core 

MEC controller or can be reached remotely on a cloud server 

and performs the final step of global model aggregation by 

aggregating all the data from the associated edge nodes into a 

complete, system-wide model. By splitting functionality into 

three layers, the solution optimises resource utilisation, reduces 

network traffic, and increases the system’s reliability.

 

5.2. Feature Selection and Data Preprocessing 

Figure 4. Proposed Resource Allocation Approach Using FL 
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paramount to obtaining the best results from an FL model in 
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heterogeneous quality, volume and distribution. Such 

variability can threaten the accuracy of the model unless 

controlled. The proposed approach utilizes local and global 

feature selection techniques to maximize the training procedure 

by only selecting the most important and representative 

features. Devices clean noisy data, fill in missing values, and 

normalize features to satisfy the requirements of the global 

model within each data set. Devices employ min-max scaling, 

standardization, and outlier detection techniques to ensure the 

preprocessed data is consistent throughout all edge nodes. 

Furthermore, using domain-specific feature engineering, the 

approach can extract substantial meaning from raw sensor data; 

for instance, it can spot network congestion, device mobility 

trends, and necessary application latencies. 

 

The aggregation server improves feature selection by 

identifying universal trends among devices, reducing the 

dimensionality of data and pruning features that are not 

relevant. Applying this two-stage feature selection method 

enhances the model's precision and reduces hardware demands 

for data transfer, thus reducing needless information 

transferred between training rounds. 

 

5.3. Training and Update Mechanism 

The training and updating cycles in the proposed FL 

framework rely on periodic model interchange among the edge 

devices and the central server. The Edge devices make use of 

their data to individually train local models and perform many 

local updates before moving the model’s parameters to the 

central aggregator. With the use of decentralized model 

development, the number of times data is sent to the central 

server is reduced and, in effect, reduces the costs involved in 

communication and maintaining privacy-worthy personal 

information. The proposed scheme enhances model 

performance and decreases convergence time by using an 

adaptive learning rate and tuning batching parameters to align 

with the distinct functionality of single-edge devices. Such 

flexibility allows the low-power edge devices to be operational 

without burdening already constrained resources. Moreover, 

state-of-the-art gradient aggregation methods such as FedAvg 

or FedProx are applied to ensure that the global model 

accounts for the diverse data of MEC applications and captures 

their profiles. Updates made at edge devices are accumulated, 

and the central server updates the global model, considering 

differences in the number of data, device condition, and 

network situation. The process remains effective, with final 

iterations, so that the global model eventually converges to an 

optimal state and the resulting federated learning framework 

can support real-time edge applications efficiently and at scale. 

 

5.4. Convergence and Complexity Analysis 

The testing of convergence and complexity is central to 

proving the scalable and efficient performance of the proposed 

FL-based framework. Centralized models do not suffer from 

the problems of delayed gradients, non-IID data distributions 

and asynchronous updates compared to federated systems that 

are vulnerable to these considerations that impact model 

accuracy and training efficiency. The proposed method utilizes 

convergence acceleration techniques to improve performance 

and reliability,  including momentum optimization, adaptive 

learning rate, and gradient correction. 

 

Several factors (such as the number of devices 

participating, the size of local training datasets and the 

frequency of global aggregation) affect overall convergence 

time. The framework achieves efficiency and accuracy by 

changing parameters, ensuring that MEC applications with 

tight latency constraints respond within acceptable time 

frames. Complexity analysis shows that computational hunger 

in this setting is significantly lower than in classic centralized 

architectures because a large fraction of training is done on the 

edge while offloading most computation tasks from the central 

server. The hierarchical aggregation's structure assists in 

minimizing communication delay that is part and parcel of FL, 

thus enhancing the system's scalability and robustness against 

failures. The distributed design will enable faster convergence 

and reduce energy requirements, making it suitable for large-

scale MEC deployments. 

 

6. Performance Evaluation 
A sequence of thorough experiments showed the 

feasibility of the proposed FL-based resource allocation model 

using a realistic MEC simulation environment. Performance 

was assessed based on key metrics such as convergence rate, 

communication efficiency, energy consumption, and 

classification rate, which is a good representation of the 

operational constraints of the MEC network. In this section, the 

experiment setup is described, the evaluation criteria are 

presented, and the proposed model is compared with the classic 

baseline approaches. 

 

6.1. Experimental Setup 

Experimental evaluation was carried out within 

Kubernetes-managed edge clusters to replicate the distributed 

architecture of MEC systems with a variety of heterogeneous 

IoT devices and MEC servers that reflect integrated real-world 

configurations. Two of the best-known image datasets were 

used in the training process: MNIST, with 60,000 samples, and 

Fashion-MNIST, containing 70,000 grayscale images, were 

each composed of non-IID distributions using a Dirichlet 

distribution with a concentration parameter α=0.1\alpha = 

0.1α=0.1 The data partitioning creates intended heterogeneity, 

mirroring the differentiated, personalized data structure in the 

real practical MEC situations. 

 

The neural network design employed lightweight CNNs 

optimized for edge computing with support for FedOpt to 

allow effective global model synchronization and provide 

higher convergence chances during asynchronous training. 

Deployment of 10-20 edge nodes with 4 cores and 4 GB RAM 

per node and 2 MEC servers with 8 cores and 16 GB RAM 

was performed to maintain an appropriate balance of 
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processing power. The training parameters were configured to 

equal 10-20 local training cycles for a user, 10-15 global 

iterations, and asynchronous model updates for the resource-

constrained IoT devices, encouraging scalability. 

 

6.2. Evaluation Metrics 

Four primary efficiency metrics were used to evaluate the 

proposed Federated Learning (FL) model's effectiveness in the 

Mobile Edge Computing (MEC) environment, which all 

focused on different aspects of system performance. The 

Convergence Speed indicator measures how quickly the model 

achieves stability, that is, in terms of training epochs. It is 

essential for metric-driven assessment of training efficiency 

that agile adaptation in dynamic MEC environments is possible 

to lower latency and save resources. There is also a crucial 

metric, which is referred to as communication overhead, the 

quantity of data transferred between devices during training, 

which is especially important when working with a restricted 

amount of bandwidth available. Communication overhead is 

reduced, and system performance and processing of larger data 

volumes are sustained. We measured both Micro and Macro F1 

scores within the different classes to evaluate the model's 

accuracy. These are particularly advantageous for 

heterogeneous situations as they measure generalizability and 

maintain unbiased class treatment; Macro F1 pays attention to 

the individual performance of classes, and Micro F1 reflects 

overall accuracy. Monitoring energy consumption, illustrated 

in joules per training iteration, demonstrates the model’s 

capability to continuously operate devices with restricted 

capital. Energy consumption minimization allows us to gain 

long-lasting devices and reduce operating expenses, which also 

helps increase the overall sustainability of MEC-FL in the long 

term. By analyzing these metrics in total, we can 

comprehensively understand how well the proposed model 

performs in terms of efficiency, fairness, scalability, and 

energy efficiency. 

 

6.3. Benchmark Comparisons 

The performance of the proposed FL-based approach was 

tested by comparing it against both conventional centralized 

learning methods and the best FL techniques. Evaluates the 

effectiveness of centralized and federated learning in mobile 

edge computing; it emphasizes significant decreases in 

communication and energy caused by FL (federated learning). 

Performance comparisons with popular FL strategies, 

including FedMeta2Ag and MEC-AI HetFL.  

 

Table 1. Benchmark Comparisons - Centralized vs. Federated Learning 

Metric Centralized Learning Federated Learning Improvement 

Convergence Speed 12 epochs 16 epochs -33% (slower) 

Communication Overhead 500 MB 50 MB +90% (reduction) 

Energy Consumption 120 J/round 85 J/round +29% (reduction) 

 

Table 2. Comparison of Proposed Model with State-of-the-Art Approaches 

Model Test Accuracy (%) Training Time (min) Resource Efficiency Score 

FedMeta2Ag 92.0 22 8.7/10 

MEC-AI HetFL 94.5 18 9.2/10 

EdgeFed (Baseline) 89.3 28 7.1/10 

 

6.4. Results and Discussion 

The analysis of the experiments shows distinct FL 

approach advantages of applying it. The proposed model 

drastically reduced communication overhead by sending just 

50 MB during each training round instead of 500 MB in 

centralized models, thereby accruing a data transfer reduction 

of 90%. Such efficiency is particularly important in MEC 

networks with limited bandwidth because decreasing 

communication costs directly influences the service’s 

scalability and operational costs. By mitigating non-IID data 

difficulties, the proposed solution achieved consistent 

performance with a 5% fluctuation in macro F1 scores, while 

centralized solutions suffered a 15-20% reduction. Such 

stability is indispensable for practical use cases where edge 

devices provide unique, non-uniform information. In 

particular, the method made substantial savings on energy, 

with the model running at a rate of 85 joules per round, i.e. a 

29% cut against centralized alternatives. Such an upgrade 

significantly extends the battery's lifespan on IoT devices, 

making this one of the main advantages of continuous, 

decentralized operations. Scalability assessment revealed that 

the model’s convergence had a 35% cut-off when more than 50 

nodes were implemented, mainly due to gradient staleness and 

challenges in doing asynchronous computation. This implies 

that for a large-scale MEC deployment, it is critical to modify 

the client selection and aggregation strategies to maintain 

performance. 

 

7. Discussion 
A Federated Learning (FL) technique for optimization of 

resources in MEC systems shares high levels of improvement 

in communication efficiency, scalability, and energy 

utilization. By processing training procedures in numerous 

edge nodes, the system makes managing massive amounts of 

data transfers to consolidated servers lighter, significantly 

lowering requirements on communication resources. 

Evaluation results show a 90% reduction in data dispersion 

using the proposed model compared to centralized techniques, 
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showing that it fits ultra-dense networks with strict bandwidth 

limitations and latency requirements. Through this capability, 

the system is able to alleviate one of the major issues in MEC – 

the need to balance low latency with consistent accuracy and 

timely performance. However, the results indicate some 

inherent limitations to this approach. Requiring lower energy 

spending and quicker results, the model experiences a 

convergence slowdown when over 50 edge nodes are involved. 

This reduced convergence speed is primarily attributed to 

gradient staleness and the asynchronous nature of 

communications, which result in differences in model global 

model update. Further research should consider more exact 

client selection and aggregation methods, supported by instant 

feedback or adaptive learning correction, to improve global 

model synchronization. The presented approach effectively 

managed non-IID data distributions, common in real-world 

MEC systems, where the edge devices generate data with 

different characteristics. Consistent performance, even in bad 

data contexts, is evidence of the reliability of the proposed 

solution. The need to explore sophisticated model aggregation 

techniques, which can include utilization of reinforcement 

learning or adaptive changes, to avoid excessive latency and 

energy overhead is still essential to see when the model can 

handle diverse data patterns. Testing the framework in actual 

operational MEC networks is required to evaluate the capacity 

to scale, handle faults, and maintain security in the field. 

Moreover, exploring the synergy between FL and edge 

caching, or proactive resource prediction, may deliver more 

efficient systems capable of responding better and providing 

reliable operation. 

 

8. Conclusion 
A federated learning approach for resource allocation 

optimization in Multi-Access Edge Computing (MEC) was 

described to address data privacy, communication expense, and 

system scalability issues. The results of the experiments 

showed that the introduced framework reduces by up to 90% 

the amount of data transmission compared to traditional 

centralized learning, and the same levels of accuracy and 

energy efficiency are retained. Considering these aspects, the 

method is perfect for ultra-dense MEC infrastructures flooded 

with bandwidth scarcity and real-time performance 

requirements. The framework could handle non-IID data 

distributions and device capabilities and provide reliable 

performance for a broad spectrum of edge devices. While 

scalability showed shortcomings when measured above 50 

nodes, the approach still dominated over classical models in 

terms of energy efficiency and training speed, thus fitting for 

deployment at a large scale. To enhance scalability and 

sensitivity, future research will include the development of 

dynamic client selection algorithms and sophisticated model 

aggregation strategies to make the framework more flexible for 

the dynamic environment of MEC systems. Federated learning 

is rethinking MEC architectures through a scalable and 

privacy-protected method for next-generation 5G/6G networks. 

This research lays a strong foundation for developing 

decentralized AI, creating space for advanced intelligent edge 

computing applications. 

 

9. Future Work 
9.1. Scalability and Dynamic Client Selection 

Performance of Federated Learning (FL) in serving 

extensive MEC network architectures. Convergence by the 

global model slows down with an increase in edge nodes’ 

attachment, primarily because of outdated gradients and 

variable local optimization updates. Subsequent studies may 

create adaptive algorithms for client selection that assess nodes 

based on the size of resource capacity, network latency and 

data quality to enable smoother aggregation of global models. 

Furthermore, integrating reinforcement learning or using multi-

agent collaboration techniques might allow the system to adjust 

to changes in the network better, which will shrink the training 

times and increase model accuracy in general.  

 

9.2. Advanced Aggregation and Privacy Mechanisms 

To address the challenges of non-IID data and device 

characteristics that vary, there is a need to explore more 

complex strategies when it comes to aggregation. The future 

solutions might be improved by incorporating personalized FL 

techniques such as cluster-based aggregation and meta-learning 

to better accommodate the variety of data distribution 

distributions in the practical MEC environments. To provide 

users with better privacy, as a possible solution to employ, 

arguing with differential privacy, secure multi-party 

computation, or homomorphic encryption could introduce 

strong security to sensitive data with the high accuracy of the 

model being maintained. Such advancements would lead to 

robust, secure, and scalable FL platforms that would be 

prominent for edge computing. They will allow the wider 

adoption of healthcare, smart city and industrial IoT solutions. 

 

9.3. Real-World Deployment and Performance Optimization 

Finally, while this study provided promising results in 

simulated environments, real-world validation remains critical. 

The construction of the proposed framework should continue 

with the implementation of the same to operational MEC 

networks, measuring performances under various network 

environments and managing real-time data. This involves 

realigning approaches to allocating resources to account for 

such as energy management, device movement, and changes in 

the demands of the users. By applying predictive analytics and 

edge caching, we can increase system responsiveness and 

move forward to fully autonomous intelligent MEC systems 

which can support next-generation 5G/6G services. 
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