International Journal of Emerging Trends in Computer Science and Information Technology
ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.1JETCSIT-V613P116
Eureka Vision Publication | Volume 6, Issue 3, 104-111, 2025

Ny

Original Article

Leveraging Al and ML for Predictive Monitoring and Error
Mitigation in Change Data Capture Pipelines

Vineeth Kumar Reddy Mittamidi
Application Support engineer TCS North Carolina, USA.
Received On: 24/05/2025 Revised On: 16/07/2025 Accepted On: 28/07/2025 Published On: 21/08/2025
Abstract - Change Data Capture pipelines are widely used to propagate database changes into event streams, analytical stores
and operational read models with low latency. As enterprises expand the number of source databases, connectors, downstream
consumers and serving systems, operational reliability becomes harder to sustain. Failures that begin as a minor lag increase
or a subtle schema evolution can cascade into missed records, duplicated events, inconsistent materialized views and
downstream business defects. Traditional monitoring based on static thresholds and manual triage struggles because CDC
behavior is non stationary, highly correlated across components and sensitive to workload shifts and change management
practices. This paper proposes an architecture that embeds adaptive intelligence into CDC operations through predictive
monitoring, anomaly detection, diagnosis and guarded automation. The approach fuses three families of signals. The first
family is pipeline telemetry such as connector lag, throughput, offsets, retries and backpressure. The second family is data
integrity signals such as row count deltas, key uniqueness checks and reconciliation between source and sink. The third family
is change signals such as deploys, connector configuration edits and schema registry events. Lightweight models learn
baselines and predict near term risk for lag growth, event loss and replication divergence. A graph based diagnosis method
constrains root cause search using CDC topology and lineage and then ranks hypotheses using multi modal evidence including
structured log templates. Finally, an action layer executes risk tiered mitigation steps such as auto scaling consumers, pausing
downstream writes, triggering bounded replays and initiating snapshot repair with human approval gates for high impact
actions. The paper outlines a prototype design and an evaluation plan using historical incident replay. It argues that the
combination of predictive signals, topology aware diagnosis and policy based automation can reduce mean time to detection
and mean time to recovery while improving trust in CDC driven data products.

Keywords - Change Data Capture, Data Pipelines, Predictive Monitoring, Anomaly Detection, Data Integrity, Observability,
Automated Remediation, Root Cause Analysis, Concept Drift.

1. Introduction

Enterprises increasingly treat operational data as a
product that must be delivered continuously to multiple
consumers. Online applications need current views for search
and personalization, fraud systems need fast features and
analytics teams need timely facts for reporting. Change Data
Capture, often implemented through log based connectors
and event streaming, is a common backbone for these needs.
In a typical CDC deployment, a connector reads transaction
logs from a source database, converts changes into a
standardized event format, publishes events to a streaming
platform and downstream processors apply transformations
and updates to sinks such as data warehouses, key value
stores or search indexes. CDC enables low latency
propagation without intrusive triggers and reduces the cost of
full reload ETL patterns. Yet the very characteristics that
make CDC attractive also make it operationally fragile. The
pipeline spans multiple domains, evolves over time and must
preserve correctness under failures and reconfiguration.

Operational issues in CDC pipelines are not limited to
uptime. They include silent integrity degradation where the
pipeline continues to run but produces incorrect data.
Examples include missing updates due to connector offset

mismanagement, duplicated events after retries, out of order
application of changes, inconsistent snapshots, schema drift
that causes parse failures and propagation of tombstones that
unexpectedly delete records in a sink. These defects can
persist for hours before detection because symptoms appear
in downstream aggregates rather than in connector error logs.
Data pipeline quality research highlights that data related
issues often arise from incorrect types, integration defects
and processing problem areas that are hard for developers to
manage at scale [5].

Standard monitoring practices focus on dashboards, rule
based alerts and manual runbooks. Such practices are
necessary but insufficient for modern CDC where normal
behavior shifts with workload, schema evolution and scaling.
Data quality and monitoring literature emphasizes that
quality is multi dimensional, involving completeness,
consistency and timeliness as key concepts [1]. CDC
reliability demands that these dimensions be monitored end
to end, not only at a single component. Observability
frameworks for data quality emphasize the need to combine
quality signals, freshness signals and lineage signals in order
to prevent issues before they accumulate [6].

Vineeth Kumar Reddy Mittamidi / IJETCSIT, 6(3), 104-111, 2025

At the same time, the broader operations community has
advanced automated anomaly detection, root cause analysis
and incident knowledge mining. Structured log anomaly
detection pipelines can be built as modular systems that
accelerate creation and management of monitoring items [8].
Root cause knowledge can be mined from incident
investigations and used to recommend diagnosis steps and
remediation actions [7]. Microservice RCA research shows
that dependency aware reasoning over service graphs can
localize root causes more precisely than isolated metric
correlation [11][12]. However, CDC pipelines combine
database logs, stream processing and data integrity
constraints which require specialized modeling.

This paper contributes an architecture for predictive
monitoring and error mitigation tailored to CDC. The key
design principle is to treat CDC as a socio technical system
where telemetry, data integrity and change management
signals must be fused. Rather than relying on a single large
model, the architecture uses lightweight predictors for
specific operational risks and a graph based diagnosis
method that narrows the hypothesis space using CDC
topology and lineage. Automated actions are executed under
policy based gates to preserve safety and auditability.

The rest of the paper is organized as follows. Section Il
reviews related work in CDC, data quality, observability and
operational intelligence. Section 111 describes CDC pipelines
and an incident taxonomy. Section IV presents the proposed
architecture. Section V details predictive models and
anomaly detection. Section VI describes topology
constrained diagnosis and RCA. Section VII presents
mitigation and automation with governance. Section VIII
outlines a prototype implementation. Section 1X proposes an
evaluation plan. Section X discusses limitations and future
directions. Section XI concludes.

2. Background and Related Work
2.1. Change Data Capture systems

CDC is the practice of capturing changes from a source
system and propagating them downstream. A common
pattern uses transaction logs to avoid write amplification and
to preserve ordering. Event based data integration work
emphasizes that logs and event streams provide a durable
backbone for distributing changes across distributed systems
[2]. In data warehousing contexts, workload aware CDC
strategies have been proposed to balance overhead and
freshness by selecting among trigger based, timestamp based
and log based approaches depending on workload
characteristics [3]. Practical CDC deployments also require
an initial snapshot in order to establish full state and then
incremental changes from logs. A watermark based
framework such as DBLog interleaves log events with
chunked snapshot reads to capture full state while
maintaining progress of log consumption, addressing
production needs for repair and resynchronization [4].

2.2. Data quality and data pipeline reliability
Data quality is best understood as fitness for use with
multiple dimensions such as completeness, consistency and

timeliness [1]. In CDC pipelines these dimensions map to
tangible properties: completeness relates to missing changes
or missing partitions in derived stores, consistency relates to
duplicates and referential mismatches between source and
sink and timeliness relates to replication lag and freshness
windows. A recent study on data pipeline quality provides a
taxonomy of influencing factors and identifies common root
causes of data related issues such as incorrect types and
cleaning problems [5]. These findings align with CDC
incidents where schema evolution or conversion logic
introduces silent coercion and downstream corruption.

2.3. Data observability and responsible monitoring
Observability for data systems aims to provide sufficient
signals to explain pipeline behavior and to detect integrity
issues early. Frameworks such as TENSAI propose practical
observability for data quality aware analytics by combining
measurement, responsible monitoring and operational
integration [6]. This work supports the idea that data quality
monitoring should be systematic, not ad hoc, and that
observability must include provenance and context.

2.4. Anomaly detection,
intelligence

In large systems, anomaly detection is used to identify
deviations in metrics and logs. ADOps demonstrates a
modular pipeline for anomaly detection in structured logs
and reports a PVLDB implementation with configuration
driven task creation [8]. Many log based approaches rely on
parsing unstructured logs into templates. Spell proposes
streaming parsing of system event logs [9] and Drain
proposes an online log parsing approach using a fixed depth
tree [10]. These methods enable template novelty detection
and burst detection which are valuable in CDC because
many failures manifest as new error signatures or spikes of
known signatures.

log parsing and operational

2.5. Root cause analysis and incident knowledge mining

Topology aware RCA has been widely studied for
microservices. MicroRCA localizes performance issues by
using service interaction graphs and metric correlations [11].
CausalRCA applies causal inference to localize root causes
at fine granularity in microservice applications [12]. While
CDC pipelines differ from microservices, they share a
dependency graph structure where downstream symptoms
can be traced to upstream components. Separately, incident
knowledge mining approaches extract patterns from
postmortems and incident investigations to accelerate RCA
workflows [7]. These ideas motivate storing CDC incident
artifacts and using retrieval to recommend likely causes and
mitigation steps.

2.6. Concept drift and non stationary monitoring
Monitoring models degrade when normal behavior
changes. A survey on unsupervised drift detection
emphasizes that drift can occur without labels and that
monitoring systems need clear definitions and robust
methods to detect shifts [13]. In streaming settings, drift and
anomalies can interact. Graph stream research has studied
drift and anomaly detection when relationships evolve and

105

Vineeth Kumar Reddy Mittamidi / IJETCSIT, 6(3), 104-111, 2025

shows that graph based representations can capture evolving
structure [14]. CDC pipelines exhibit both metric drift due to
workload seasonality and structural drift due to topology and
schema changes, so drift awareness is crucial.

3. CDC Pipeline Model and Failure Taxonomy
3.1. Reference CDC pipeline

We model a CDC pipeline as a set of stages connected
by durable queues. A source database emits a transaction log.
A connector reads the log and converts each change into an
event record. The event is published to a streaming platform.
Downstream processors consume events and apply
transformations such as enrichment, filtering and
aggregation. Finally, sink connectors or application services
apply changes to target systems. In many deployments, a
schema registry governs event schemas and provides
compatibility rules. A control plane manages connector
configuration, scaling and restart behavior.

The pipeline must maintain three invariants. First, it
must preserve at least once or exactly once delivery
semantics depending on the design. Second, it must preserve
ordering constraints required by sinks, often per key. Third,
it must preserve data integrity by ensuring that downstream
state converges to source state over time. Achieving these
invariants under failures requires careful offset management,
idempotent sinks and bounded reprocessing strategies.

3.2. Failure categories

We propose a taxonomy of CDC failures aligned to data
quality dimensions [1] and to pipeline quality root causes [5].
The taxonomy helps map symptoms to likely causes and
guides model selection and mitigation action.

e Timeliness failures these are characterized by
increasing replication lag, consumer backlog and
missed freshness objectives. Causes include
insufficient resources, downstream sink throttling,
network partitions and skewed partitions.
Timeliness failures are often precursors to
correctness failures because large lag increases the
window where logs can expire and forces snapshot
resynchronization.

e Completeness failures these include missing events,
dropped records and gaps in offsets. Causes include
connector crashes with offset loss, log retention
limits, misconfigured filters and parsing failures
caused by schema changes. Completeness failures
can be hard to detect because row counts can remain
stable while specific segments are missing.

e Consistency failures these include duplicates, out of
order applies and mismatch between source and
sink. Causes include non idempotent sink writes,
retries that reapply changes, inconsistent
deduplication logic and race conditions across
parallel consumers. Consistency failures often
manifest as reconciliation = mismatches or
uniqueness violations in derived stores.

e Schema and semantic drift failures These include
incompatible schema evolution, field type changes,
new enumerations and changes in meaning such as

units or encoding. A pipeline quality study
identifies incorrect types as a frequent root cause of
data issues [5]. In CDC, drift can cause silent
coercion, null spikes or ingestion halts if
compatibility rules reject events.

e Control plane and change management
failuresThese include misconfiguration, wrong
connector parameters, invalid secrets and unsafe
deploys. Control plane events often correlate with
incidents and are important features for diagnosis
and prediction. Event driven systems research
emphasizes that distributed change propagation
must be treated systematically to avoid dual writes
and inconsistency [2].

3.3. Observability signals for CDC integrity

We categorize observability signals into telemetry,
integrity and change signals. Telemetry signals include
source log position, connector offsets, publish latency,
consumer lag, throughput and retry counts. Integrity signals
include source to sink reconciliation, row count deltas by
partition, key uniqueness checks and checksum comparisons
for sampled keys. Change signals include connector
configuration edits, schema registry updates, deploy events
and scaling events. Data observability frameworks suggest
combining quality, freshness and lineage signals to improve
trust [6]. Our architecture uses this combination as the basis
for learning and action.

4. Proposed Architecture for Predictive

Monitoring and Mitigation

The architecture consists of seven layers. Each layer is
designed to be modular and to integrate with existing
enterprise tooling. The central idea is to build a closed loop
system where detection and prediction lead to diagnosis,
mitigation and learning.

4.1. Layer 1 Data and control plane instrumentation

This layer collects metrics, logs and traces from
connectors, streaming platforms, processors and sinks. It also
collects change events from CI systems, configuration stores
and schema registries. Logs are parsed into templates using
online log parsers [9][10]. Traces are used where available to
link connector operations to downstream processing and sink
writes. This layer also extracts CDC specific integrity signals
such as per table lag, per partition offsets and snapshot
progress indicators.

4.2. Layer 2 Contract and integrity specification
Integrity expectations are defined as contracts with
thresholds and statistical bounds. Contracts encode
objectives for freshness, expected volume ranges, schema
compatibility rules and reconciliation requirements. Data
quality dimensions provide the conceptual basis for contract
design [1]. Contracts are scoped by dataset, table, topic and
sink and can include criticality tags that drive policy and
severity.
4.3. Layer 3 Baseline learning and predictive risk scoring
This layer trains lightweight models that learn normal
behavior and forecast near term risk. Predictors estimate

106

Vineeth Kumar Reddy Mittamidi / IJETCSIT, 6(3), 104-111, 2025

future lag growth, probability of log retention breach and
likelihood of reconciliation divergence. Drift detection
monitors whether baseline assumptions are changing [13].
Models are trained per entity where possible and also
globally with grouping by similar patterns. Outputs are risk
scores that feed alerting and mitigation planning.

4.4. Layer 4 Anomaly detection and incident formation

This layer detects anomalies in telemetry, integrity
metrics and log template streams. It uses robust statistical
detectors for simple cases and incremental methods for
streaming metrics. For structured logs it can use pipeline
style approaches such as ADOps which separate data
preparation, model selection and deployment [8]. Each
detection generates an incident candidate with a symptom
signature including affected entity, dimension, time window
and deviation vector.

4.5. Layer 5 Topology aware diagnosis and RCA

Diagnosis operates over a CDC topology graph that
includes sources, connectors, topics, processors, sinks and
control plane artifacts. The engine performs constrained
upstream search from the symptom node to generate
candidates and then ranks hypotheses using evidence
features. The method draws inspiration from dependency
aware microservice RCA [11] and can apply causal
refinement for high ambiguity cases following causal
inference ideas [12]. Incident knowledge retrieval from prior
postmortems augments ranking and provides recommended
checks and actions [7].

4.6. Layer 6 Mitigation planner and guarded automation

The planner selects actions from a catalog. Actions are
categorized by risk. Low risk actions include scaling
consumers, restarting a stuck connector and pausing
downstream writes. Higher risk actions include bounded
replay, snapshot repair and schema registry rollback. A
policy engine enforces approval requirements based on risk
and confidence. This governance is essential because
corrective actions can modify data state.

4.7. Layer 7 Verification and learning store

After action execution the system verifies recovery by
rerunning contracts and reconciliation. It records the incident
artifact, root cause label, actions and outcome. These
artifacts support continuous improvement of ranking and
prediction and align with incident knowledge mining
approaches [7].

5. Predictive Monitoring

Detection Methods
5.1. Predicting replication lag and retention risk
Replication lag is a primary leading indicator for CDC
health. If lag grows beyond log retention windows the
pipeline can lose the ability to read changes and must rebuild
via snapshot. We propose a forecasting model for lag per
connector and per table where supported. Features include
current lag, throughput, source commit rate, sink apply rate,
retry rates, partition skew and recent change events. A
simple approach uses exponential smoothing with change

and Anomaly

point detection for abrupt shifts. For more complex patterns a
lightweight autoregressive model or gradient boosted tree
can be used. The key is to produce a near term risk estimate,
such as the probability that lag will exceed a threshold within
a time horizon.

Change point and anomaly detection methods for
correlated time series provide motivation for combining drift
and anomaly signals in high dimensional monitoring [15].
Drift detection is also applied to the residuals of the
forecasting model to identify when the model should be
retrained.

5.2. Predicting integrity divergence

Lag alone does not capture correctness. We propose an
integrity divergence predictor that estimates risk of source to
sink mismatch. The predictor uses features from
reconciliation checks, such as delta counts per key range,
checksum differences for sampled keys and uniqueness
violations. It also uses features from schema evolution
events. Because labels are rare, the model can be trained
using weak supervision where known incidents provide
positive labels and quiet windows provide negative labels.

5.3. Anomaly detection across metric families

The anomaly detection layer operates across several
metric families Connector health metrics include task
failures, restart loops, connection errors and offset commit
failures.Streaming metrics include topic produce error rates,
consumer lag and broker throttling. Sink metrics include
write latency, error rates and rate limit responses. Integrity
metrics include reconciliation deltas and unexpected null
spikes. Log template metrics include new templates and
burst rate of known templates.

For metrics with stable seasonal patterns, use robust z
scores and seasonal baselines. For non seasonal streaming
metrics use incremental detectors and isolation based
methods. For structured log streams use template novelty
detection and frequency anomaly detection based on parsed
logs [9][10]. ADOps provides an example of modular
deployment that can manage many anomaly tasks and
support both simple rule based checks and model based
detection [8].

5.4. Drift detection and model management

CDC pipelines evolve due to new tables, new connectors
and schema evolution. Drift detection should monitor not
only metrics but also the joint distribution of key features.
The unsupervised drift survey emphasizes the need to
distinguish drift from anomalies and to define change types
clearly [13]. In our architecture drift detection triggers model
retraining and also increases uncertainty in predictive risk
scores, which in turn tightens automation gating.
Graph based drift is relevant when the topology itself
changes, for example when a new consumer group is added
or a sink is migrated. Graph stream research on drift and
anomaly detection motivates representing topology changes
explicitly rather than treating them as noise [14].

107

Vineeth Kumar Reddy Mittamidi / IJETCSIT, 6(3), 104-111, 2025

5.5. Practical alert design

Predictive monitoring supports earlier alerts but can also
increase noise if not tuned. We recommend a two stage alert
design. Stage one is a predictive early warning when risk
exceeds a threshold but contracts are still within bounds.
Stage two is a contract violation alert when integrity checks
fail. This separation helps operators prioritize and provides
time to apply low risk mitigations before correctness
degrades.

6. Topology Constrained Diagnosis and Root

Cause Analysis
6.1. CDC topology graph

We represent the CDC system as a directed graph where
nodes include source databases, log readers, connector tasks,
topics, processor jobs, sink connectors, schema versions and
control plane changes. Edges represent produces, consumes,
transforms and configures relations. This graph is derived
from configuration and runtime metadata and can be
augmented with lineage information. The topology graph is
the primary structure that constrains diagnosis.

6.2. Symptom signatures

An incident is represented by a symptom signature S
that includes the affected node, the violated dimension, the
time window and deviation measures. For example a
signature can represent lag growth on a connector combined
with a rising reconciliation delta for a sink table.

6.3. Candidate generation via constrained traversal

Given a symptom node, generate a candidate set by
traversing upstream edges within a bounded depth and
including co temporal change nodes that touched any node
along the path. This reduces the hypothesis space and aligns
with dependency aware approaches in microservice RCA
[11].

6.4. Evidence scoring and ranking

For each candidate compute evidence features.
Temporal alignment between candidate events and symptom
onset Anomaly evidence from metrics and log templates
Schema drift evidence from registry diffs Backpressure
evidence from queue metrics and sink latency Reconciliation
proximity evidence based on which entities directly
influence the violated dataset Historical similarity evidence
from retrieval of past incident artifacts as suggested by
incident knowledge mining work [7] Candidates are ranked
by a weighted scoring function or a lightweight learning to
rank model trained on labeled incidents. The output includes
an explanation that links evidence back to observables and
contracts. Explainability is critical for trust in automation.

6.5. Causal refinement for ambiguous incidents

When the top candidates have similar scores, apply
causal refinement on a small subgraph containing the
candidates and their neighbors. CausalRCA shows that
causal inference can improve precision for microservice
localization [12]. In CDC, causal refinement is applied to
distinguish whether lag is caused by source slowdown,
connector bottleneck or sink throttling. Restricting causal

learning to a small subgraph helps manage complexity and
reduces sensitivity.

6.6. Integrating postmortem knowledge

Incident investigations often reveal recurring patterns
such as schema evolution causing parse errors or connector
configuration changes causing offset resets. Mining root
cause knowledge from incident investigations can support
retrieval and recommendation systems [7]. The learning store
in our architecture captures CDC incidents and enables
similarity search by symptom signature and evidence
patterns. When a new incident appears, the system retrieves
similar cases and suggests checks and mitigation steps that
worked previously, improving operator efficiency.
Automated

7. Error and

Remediation
7.1. Design goals for mitigation

Mitigation actions must be safe because they can affect
data correctness. We define four goals. Contain impact so
that corrupted data does not propagate to consumers Restore
correctness by repairing missing or duplicated changes
Restore timeliness by reducing lag and clearing backlogs
Preserve auditability and enable rollback where possible

Mitigation

7.2. Action catalog with risk tiers

Tier 0 Informational actions create a ticket, annotate
dashboards, notify owners and attach diagnosis evidence.
Tier 1 Containment actions Pause sink writes, route reads to
a last known good snapshot, quarantine affected partitions,
disable a problematic table capture temporarily. Tier 2
Recovery actions Scale connector tasks and consumers,
restart a stuck task with controlled offset handling, trigger
bounded replay of a time window, rebuild a materialized
view, run a targeted reconciliation epair for a key range. Tier
3 Structural actions Rollback a connector or processor
deployment, revert a schema registry change, trigger a
snapshot resynchronization using a watermark based method,
perform a controlled cutover to a repaired sink.

A watermark based CDC framework supports safe
snapshot repair because it allows interleaving snapshot reads
with log events and can be triggered for specific tables or
keys [4]. Workload aware CDC research also suggests that
strategy choice influences overhead and correctness, which
can inform mitigation design [3].

7.3. Guarded automation via policy

Automation is gated by policy based rules that consider
action risk, confidence in diagnosis and business criticality
tags from contracts. For example, auto scaling a consumer
group can be executed automatically when confidence is
high and rollback is straightforward. By contrast, forcing a
snapshot resynchronization or rewinding offsets can cause
duplicates and requires human approval. Policy gates also
enforce rate limits on actions to avoid oscillations.

7.4. Verification and reconciliation after action

After any action the system verifies recovery.
Verification includes checking lag, rerunning reconciliation

108

Vineeth Kumar Reddy Mittamidi / IJETCSIT, 6(3), 104-111, 2025

and validating that duplicates and null rates return to
expected ranges. If verification fails, the system escalates.
This verification loop is also used to label outcomes for
learning.

7.5. Human in the loop workflows

Operators remain essential for complex correctness
incidents. The system is designed to assist, not replace,
engineers by reducing evidence collection time, ranking
hypotheses and proposing safe actions. Incident knowledge
retrieval supports this by surfacing prior cases and
recommended steps [7].

8. Prototype Implementation Guidance
8.1. Data collection and storage

Implement a unified telemetry store that ingests metrics,
log templates and change events. Store per connector metrics
at fine granularity and integrity checks at a cadence aligned
to business requirements. Use a time series database for
metrics and a document store for incident artifacts.

8.2. Log parsing and signature features

Deploy online log parsers such as Spell or Drain to
convert logs into templates [9][10]. Maintain template
frequency time series and detect new templates and bursts.
For CDC this is useful for recognizing new failure modes
after deploys or schema changes.

8.3. Topology graph construction

Construct the CDC topology graph from connector
configurations, streaming metadata, processor DAGs and
schema registry links. Include control plane changes as
nodes with edges to affected components. This allows
diagnosis traversal and also supports impact analysis before
change management actions..

8.4. Model training and deployment

Start with interpretable models. Use simple forecasting
for lag and robust detectors for integrity metrics. Add
learning to rank for diagnosis after collecting labeled
incidents. Use drift detection to schedule retraining. Prefer
lightweight models because CDC incidents are sparse and
high precision is more valuable than marginal recall gains.

8.5. Integration with incident management

Integrate with existing ticketing and on call processes.
When an incident is created attach the symptom signature,
diagnosis report and recommended actions. Allow operators
to confirm root cause and action. Store confirmations for
learning.

8.6. Safety and audit

Record every automated action with parameters and
approvals. Ensure that replays and offset rewinds are
bounded and idempotent where possible. Provide a dry run
mode that estimates impact and displays which partitions or
key ranges will be affected.

9. Evaluation Plan
9.1. Metrics

We propose evaluating the system across detection,
diagnosis and recovery. Mean time to detection from the start
of an integrity violation to alert Mean time to recovery from
detection to verified contract recovery Precision and recall
for contract violation detection Top k accuracy for diagnosis
compared to postmortem ground truth Mitigation success
rate and rollback rate Business impact measures such as
prevented consumption of corrupted data and reduced
reprocessing cost.

9.2. Historical incident replay

Replay historical telemetry and integrity checks to
evaluate prediction and detection. The incident knowledge
mining literature demonstrates that incident artifacts can be
used for downstream tasks including retrieval and
recommendation [7]. Use stored postmortems to label root
causes and compare diagnosis ranking quality.

9.3. Baselines

Compare against threshold based monitoring, simple
correlation with deploy times and generic microservice RCA
methods without CDC topology constraints. We expect
topology constrained search to reduce false leads and
predictive monitoring to reduce detection delays.

9.4. Stress testing with synthetic faults

Inject controlled faults in a staging environment.
Examples include artificial sink throttling, schema changes
that introduce type mismatches, connector restarts with offset
perturbations and log retention reductions. Evaluate whether
the system predicts risk, detects anomalies, diagnoses
correctly and proposes safe actions.

9.5. Operator evaluation

Conduct qualitative evaluation with on call engineers.
Measure time saved in evidence gathering and perceived
trust in recommendations. The goal is to create a system that
improves reliability without creating alert fatigue.

10. Discussion, Limitations and Future Work
10.1. Handling exactly once semantics

Some CDC deployments require exactly once semantics.
Achieving this end to end depends on connector guarantees,
streaming platform configuration and idempotent sink
behavior. The proposed architecture does not change the
underlying semantics but helps detect when guarantees are
violated and suggests mitigation that preserves idempotence.

10.2. Dependence on integrity signals

The architecture is strongest when integrity checks exist.
If reconciliation is absent, the system relies more on indirect
signals and uncertainty grows. Data quality research
emphasizes that dimensions should be operationalized into
measurable checks [1]. Implementing a minimal set of
checks for key datasets is therefore a prerequisite.

109

Vineeth Kumar Reddy Mittamidi / IJETCSIT, 6(3), 104-111, 2025

10.3. Drift and evolving topology

Drift can reflect benign change, such as a new product
launch, or harmful change, such as a misconfigured
connector. Drift detection methods and clear definitions are
needed to avoid spurious retraining and unnecessary alerts
[13]. Topology evolution should be modeled explicitly and
can itself be a predictor of risk when many changes occur in
a short window.

10.4. Safety of automation

Automation for data correctness incidents carries higher
risk than automation for availability incidents. Policy gating
and verification loops are essential. Future work can explore
more formal safety constraints for actions and simulation
based impact estimation.

10.5. Future directions

Future work can incorporate richer causal inference and
counterfactual reasoning to estimate which action will reduce
risk with minimal side effects. It can also integrate
organizational signals such as change management approvals
and deployment pipelines. Finally, it can extend incident
knowledge retrieval with structured templates and
standardized taxonomies to improve cross team learning.

11. Conclusion

CDC pipelines are foundational for delivering timely
data across enterprise systems, yet they are increasingly
complex and prone to subtle integrity failures. This paper
presented an architecture that leverages Al and ML for
predictive monitoring and error mitigation in CDC. The
approach combines contract based integrity monitoring
grounded in established data quality dimensions [1], data
observability principles [6], predictive models for lag and
divergence risk, topology constrained diagnosis inspired by
dependency aware RCA [11] and incident knowledge mining
for operational learning [7]. A guarded automation layer
executes risk tiered mitigation actions and verifies recovery
to maintain trust.

By embedding adaptive intelligence into CDC
operations, organizations can move from reactive
troubleshooting to proactive risk management. The expected
outcome is faster detection, faster recovery and lower
business impact from integrity incidents. As enterprises
continue to expand event driven architectures and rely on
CDC for critical products, such predictive and policy
governed operational intelligence will be an essential
reliability capability.

References

[1]1 S. K. Gunda, "Analyzing Machine Learning Techniques
for Software Defect Prediction: A Comprehensive
Performance Comparison," 2024 Asian Conference on
Intelligent Technologies (ACOIT), KOLAR, India,
2024, pp. 1-5,
https://doi.org/10.1109/ACOI1T62457.2024.10939610.

[21 M. Kleppmann, "Thinking in events: from databases to
distributed collaboration software," Proceedings of the

ACM Symposium on Principles of Distributed
Computing, 2021. doi: 10.1145/3465480.3467835.

[31 W. Qu, J. Huang, J. Zhang and H. Chen, "A Workload
Aware Change Data Capture Framework for On
Demand Data Warehousing," in Advances in Databases
and Information Systems, 2021. doi: 10.1007/978-3-
030-86534-4_21.

[4] A. Andreakis and |. Papapanagiotou, "DBLog: A
Watermark Based Change Data Capture Framework,"
arXiv, 2020. doi: 10.48550/arXiv.2010.12597.

[5] S. K. Gunda, "Software Defect Prediction Using
Advanced Ensemble Techniques: A Focus on Boosting
and Voting Method," 2024 International Conference on
Electronic Systems and Intelligent Computing
(ICESIC), Chennai, India, 2024, pp. 157-161,
https://doi.org/10.1109/ICESIC61777.2024.10846550.

[6] H.L.Truongetal., "TENSAI: Practical and Responsible
Observability for Data Quality Aware Large Scale
Analytics,"” Journal of Data and Information Quality,
2024. doi: 10.1145/3708014.

[71 A. Saha et al., "Mining Root Cause Knowledge from
Cloud Service Incident Investigations for AIlOps,”
Proceedings of the IEEE ACM International Conference
on Automated Software Engineering, 2022. doi:
10.1145/3510457.3513030.

[8] X. Song, Y. Zhu, J. Wu, B. Liu and H. Wei, "ADOps:
An Anomaly Detection Pipeline in Structured Logs,"
Proceedings of the VLDB Endowment, vol. 16, no. 12,
pp. 4050 to 4053, 2023. doi:
10.14778/3611540.3611618.

[9]1 S. K. Gunda, "Enhancing Software Fault Prediction with
Machine Learning: A Comparative Study on the PC1
Dataset,” 2024 Global Conference on Communications
and Information Technologies (GCCIT),
BANGALORE, India, 2024, pp. 1-4,
https://doi.org/10.1109/GCCIT63234.2024.10862351.

[10] P. He, J. Zhu, Z. Zheng and M. R. Lyu, "Drain: An
Online Log Parsing Approach with Fixed Depth Tree,"”
Proceedings of the IEEE International Conference on
Web Services, 2017. doi: 10.1109/ICWS.2017.13.

[11]1L. Wu, J. Tordsson, E. Elmroth and O. Kao,
"MicroRCA: Root Cause Localization of Performance
Issues in Microservices," Proceedings of IEEE NOMS,
2020. doi: 10.1109/NOMS47738.2020.9110353.

[12] R. Xin, P. Chen and Z. Zhao, "CausalRCA: Causal
Inference Based Precise Fine Grained Root Cause
Localization for Microservice Applications,” Journal of
Systems and Software, vol. 203, 2023. doi:
10.1016/j.jss.2023.111724.

[13]1 S. K. Gunda, "Comparative Analysis of Machine
Learning Models for Software Defect Prediction," 2024
International Conference on Power, Energy, Control and
Transmission Systems (ICPECTS), Chennai, India,
2024, pp. 1-6,
https://doi.org/10.1109/ICPECTS62210.2024.10780167.

[14] D. Zambon, L. Alippi and L. Livi, "Concept Drift and
Anomaly Detection in Graph Streams,” IEEE
Transactions on Neural Networks and Learning
Systems, vol. 29, no. 11, pp. 5592 to 5605, 2018. doi:
10.1109/TNNLS.2018.2804443.

110

https://doi.org/10.1109/GCCIT63234.2024.10862351

Vineeth Kumar Reddy Mittamidi / IJETCSIT, 6(3), 104-111, 2025

[15] M. Tveten, P. Fryzlewicz and S. K. Wied, "Scalable
change point and anomaly detection in cross correlated
data,” Annals of Applied Statistics, vol. 16, no. 2, 2022.
doi: 10.1214/21-A0OAS1508.

[16] D. Seenivasan and M. Vaithianathan, "Real Time
Adaptation: Change Data Capture in Modern Computer
Architecture,” International Journal of Advanced
Computer Technology, 2023. doi:
10.56472/25838628/IJACT-V1I2P106.

[17] Xie, Y., Zhang, H., & Babar, M. A. (2022). LogGD:
Detecting anomalies from system logs by graph neural
networks. arxiv.
https://doi.org/10.48550/arXiv.2209.07869

[18] S. Ghosh, S. Biswas and S. B. Roy, "Online anomaly
detection with concept drift adaptation,” Proceedings of
the ACM International Conference on Information and
Knowledge Management, 2017. doi:
10.1145/3152494.3152501.

[19] Sai Krishna Gunda (2024). Smart Device for Object-
Oriented Software Prototype (UK Registered Design
No. 6400739). Registered with the UK Intellectual
Property Office, Class 14-02, granted in November
2024.

[20] M. Du and F. Li, "Spell: Streaming Parsing of System
Event Logs,"” Proceedings of the IEEE International
Conference on Data Mining, 2016. doi:
10.1109/ICDM.2016.0103.

[21] F. Hinder, M. Schmidt, C. Wirth, N. L. Dirr and U.
Brefeld, "One or two things we know about concept
drift: a survey on unsupervised drift detection," Frontiers
in Artificial Intelligence, 2024. doi:
10.3389/frai.2024.1330257.

[22] Abu Alhija, H., Azzeh, M., & Almasalha, F. (2022).
Software defect prediction using support vector
machine. arXiv.
https://doi.org/10.48550/arXiv.2209.14299

111

