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Abstract - Change Data Capture pipelines are widely used to propagate database changes into event streams, analytical stores 

and operational read models with low latency. As enterprises expand the number of source databases, connectors, downstream 

consumers and serving systems, operational reliability becomes harder to sustain. Failures that begin as a minor lag increase 

or a subtle schema evolution can cascade into missed records, duplicated events, inconsistent materialized views and 

downstream business defects. Traditional monitoring based on static thresholds and manual triage struggles because CDC 

behavior is non stationary, highly correlated across components and sensitive to workload shifts and change management 

practices. This paper proposes an architecture that embeds adaptive intelligence into CDC operations through predictive 

monitoring, anomaly detection, diagnosis and guarded automation. The approach fuses three families of signals. The first 

family is pipeline telemetry such as connector lag, throughput, offsets, retries and backpressure. The second family is data 

integrity signals such as row count deltas, key uniqueness checks and reconciliation between source and sink. The third family 

is change signals such as deploys, connector configuration edits and schema registry events. Lightweight models learn 

baselines and predict near term risk for lag growth, event loss and replication divergence. A graph based diagnosis method 

constrains root cause search using CDC topology and lineage and then ranks hypotheses using multi modal evidence including 

structured log templates. Finally, an action layer executes risk tiered mitigation steps such as auto scaling consumers, pausing 

downstream writes, triggering bounded replays and initiating snapshot repair with human approval gates for high impact 

actions. The paper outlines a prototype design and an evaluation plan using historical incident replay. It argues that the 

combination of predictive signals, topology aware diagnosis and policy based automation can reduce mean time to detection 

and mean time to recovery while improving trust in CDC driven data products. 

 

Keywords - Change Data Capture, Data Pipelines, Predictive Monitoring, Anomaly Detection, Data Integrity, Observability, 

Automated Remediation, Root Cause Analysis, Concept Drift. 

 

1. Introduction 
Enterprises increasingly treat operational data as a 

product that must be delivered continuously to multiple 

consumers. Online applications need current views for search 

and personalization, fraud systems need fast features and 

analytics teams need timely facts for reporting. Change Data 

Capture, often implemented through log based connectors 

and event streaming, is a common backbone for these needs. 

In a typical CDC deployment, a connector reads transaction 

logs from a source database, converts changes into a 

standardized event format, publishes events to a streaming 

platform and downstream processors apply transformations 

and updates to sinks such as data warehouses, key value 

stores or search indexes. CDC enables low latency 

propagation without intrusive triggers and reduces the cost of 

full reload ETL patterns. Yet the very characteristics that 

make CDC attractive also make it operationally fragile. The 

pipeline spans multiple domains, evolves over time and must 

preserve correctness under failures and reconfiguration. 

 

Operational issues in CDC pipelines are not limited to 

uptime. They include silent integrity degradation where the 

pipeline continues to run but produces incorrect data. 

Examples include missing updates due to connector offset 

mismanagement, duplicated events after retries, out of order 

application of changes, inconsistent snapshots, schema drift 

that causes parse failures and propagation of tombstones that 

unexpectedly delete records in a sink. These defects can 

persist for hours before detection because symptoms appear 

in downstream aggregates rather than in connector error logs. 

Data pipeline quality research highlights that data related 

issues often arise from incorrect types, integration defects 

and processing problem areas that are hard for developers to 

manage at scale [5]. 

 

Standard monitoring practices focus on dashboards, rule 

based alerts and manual runbooks. Such practices are 

necessary but insufficient for modern CDC where normal 

behavior shifts with workload, schema evolution and scaling. 

Data quality and monitoring literature emphasizes that 

quality is multi dimensional, involving completeness, 

consistency and timeliness as key concepts [1]. CDC 

reliability demands that these dimensions be monitored end 

to end, not only at a single component. Observability 

frameworks for data quality emphasize the need to combine 

quality signals, freshness signals and lineage signals in order 

to prevent issues before they accumulate [6]. 
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At the same time, the broader operations community has 

advanced automated anomaly detection, root cause analysis 

and incident knowledge mining. Structured log anomaly 

detection pipelines can be built as modular systems that 

accelerate creation and management of monitoring items [8]. 

Root cause knowledge can be mined from incident 

investigations and used to recommend diagnosis steps and 

remediation actions [7]. Microservice RCA research shows 

that dependency aware reasoning over service graphs can 

localize root causes more precisely than isolated metric 

correlation [11][12]. However, CDC pipelines combine 

database logs, stream processing and data integrity 

constraints which require specialized modeling. 

 

This paper contributes an architecture for predictive 

monitoring and error mitigation tailored to CDC. The key 

design principle is to treat CDC as a socio technical system 

where telemetry, data integrity and change management 

signals must be fused. Rather than relying on a single large 

model, the architecture uses lightweight predictors for 

specific operational risks and a graph based diagnosis 

method that narrows the hypothesis space using CDC 

topology and lineage. Automated actions are executed under 

policy based gates to preserve safety and auditability. 

 

The rest of the paper is organized as follows. Section II 

reviews related work in CDC, data quality, observability and 

operational intelligence. Section III describes CDC pipelines 

and an incident taxonomy. Section IV presents the proposed 

architecture. Section V details predictive models and 

anomaly detection. Section VI describes topology 

constrained diagnosis and RCA. Section VII presents 

mitigation and automation with governance. Section VIII 

outlines a prototype implementation. Section IX proposes an 

evaluation plan. Section X discusses limitations and future 

directions. Section XI concludes. 

 

2. Background and Related Work 
2.1. Change Data Capture systems 

CDC is the practice of capturing changes from a source 

system and propagating them downstream. A common 

pattern uses transaction logs to avoid write amplification and 

to preserve ordering. Event based data integration work 

emphasizes that logs and event streams provide a durable 

backbone for distributing changes across distributed systems 

[2]. In data warehousing contexts, workload aware CDC 

strategies have been proposed to balance overhead and 

freshness by selecting among trigger based, timestamp based 

and log based approaches depending on workload 

characteristics [3]. Practical CDC deployments also require 

an initial snapshot in order to establish full state and then 

incremental changes from logs. A watermark based 

framework such as DBLog interleaves log events with 

chunked snapshot reads to capture full state while 

maintaining progress of log consumption, addressing 

production needs for repair and resynchronization [4]. 

 

2.2. Data quality and data pipeline reliability 

Data quality is best understood as fitness for use with 

multiple dimensions such as completeness, consistency and 

timeliness [1]. In CDC pipelines these dimensions map to 

tangible properties: completeness relates to missing changes 

or missing partitions in derived stores, consistency relates to 

duplicates and referential mismatches between source and 

sink and timeliness relates to replication lag and freshness 

windows. A recent study on data pipeline quality provides a 

taxonomy of influencing factors and identifies common root 

causes of data related issues such as incorrect types and 

cleaning problems [5]. These findings align with CDC 

incidents where schema evolution or conversion logic 

introduces silent coercion and downstream corruption. 

 

2.3. Data observability and responsible monitoring 

Observability for data systems aims to provide sufficient 

signals to explain pipeline behavior and to detect integrity 

issues early. Frameworks such as TENSAI propose practical 

observability for data quality aware analytics by combining 

measurement, responsible monitoring and operational 

integration [6]. This work supports the idea that data quality 

monitoring should be systematic, not ad hoc, and that 

observability must include provenance and context. 

 

2.4. Anomaly detection, log parsing and operational 

intelligence 

In large systems, anomaly detection is used to identify 

deviations in metrics and logs. ADOps demonstrates a 

modular pipeline for anomaly detection in structured logs 

and reports a PVLDB implementation with configuration 

driven task creation [8]. Many log based approaches rely on 

parsing unstructured logs into templates. Spell proposes 

streaming parsing of system event logs [9] and Drain 

proposes an online log parsing approach using a fixed depth 

tree [10]. These methods enable template novelty detection 

and burst detection which are valuable in CDC because 

many failures manifest as new error signatures or spikes of 

known signatures. 

 

2.5. Root cause analysis and incident knowledge mining 

Topology aware RCA has been widely studied for 

microservices. MicroRCA localizes performance issues by 

using service interaction graphs and metric correlations [11]. 

CausalRCA applies causal inference to localize root causes 

at fine granularity in microservice applications [12]. While 

CDC pipelines differ from microservices, they share a 

dependency graph structure where downstream symptoms 

can be traced to upstream components. Separately, incident 

knowledge mining approaches extract patterns from 

postmortems and incident investigations to accelerate RCA 

workflows [7]. These ideas motivate storing CDC incident 

artifacts and using retrieval to recommend likely causes and 

mitigation steps. 

 

2.6. Concept drift and non stationary monitoring 

Monitoring models degrade when normal behavior 

changes. A survey on unsupervised drift detection 

emphasizes that drift can occur without labels and that 

monitoring systems need clear definitions and robust 

methods to detect shifts [13]. In streaming settings, drift and 

anomalies can interact. Graph stream research has studied 

drift and anomaly detection when relationships evolve and 
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shows that graph based representations can capture evolving 

structure [14]. CDC pipelines exhibit both metric drift due to 

workload seasonality and structural drift due to topology and 

schema changes, so drift awareness is crucial. 

 

3. CDC Pipeline Model and Failure Taxonomy 
3.1. Reference CDC pipeline 

We model a CDC pipeline as a set of stages connected 

by durable queues. A source database emits a transaction log. 

A connector reads the log and converts each change into an 

event record. The event is published to a streaming platform. 

Downstream processors consume events and apply 

transformations such as enrichment, filtering and 

aggregation. Finally, sink connectors or application services 

apply changes to target systems. In many deployments, a 

schema registry governs event schemas and provides 

compatibility rules. A control plane manages connector 

configuration, scaling and restart behavior. 

 

The pipeline must maintain three invariants. First, it 

must preserve at least once or exactly once delivery 

semantics depending on the design. Second, it must preserve 

ordering constraints required by sinks, often per key. Third, 

it must preserve data integrity by ensuring that downstream 

state converges to source state over time. Achieving these 

invariants under failures requires careful offset management, 

idempotent sinks and bounded reprocessing strategies. 

 

3.2. Failure categories 

We propose a taxonomy of CDC failures aligned to data 

quality dimensions [1] and to pipeline quality root causes [5]. 

The taxonomy helps map symptoms to likely causes and 

guides model selection and mitigation action. 

 Timeliness failures these are characterized by 

increasing replication lag, consumer backlog and 

missed freshness objectives. Causes include 

insufficient resources, downstream sink throttling, 

network partitions and skewed partitions. 

Timeliness failures are often precursors to 

correctness failures because large lag increases the 

window where logs can expire and forces snapshot 

resynchronization. 

 Completeness failures these include missing events, 

dropped records and gaps in offsets. Causes include 

connector crashes with offset loss, log retention 

limits, misconfigured filters and parsing failures 

caused by schema changes. Completeness failures 

can be hard to detect because row counts can remain 

stable while specific segments are missing. 

 Consistency failures these include duplicates, out of 

order applies and mismatch between source and 

sink. Causes include non idempotent sink writes, 

retries that reapply changes, inconsistent 

deduplication logic and race conditions across 

parallel consumers. Consistency failures often 

manifest as reconciliation mismatches or 

uniqueness violations in derived stores. 

 Schema and semantic drift failures These include 

incompatible schema evolution, field type changes, 

new enumerations and changes in meaning such as 

units or encoding. A pipeline quality study 

identifies incorrect types as a frequent root cause of 

data issues [5]. In CDC, drift can cause silent 

coercion, null spikes or ingestion halts if 

compatibility rules reject events. 

 Control plane and change management 

failuresThese include misconfiguration, wrong 

connector parameters, invalid secrets and unsafe 

deploys. Control plane events often correlate with 

incidents and are important features for diagnosis 

and prediction. Event driven systems research 

emphasizes that distributed change propagation 

must be treated systematically to avoid dual writes 

and inconsistency [2]. 

 

3.3. Observability signals for CDC integrity 

We categorize observability signals into telemetry, 

integrity and change signals. Telemetry signals include 

source log position, connector offsets, publish latency, 

consumer lag, throughput and retry counts. Integrity signals 

include source to sink reconciliation, row count deltas by 

partition, key uniqueness checks and checksum comparisons 

for sampled keys. Change signals include connector 

configuration edits, schema registry updates, deploy events 

and scaling events. Data observability frameworks suggest 

combining quality, freshness and lineage signals to improve 

trust [6]. Our architecture uses this combination as the basis 

for learning and action. 

 

4. Proposed Architecture for Predictive 

Monitoring and Mitigation 
The architecture consists of seven layers. Each layer is 

designed to be modular and to integrate with existing 

enterprise tooling. The central idea is to build a closed loop 

system where detection and prediction lead to diagnosis, 

mitigation and learning. 

 

4.1. Layer 1 Data and control plane instrumentation 

This layer collects metrics, logs and traces from 

connectors, streaming platforms, processors and sinks. It also 

collects change events from CI systems, configuration stores 

and schema registries. Logs are parsed into templates using 

online log parsers [9][10]. Traces are used where available to 

link connector operations to downstream processing and sink 

writes. This layer also extracts CDC specific integrity signals 

such as per table lag, per partition offsets and snapshot 

progress indicators. 

 

4.2. Layer 2 Contract and integrity specification 

Integrity expectations are defined as contracts with 

thresholds and statistical bounds. Contracts encode 

objectives for freshness, expected volume ranges, schema 

compatibility rules and reconciliation requirements. Data 

quality dimensions provide the conceptual basis for contract 

design [1]. Contracts are scoped by dataset, table, topic and 

sink and can include criticality tags that drive policy and 

severity. 

4.3. Layer 3 Baseline learning and predictive risk scoring 

This layer trains lightweight models that learn normal 

behavior and forecast near term risk. Predictors estimate 
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future lag growth, probability of log retention breach and 

likelihood of reconciliation divergence. Drift detection 

monitors whether baseline assumptions are changing [13]. 

Models are trained per entity where possible and also 

globally with grouping by similar patterns. Outputs are risk 

scores that feed alerting and mitigation planning. 

 

4.4. Layer 4 Anomaly detection and incident formation 

This layer detects anomalies in telemetry, integrity 

metrics and log template streams. It uses robust statistical 

detectors for simple cases and incremental methods for 

streaming metrics. For structured logs it can use pipeline 

style approaches such as ADOps which separate data 

preparation, model selection and deployment [8]. Each 

detection generates an incident candidate with a symptom 

signature including affected entity, dimension, time window 

and deviation vector. 

 

4.5. Layer 5 Topology aware diagnosis and RCA 

Diagnosis operates over a CDC topology graph that 

includes sources, connectors, topics, processors, sinks and 

control plane artifacts. The engine performs constrained 

upstream search from the symptom node to generate 

candidates and then ranks hypotheses using evidence 

features. The method draws inspiration from dependency 

aware microservice RCA [11] and can apply causal 

refinement for high ambiguity cases following causal 

inference ideas [12]. Incident knowledge retrieval from prior 

postmortems augments ranking and provides recommended 

checks and actions [7]. 

 

4.6. Layer 6 Mitigation planner and guarded automation 

The planner selects actions from a catalog. Actions are 

categorized by risk. Low risk actions include scaling 

consumers, restarting a stuck connector and pausing 

downstream writes. Higher risk actions include bounded 

replay, snapshot repair and schema registry rollback. A 

policy engine enforces approval requirements based on risk 

and confidence. This governance is essential because 

corrective actions can modify data state. 

 

4.7. Layer 7 Verification and learning store 

After action execution the system verifies recovery by 

rerunning contracts and reconciliation. It records the incident 

artifact, root cause label, actions and outcome. These 

artifacts support continuous improvement of ranking and 

prediction and align with incident knowledge mining 

approaches [7]. 

 

5. Predictive Monitoring and Anomaly 

Detection Methods 
5.1. Predicting replication lag and retention risk 

Replication lag is a primary leading indicator for CDC 

health. If lag grows beyond log retention windows the 

pipeline can lose the ability to read changes and must rebuild 

via snapshot. We propose a forecasting model for lag per 

connector and per table where supported. Features include 

current lag, throughput, source commit rate, sink apply rate, 

retry rates, partition skew and recent change events. A 

simple approach uses exponential smoothing with change 

point detection for abrupt shifts. For more complex patterns a 

lightweight autoregressive model or gradient boosted tree 

can be used. The key is to produce a near term risk estimate, 

such as the probability that lag will exceed a threshold within 

a time horizon. 

 

Change point and anomaly detection methods for 

correlated time series provide motivation for combining drift 

and anomaly signals in high dimensional monitoring [15]. 

Drift detection is also applied to the residuals of the 

forecasting model to identify when the model should be 

retrained. 

 

5.2. Predicting integrity divergence 

Lag alone does not capture correctness. We propose an 

integrity divergence predictor that estimates risk of source to 

sink mismatch. The predictor uses features from 

reconciliation checks, such as delta counts per key range, 

checksum differences for sampled keys and uniqueness 

violations. It also uses features from schema evolution 

events. Because labels are rare, the model can be trained 

using weak supervision where known incidents provide 

positive labels and quiet windows provide negative labels. 

 

5.3. Anomaly detection across metric families 

The anomaly detection layer operates across several 

metric families Connector health metrics include task 

failures, restart loops, connection errors and offset commit 

failures.Streaming metrics include topic produce error rates, 

consumer lag and broker throttling. Sink metrics include 

write latency, error rates and rate limit responses. Integrity 

metrics include reconciliation deltas and unexpected null 

spikes. Log template metrics include new templates and 

burst rate of known templates. 

 

For metrics with stable seasonal patterns, use robust z 

scores and seasonal baselines. For non seasonal streaming 

metrics use incremental detectors and isolation based 

methods. For structured log streams use template novelty 

detection and frequency anomaly detection based on parsed 

logs [9][10]. ADOps provides an example of modular 

deployment that can manage many anomaly tasks and 

support both simple rule based checks and model based 

detection [8]. 

 

5.4. Drift detection and model management 

CDC pipelines evolve due to new tables, new connectors 

and schema evolution. Drift detection should monitor not 

only metrics but also the joint distribution of key features. 

The unsupervised drift survey emphasizes the need to 

distinguish drift from anomalies and to define change types 

clearly [13]. In our architecture drift detection triggers model 

retraining and also increases uncertainty in predictive risk 

scores, which in turn tightens automation gating. 

Graph based drift is relevant when the topology itself 

changes, for example when a new consumer group is added 

or a sink is migrated. Graph stream research on drift and 

anomaly detection motivates representing topology changes 

explicitly rather than treating them as noise [14]. 
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5.5. Practical alert design 

Predictive monitoring supports earlier alerts but can also 

increase noise if not tuned. We recommend a two stage alert 

design. Stage one is a predictive early warning when risk 

exceeds a threshold but contracts are still within bounds. 

Stage two is a contract violation alert when integrity checks 

fail. This separation helps operators prioritize and provides 

time to apply low risk mitigations before correctness 

degrades. 

 

6. Topology Constrained Diagnosis and Root 

Cause Analysis 
6.1. CDC topology graph 

We represent the CDC system as a directed graph where 

nodes include source databases, log readers, connector tasks, 

topics, processor jobs, sink connectors, schema versions and 

control plane changes. Edges represent produces, consumes, 

transforms and configures relations. This graph is derived 

from configuration and runtime metadata and can be 

augmented with lineage information. The topology graph is 

the primary structure that constrains diagnosis. 

 

6.2. Symptom signatures 

An incident is represented by a symptom signature S 

that includes the affected node, the violated dimension, the 

time window and deviation measures. For example a 

signature can represent lag growth on a connector combined 

with a rising reconciliation delta for a sink table. 

 

6.3. Candidate generation via constrained traversal 

Given a symptom node, generate a candidate set by 

traversing upstream edges within a bounded depth and 

including co temporal change nodes that touched any node 

along the path. This reduces the hypothesis space and aligns 

with dependency aware approaches in microservice RCA 

[11]. 

 

6.4. Evidence scoring and ranking 

For each candidate compute evidence features. 

Temporal alignment between candidate events and symptom 

onset Anomaly evidence from metrics and log templates 

Schema drift evidence from registry diffs  Backpressure 

evidence from queue metrics and sink latency Reconciliation 

proximity evidence based on which entities directly 

influence the violated dataset Historical similarity evidence 

from retrieval of past incident artifacts as suggested by 

incident knowledge mining work [7] Candidates are ranked 

by a weighted scoring function or a lightweight learning to 

rank model trained on labeled incidents. The output includes 

an explanation that links evidence back to observables and 

contracts. Explainability is critical for trust in automation. 

 

6.5. Causal refinement for ambiguous incidents 

When the top candidates have similar scores, apply 

causal refinement on a small subgraph containing the 

candidates and their neighbors. CausalRCA shows that 

causal inference can improve precision for microservice 

localization [12]. In CDC, causal refinement is applied to 

distinguish whether lag is caused by source slowdown, 

connector bottleneck or sink throttling. Restricting causal 

learning to a small subgraph helps manage complexity and 

reduces sensitivity. 

 

6.6. Integrating postmortem knowledge 

Incident investigations often reveal recurring patterns 

such as schema evolution causing parse errors or connector 

configuration changes causing offset resets. Mining root 

cause knowledge from incident investigations can support 

retrieval and recommendation systems [7]. The learning store 

in our architecture captures CDC incidents and enables 

similarity search by symptom signature and evidence 

patterns. When a new incident appears, the system retrieves 

similar cases and suggests checks and mitigation steps that 

worked previously, improving operator efficiency. 

 

7. Error Mitigation and Automated 

Remediation 
7.1. Design goals for mitigation 

Mitigation actions must be safe because they can affect 

data correctness. We define four goals. Contain impact so 

that corrupted data does not propagate to consumers Restore 

correctness by repairing missing or duplicated changes 

Restore timeliness by reducing lag and clearing backlogs 

Preserve auditability and enable rollback where possible 

 

7.2. Action catalog with risk tiers 

Tier 0 Informational actions create a ticket, annotate 

dashboards, notify owners and attach diagnosis evidence.  

Tier 1 Containment actions Pause sink writes, route reads to 

a last known good snapshot, quarantine affected partitions, 

disable a problematic table capture temporarily. Tier 2 

Recovery actions Scale connector tasks and consumers, 

restart a stuck task with controlled offset handling, trigger 

bounded replay of a time window, rebuild a materialized 

view, run a targeted reconciliation epair for a key range. Tier 

3 Structural actions Rollback a connector or processor 

deployment, revert a schema registry change, trigger a 

snapshot resynchronization using a watermark based method, 

perform a controlled cutover to a repaired sink. 

 

A watermark based CDC framework supports safe 

snapshot repair because it allows interleaving snapshot reads 

with log events and can be triggered for specific tables or 

keys [4]. Workload aware CDC research also suggests that 

strategy choice influences overhead and correctness, which 

can inform mitigation design [3]. 

 

7.3. Guarded automation via policy 

Automation is gated by policy based rules that consider 

action risk, confidence in diagnosis and business criticality 

tags from contracts. For example, auto scaling a consumer 

group can be executed automatically when confidence is 

high and rollback is straightforward. By contrast, forcing a 

snapshot resynchronization or rewinding offsets can cause 

duplicates and requires human approval. Policy gates also 

enforce rate limits on actions to avoid oscillations. 

 

7.4. Verification and reconciliation after action 

After any action the system verifies recovery. 

Verification includes checking lag, rerunning reconciliation 
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and validating that duplicates and null rates return to 

expected ranges. If verification fails, the system escalates. 

This verification loop is also used to label outcomes for 

learning. 

 

7.5. Human in the loop workflows 

Operators remain essential for complex correctness 

incidents. The system is designed to assist, not replace, 

engineers by reducing evidence collection time, ranking 

hypotheses and proposing safe actions. Incident knowledge 

retrieval supports this by surfacing prior cases and 

recommended steps [7]. 

 

8. Prototype Implementation Guidance 
8.1. Data collection and storage 

Implement a unified telemetry store that ingests metrics, 

log templates and change events. Store per connector metrics 

at fine granularity and integrity checks at a cadence aligned 

to business requirements. Use a time series database for 

metrics and a document store for incident artifacts. 

 

8.2. Log parsing and signature features 

Deploy online log parsers such as Spell or Drain to 

convert logs into templates [9][10]. Maintain template 

frequency time series and detect new templates and bursts. 

For CDC this is useful for recognizing new failure modes 

after deploys or schema changes. 

 

8.3. Topology graph construction 

Construct the CDC topology graph from connector 

configurations, streaming metadata, processor DAGs and 

schema registry links. Include control plane changes as 

nodes with edges to affected components. This allows 

diagnosis traversal and also supports impact analysis before 

change management actions.. 

 

8.4. Model training and deployment 

Start with interpretable models. Use simple forecasting 

for lag and robust detectors for integrity metrics. Add 

learning to rank for diagnosis after collecting labeled 

incidents. Use drift detection to schedule retraining. Prefer 

lightweight models because CDC incidents are sparse and 

high precision is more valuable than marginal recall gains. 

 

8.5. Integration with incident management 

Integrate with existing ticketing and on call processes. 

When an incident is created attach the symptom signature, 

diagnosis report and recommended actions. Allow operators 

to confirm root cause and action. Store confirmations for 

learning. 

 

8.6. Safety and audit 

Record every automated action with parameters and 

approvals. Ensure that replays and offset rewinds are 

bounded and idempotent where possible. Provide a dry run 

mode that estimates impact and displays which partitions or 

key ranges will be affected. 

 

 

 

9. Evaluation Plan 
9.1. Metrics 

We propose evaluating the system across detection, 

diagnosis and recovery. Mean time to detection from the start 

of an integrity violation to alert Mean time to recovery from 

detection to verified contract recovery Precision and recall 

for contract violation detection Top k accuracy for diagnosis 

compared to postmortem ground truth Mitigation success 

rate and rollback rate  Business impact measures such as 

prevented consumption of corrupted data and reduced 

reprocessing cost. 

 

9.2. Historical incident replay 

Replay historical telemetry and integrity checks to 

evaluate prediction and detection. The incident knowledge 

mining literature demonstrates that incident artifacts can be 

used for downstream tasks including retrieval and 

recommendation [7]. Use stored postmortems to label root 

causes and compare diagnosis ranking quality. 

 

9.3. Baselines 

Compare against threshold based monitoring, simple 

correlation with deploy times and generic microservice RCA 

methods without CDC topology constraints. We expect 

topology constrained search to reduce false leads and 

predictive monitoring to reduce detection delays. 

 

9.4. Stress testing with synthetic faults 

Inject controlled faults in a staging environment. 

Examples include artificial sink throttling, schema changes 

that introduce type mismatches, connector restarts with offset 

perturbations and log retention reductions. Evaluate whether 

the system predicts risk, detects anomalies, diagnoses 

correctly and proposes safe actions. 

 

9.5. Operator evaluation 

Conduct qualitative evaluation with on call engineers. 

Measure time saved in evidence gathering and perceived 

trust in recommendations. The goal is to create a system that 

improves reliability without creating alert fatigue. 

 

10. Discussion, Limitations and Future Work 
10.1. Handling exactly once semantics 

Some CDC deployments require exactly once semantics. 

Achieving this end to end depends on connector guarantees, 

streaming platform configuration and idempotent sink 

behavior. The proposed architecture does not change the 

underlying semantics but helps detect when guarantees are 

violated and suggests mitigation that preserves idempotence. 

 

10.2. Dependence on integrity signals 

The architecture is strongest when integrity checks exist. 

If reconciliation is absent, the system relies more on indirect 

signals and uncertainty grows. Data quality research 

emphasizes that dimensions should be operationalized into 

measurable checks [1]. Implementing a minimal set of 

checks for key datasets is therefore a prerequisite. 
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10.3. Drift and evolving topology 

Drift can reflect benign change, such as a new product 

launch, or harmful change, such as a misconfigured 

connector. Drift detection methods and clear definitions are 

needed to avoid spurious retraining and unnecessary alerts 

[13]. Topology evolution should be modeled explicitly and 

can itself be a predictor of risk when many changes occur in 

a short window. 

 

10.4. Safety of automation 

Automation for data correctness incidents carries higher 

risk than automation for availability incidents. Policy gating 

and verification loops are essential. Future work can explore 

more formal safety constraints for actions and simulation 

based impact estimation. 

 

10.5. Future directions 

Future work can incorporate richer causal inference and 

counterfactual reasoning to estimate which action will reduce 

risk with minimal side effects. It can also integrate 

organizational signals such as change management approvals 

and deployment pipelines. Finally, it can extend incident 

knowledge retrieval with structured templates and 

standardized taxonomies to improve cross team learning. 

 

11. Conclusion 
CDC pipelines are foundational for delivering timely 

data across enterprise systems, yet they are increasingly 

complex and prone to subtle integrity failures. This paper 

presented an architecture that leverages AI and ML for 

predictive monitoring and error mitigation in CDC. The 

approach combines contract based integrity monitoring 

grounded in established data quality dimensions [1], data 

observability principles [6], predictive models for lag and 

divergence risk, topology constrained diagnosis inspired by 

dependency aware RCA [11] and incident knowledge mining 

for operational learning [7]. A guarded automation layer 

executes risk tiered mitigation actions and verifies recovery 

to maintain trust. 

 

By embedding adaptive intelligence into CDC 

operations, organizations can move from reactive 

troubleshooting to proactive risk management. The expected 

outcome is faster detection, faster recovery and lower 

business impact from integrity incidents. As enterprises 

continue to expand event driven architectures and rely on 

CDC for critical products, such predictive and policy 

governed operational intelligence will be an essential 

reliability capability. 
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