
International Journal of Emerging Trends in Computer Science and Information Technology

ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.IJETCSIT-V6I3P116

Eureka Vision Publication | Volume 6, Issue 3, 104-111, 2025

Original Article

Leveraging AI and ML for Predictive Monitoring and Error

Mitigation in Change Data Capture Pipelines

Vineeth Kumar Reddy Mittamidi
Application Support engineer TCS North Carolina, USA.

Received On: 24/05/2025 Revised On: 16/07/2025 Accepted On: 28/07/2025 Published On: 21/08/2025

Abstract - Change Data Capture pipelines are widely used to propagate database changes into event streams, analytical stores

and operational read models with low latency. As enterprises expand the number of source databases, connectors, downstream

consumers and serving systems, operational reliability becomes harder to sustain. Failures that begin as a minor lag increase

or a subtle schema evolution can cascade into missed records, duplicated events, inconsistent materialized views and

downstream business defects. Traditional monitoring based on static thresholds and manual triage struggles because CDC

behavior is non stationary, highly correlated across components and sensitive to workload shifts and change management

practices. This paper proposes an architecture that embeds adaptive intelligence into CDC operations through predictive

monitoring, anomaly detection, diagnosis and guarded automation. The approach fuses three families of signals. The first

family is pipeline telemetry such as connector lag, throughput, offsets, retries and backpressure. The second family is data

integrity signals such as row count deltas, key uniqueness checks and reconciliation between source and sink. The third family

is change signals such as deploys, connector configuration edits and schema registry events. Lightweight models learn

baselines and predict near term risk for lag growth, event loss and replication divergence. A graph based diagnosis method

constrains root cause search using CDC topology and lineage and then ranks hypotheses using multi modal evidence including

structured log templates. Finally, an action layer executes risk tiered mitigation steps such as auto scaling consumers, pausing

downstream writes, triggering bounded replays and initiating snapshot repair with human approval gates for high impact

actions. The paper outlines a prototype design and an evaluation plan using historical incident replay. It argues that the

combination of predictive signals, topology aware diagnosis and policy based automation can reduce mean time to detection

and mean time to recovery while improving trust in CDC driven data products.

Keywords - Change Data Capture, Data Pipelines, Predictive Monitoring, Anomaly Detection, Data Integrity, Observability,

Automated Remediation, Root Cause Analysis, Concept Drift.

1. Introduction
Enterprises increasingly treat operational data as a

product that must be delivered continuously to multiple

consumers. Online applications need current views for search

and personalization, fraud systems need fast features and

analytics teams need timely facts for reporting. Change Data

Capture, often implemented through log based connectors

and event streaming, is a common backbone for these needs.

In a typical CDC deployment, a connector reads transaction

logs from a source database, converts changes into a

standardized event format, publishes events to a streaming

platform and downstream processors apply transformations

and updates to sinks such as data warehouses, key value

stores or search indexes. CDC enables low latency

propagation without intrusive triggers and reduces the cost of

full reload ETL patterns. Yet the very characteristics that

make CDC attractive also make it operationally fragile. The

pipeline spans multiple domains, evolves over time and must

preserve correctness under failures and reconfiguration.

Operational issues in CDC pipelines are not limited to

uptime. They include silent integrity degradation where the

pipeline continues to run but produces incorrect data.

Examples include missing updates due to connector offset

mismanagement, duplicated events after retries, out of order

application of changes, inconsistent snapshots, schema drift

that causes parse failures and propagation of tombstones that

unexpectedly delete records in a sink. These defects can

persist for hours before detection because symptoms appear

in downstream aggregates rather than in connector error logs.

Data pipeline quality research highlights that data related

issues often arise from incorrect types, integration defects

and processing problem areas that are hard for developers to

manage at scale [5].

Standard monitoring practices focus on dashboards, rule

based alerts and manual runbooks. Such practices are

necessary but insufficient for modern CDC where normal

behavior shifts with workload, schema evolution and scaling.

Data quality and monitoring literature emphasizes that

quality is multi dimensional, involving completeness,

consistency and timeliness as key concepts [1]. CDC

reliability demands that these dimensions be monitored end

to end, not only at a single component. Observability

frameworks for data quality emphasize the need to combine

quality signals, freshness signals and lineage signals in order

to prevent issues before they accumulate [6].

Vineeth Kumar Reddy Mittamidi / IJETCSIT, 6(3), 104-111, 2025

105

At the same time, the broader operations community has

advanced automated anomaly detection, root cause analysis

and incident knowledge mining. Structured log anomaly

detection pipelines can be built as modular systems that

accelerate creation and management of monitoring items [8].

Root cause knowledge can be mined from incident

investigations and used to recommend diagnosis steps and

remediation actions [7]. Microservice RCA research shows

that dependency aware reasoning over service graphs can

localize root causes more precisely than isolated metric

correlation [11][12]. However, CDC pipelines combine

database logs, stream processing and data integrity

constraints which require specialized modeling.

This paper contributes an architecture for predictive

monitoring and error mitigation tailored to CDC. The key

design principle is to treat CDC as a socio technical system

where telemetry, data integrity and change management

signals must be fused. Rather than relying on a single large

model, the architecture uses lightweight predictors for

specific operational risks and a graph based diagnosis

method that narrows the hypothesis space using CDC

topology and lineage. Automated actions are executed under

policy based gates to preserve safety and auditability.

The rest of the paper is organized as follows. Section II

reviews related work in CDC, data quality, observability and

operational intelligence. Section III describes CDC pipelines

and an incident taxonomy. Section IV presents the proposed

architecture. Section V details predictive models and

anomaly detection. Section VI describes topology

constrained diagnosis and RCA. Section VII presents

mitigation and automation with governance. Section VIII

outlines a prototype implementation. Section IX proposes an

evaluation plan. Section X discusses limitations and future

directions. Section XI concludes.

2. Background and Related Work
2.1. Change Data Capture systems

CDC is the practice of capturing changes from a source

system and propagating them downstream. A common

pattern uses transaction logs to avoid write amplification and

to preserve ordering. Event based data integration work

emphasizes that logs and event streams provide a durable

backbone for distributing changes across distributed systems

[2]. In data warehousing contexts, workload aware CDC

strategies have been proposed to balance overhead and

freshness by selecting among trigger based, timestamp based

and log based approaches depending on workload

characteristics [3]. Practical CDC deployments also require

an initial snapshot in order to establish full state and then

incremental changes from logs. A watermark based

framework such as DBLog interleaves log events with

chunked snapshot reads to capture full state while

maintaining progress of log consumption, addressing

production needs for repair and resynchronization [4].

2.2. Data quality and data pipeline reliability

Data quality is best understood as fitness for use with

multiple dimensions such as completeness, consistency and

timeliness [1]. In CDC pipelines these dimensions map to

tangible properties: completeness relates to missing changes

or missing partitions in derived stores, consistency relates to

duplicates and referential mismatches between source and

sink and timeliness relates to replication lag and freshness

windows. A recent study on data pipeline quality provides a

taxonomy of influencing factors and identifies common root

causes of data related issues such as incorrect types and

cleaning problems [5]. These findings align with CDC

incidents where schema evolution or conversion logic

introduces silent coercion and downstream corruption.

2.3. Data observability and responsible monitoring

Observability for data systems aims to provide sufficient

signals to explain pipeline behavior and to detect integrity

issues early. Frameworks such as TENSAI propose practical

observability for data quality aware analytics by combining

measurement, responsible monitoring and operational

integration [6]. This work supports the idea that data quality

monitoring should be systematic, not ad hoc, and that

observability must include provenance and context.

2.4. Anomaly detection, log parsing and operational

intelligence

In large systems, anomaly detection is used to identify

deviations in metrics and logs. ADOps demonstrates a

modular pipeline for anomaly detection in structured logs

and reports a PVLDB implementation with configuration

driven task creation [8]. Many log based approaches rely on

parsing unstructured logs into templates. Spell proposes

streaming parsing of system event logs [9] and Drain

proposes an online log parsing approach using a fixed depth

tree [10]. These methods enable template novelty detection

and burst detection which are valuable in CDC because

many failures manifest as new error signatures or spikes of

known signatures.

2.5. Root cause analysis and incident knowledge mining

Topology aware RCA has been widely studied for

microservices. MicroRCA localizes performance issues by

using service interaction graphs and metric correlations [11].

CausalRCA applies causal inference to localize root causes

at fine granularity in microservice applications [12]. While

CDC pipelines differ from microservices, they share a

dependency graph structure where downstream symptoms

can be traced to upstream components. Separately, incident

knowledge mining approaches extract patterns from

postmortems and incident investigations to accelerate RCA

workflows [7]. These ideas motivate storing CDC incident

artifacts and using retrieval to recommend likely causes and

mitigation steps.

2.6. Concept drift and non stationary monitoring

Monitoring models degrade when normal behavior

changes. A survey on unsupervised drift detection

emphasizes that drift can occur without labels and that

monitoring systems need clear definitions and robust

methods to detect shifts [13]. In streaming settings, drift and

anomalies can interact. Graph stream research has studied

drift and anomaly detection when relationships evolve and

Vineeth Kumar Reddy Mittamidi / IJETCSIT, 6(3), 104-111, 2025

106

shows that graph based representations can capture evolving

structure [14]. CDC pipelines exhibit both metric drift due to

workload seasonality and structural drift due to topology and

schema changes, so drift awareness is crucial.

3. CDC Pipeline Model and Failure Taxonomy
3.1. Reference CDC pipeline

We model a CDC pipeline as a set of stages connected

by durable queues. A source database emits a transaction log.

A connector reads the log and converts each change into an

event record. The event is published to a streaming platform.

Downstream processors consume events and apply

transformations such as enrichment, filtering and

aggregation. Finally, sink connectors or application services

apply changes to target systems. In many deployments, a

schema registry governs event schemas and provides

compatibility rules. A control plane manages connector

configuration, scaling and restart behavior.

The pipeline must maintain three invariants. First, it

must preserve at least once or exactly once delivery

semantics depending on the design. Second, it must preserve

ordering constraints required by sinks, often per key. Third,

it must preserve data integrity by ensuring that downstream

state converges to source state over time. Achieving these

invariants under failures requires careful offset management,

idempotent sinks and bounded reprocessing strategies.

3.2. Failure categories

We propose a taxonomy of CDC failures aligned to data

quality dimensions [1] and to pipeline quality root causes [5].

The taxonomy helps map symptoms to likely causes and

guides model selection and mitigation action.

 Timeliness failures these are characterized by

increasing replication lag, consumer backlog and

missed freshness objectives. Causes include

insufficient resources, downstream sink throttling,

network partitions and skewed partitions.

Timeliness failures are often precursors to

correctness failures because large lag increases the

window where logs can expire and forces snapshot

resynchronization.

 Completeness failures these include missing events,

dropped records and gaps in offsets. Causes include

connector crashes with offset loss, log retention

limits, misconfigured filters and parsing failures

caused by schema changes. Completeness failures

can be hard to detect because row counts can remain

stable while specific segments are missing.

 Consistency failures these include duplicates, out of

order applies and mismatch between source and

sink. Causes include non idempotent sink writes,

retries that reapply changes, inconsistent

deduplication logic and race conditions across

parallel consumers. Consistency failures often

manifest as reconciliation mismatches or

uniqueness violations in derived stores.

 Schema and semantic drift failures These include

incompatible schema evolution, field type changes,

new enumerations and changes in meaning such as

units or encoding. A pipeline quality study

identifies incorrect types as a frequent root cause of

data issues [5]. In CDC, drift can cause silent

coercion, null spikes or ingestion halts if

compatibility rules reject events.

 Control plane and change management

failuresThese include misconfiguration, wrong

connector parameters, invalid secrets and unsafe

deploys. Control plane events often correlate with

incidents and are important features for diagnosis

and prediction. Event driven systems research

emphasizes that distributed change propagation

must be treated systematically to avoid dual writes

and inconsistency [2].

3.3. Observability signals for CDC integrity

We categorize observability signals into telemetry,

integrity and change signals. Telemetry signals include

source log position, connector offsets, publish latency,

consumer lag, throughput and retry counts. Integrity signals

include source to sink reconciliation, row count deltas by

partition, key uniqueness checks and checksum comparisons

for sampled keys. Change signals include connector

configuration edits, schema registry updates, deploy events

and scaling events. Data observability frameworks suggest

combining quality, freshness and lineage signals to improve

trust [6]. Our architecture uses this combination as the basis

for learning and action.

4. Proposed Architecture for Predictive

Monitoring and Mitigation
The architecture consists of seven layers. Each layer is

designed to be modular and to integrate with existing

enterprise tooling. The central idea is to build a closed loop

system where detection and prediction lead to diagnosis,

mitigation and learning.

4.1. Layer 1 Data and control plane instrumentation

This layer collects metrics, logs and traces from

connectors, streaming platforms, processors and sinks. It also

collects change events from CI systems, configuration stores

and schema registries. Logs are parsed into templates using

online log parsers [9][10]. Traces are used where available to

link connector operations to downstream processing and sink

writes. This layer also extracts CDC specific integrity signals

such as per table lag, per partition offsets and snapshot

progress indicators.

4.2. Layer 2 Contract and integrity specification

Integrity expectations are defined as contracts with

thresholds and statistical bounds. Contracts encode

objectives for freshness, expected volume ranges, schema

compatibility rules and reconciliation requirements. Data

quality dimensions provide the conceptual basis for contract

design [1]. Contracts are scoped by dataset, table, topic and

sink and can include criticality tags that drive policy and

severity.

4.3. Layer 3 Baseline learning and predictive risk scoring

This layer trains lightweight models that learn normal

behavior and forecast near term risk. Predictors estimate

Vineeth Kumar Reddy Mittamidi / IJETCSIT, 6(3), 104-111, 2025

107

future lag growth, probability of log retention breach and

likelihood of reconciliation divergence. Drift detection

monitors whether baseline assumptions are changing [13].

Models are trained per entity where possible and also

globally with grouping by similar patterns. Outputs are risk

scores that feed alerting and mitigation planning.

4.4. Layer 4 Anomaly detection and incident formation

This layer detects anomalies in telemetry, integrity

metrics and log template streams. It uses robust statistical

detectors for simple cases and incremental methods for

streaming metrics. For structured logs it can use pipeline

style approaches such as ADOps which separate data

preparation, model selection and deployment [8]. Each

detection generates an incident candidate with a symptom

signature including affected entity, dimension, time window

and deviation vector.

4.5. Layer 5 Topology aware diagnosis and RCA

Diagnosis operates over a CDC topology graph that

includes sources, connectors, topics, processors, sinks and

control plane artifacts. The engine performs constrained

upstream search from the symptom node to generate

candidates and then ranks hypotheses using evidence

features. The method draws inspiration from dependency

aware microservice RCA [11] and can apply causal

refinement for high ambiguity cases following causal

inference ideas [12]. Incident knowledge retrieval from prior

postmortems augments ranking and provides recommended

checks and actions [7].

4.6. Layer 6 Mitigation planner and guarded automation

The planner selects actions from a catalog. Actions are

categorized by risk. Low risk actions include scaling

consumers, restarting a stuck connector and pausing

downstream writes. Higher risk actions include bounded

replay, snapshot repair and schema registry rollback. A

policy engine enforces approval requirements based on risk

and confidence. This governance is essential because

corrective actions can modify data state.

4.7. Layer 7 Verification and learning store

After action execution the system verifies recovery by

rerunning contracts and reconciliation. It records the incident

artifact, root cause label, actions and outcome. These

artifacts support continuous improvement of ranking and

prediction and align with incident knowledge mining

approaches [7].

5. Predictive Monitoring and Anomaly

Detection Methods
5.1. Predicting replication lag and retention risk

Replication lag is a primary leading indicator for CDC

health. If lag grows beyond log retention windows the

pipeline can lose the ability to read changes and must rebuild

via snapshot. We propose a forecasting model for lag per

connector and per table where supported. Features include

current lag, throughput, source commit rate, sink apply rate,

retry rates, partition skew and recent change events. A

simple approach uses exponential smoothing with change

point detection for abrupt shifts. For more complex patterns a

lightweight autoregressive model or gradient boosted tree

can be used. The key is to produce a near term risk estimate,

such as the probability that lag will exceed a threshold within

a time horizon.

Change point and anomaly detection methods for

correlated time series provide motivation for combining drift

and anomaly signals in high dimensional monitoring [15].

Drift detection is also applied to the residuals of the

forecasting model to identify when the model should be

retrained.

5.2. Predicting integrity divergence

Lag alone does not capture correctness. We propose an

integrity divergence predictor that estimates risk of source to

sink mismatch. The predictor uses features from

reconciliation checks, such as delta counts per key range,

checksum differences for sampled keys and uniqueness

violations. It also uses features from schema evolution

events. Because labels are rare, the model can be trained

using weak supervision where known incidents provide

positive labels and quiet windows provide negative labels.

5.3. Anomaly detection across metric families

The anomaly detection layer operates across several

metric families Connector health metrics include task

failures, restart loops, connection errors and offset commit

failures.Streaming metrics include topic produce error rates,

consumer lag and broker throttling. Sink metrics include

write latency, error rates and rate limit responses. Integrity

metrics include reconciliation deltas and unexpected null

spikes. Log template metrics include new templates and

burst rate of known templates.

For metrics with stable seasonal patterns, use robust z

scores and seasonal baselines. For non seasonal streaming

metrics use incremental detectors and isolation based

methods. For structured log streams use template novelty

detection and frequency anomaly detection based on parsed

logs [9][10]. ADOps provides an example of modular

deployment that can manage many anomaly tasks and

support both simple rule based checks and model based

detection [8].

5.4. Drift detection and model management

CDC pipelines evolve due to new tables, new connectors

and schema evolution. Drift detection should monitor not

only metrics but also the joint distribution of key features.

The unsupervised drift survey emphasizes the need to

distinguish drift from anomalies and to define change types

clearly [13]. In our architecture drift detection triggers model

retraining and also increases uncertainty in predictive risk

scores, which in turn tightens automation gating.

Graph based drift is relevant when the topology itself

changes, for example when a new consumer group is added

or a sink is migrated. Graph stream research on drift and

anomaly detection motivates representing topology changes

explicitly rather than treating them as noise [14].

Vineeth Kumar Reddy Mittamidi / IJETCSIT, 6(3), 104-111, 2025

108

5.5. Practical alert design

Predictive monitoring supports earlier alerts but can also

increase noise if not tuned. We recommend a two stage alert

design. Stage one is a predictive early warning when risk

exceeds a threshold but contracts are still within bounds.

Stage two is a contract violation alert when integrity checks

fail. This separation helps operators prioritize and provides

time to apply low risk mitigations before correctness

degrades.

6. Topology Constrained Diagnosis and Root

Cause Analysis
6.1. CDC topology graph

We represent the CDC system as a directed graph where

nodes include source databases, log readers, connector tasks,

topics, processor jobs, sink connectors, schema versions and

control plane changes. Edges represent produces, consumes,

transforms and configures relations. This graph is derived

from configuration and runtime metadata and can be

augmented with lineage information. The topology graph is

the primary structure that constrains diagnosis.

6.2. Symptom signatures

An incident is represented by a symptom signature S

that includes the affected node, the violated dimension, the

time window and deviation measures. For example a

signature can represent lag growth on a connector combined

with a rising reconciliation delta for a sink table.

6.3. Candidate generation via constrained traversal

Given a symptom node, generate a candidate set by

traversing upstream edges within a bounded depth and

including co temporal change nodes that touched any node

along the path. This reduces the hypothesis space and aligns

with dependency aware approaches in microservice RCA

[11].

6.4. Evidence scoring and ranking

For each candidate compute evidence features.

Temporal alignment between candidate events and symptom

onset Anomaly evidence from metrics and log templates

Schema drift evidence from registry diffs Backpressure

evidence from queue metrics and sink latency Reconciliation

proximity evidence based on which entities directly

influence the violated dataset Historical similarity evidence

from retrieval of past incident artifacts as suggested by

incident knowledge mining work [7] Candidates are ranked

by a weighted scoring function or a lightweight learning to

rank model trained on labeled incidents. The output includes

an explanation that links evidence back to observables and

contracts. Explainability is critical for trust in automation.

6.5. Causal refinement for ambiguous incidents

When the top candidates have similar scores, apply

causal refinement on a small subgraph containing the

candidates and their neighbors. CausalRCA shows that

causal inference can improve precision for microservice

localization [12]. In CDC, causal refinement is applied to

distinguish whether lag is caused by source slowdown,

connector bottleneck or sink throttling. Restricting causal

learning to a small subgraph helps manage complexity and

reduces sensitivity.

6.6. Integrating postmortem knowledge

Incident investigations often reveal recurring patterns

such as schema evolution causing parse errors or connector

configuration changes causing offset resets. Mining root

cause knowledge from incident investigations can support

retrieval and recommendation systems [7]. The learning store

in our architecture captures CDC incidents and enables

similarity search by symptom signature and evidence

patterns. When a new incident appears, the system retrieves

similar cases and suggests checks and mitigation steps that

worked previously, improving operator efficiency.

7. Error Mitigation and Automated

Remediation
7.1. Design goals for mitigation

Mitigation actions must be safe because they can affect

data correctness. We define four goals. Contain impact so

that corrupted data does not propagate to consumers Restore

correctness by repairing missing or duplicated changes

Restore timeliness by reducing lag and clearing backlogs

Preserve auditability and enable rollback where possible

7.2. Action catalog with risk tiers

Tier 0 Informational actions create a ticket, annotate

dashboards, notify owners and attach diagnosis evidence.

Tier 1 Containment actions Pause sink writes, route reads to

a last known good snapshot, quarantine affected partitions,

disable a problematic table capture temporarily. Tier 2

Recovery actions Scale connector tasks and consumers,

restart a stuck task with controlled offset handling, trigger

bounded replay of a time window, rebuild a materialized

view, run a targeted reconciliation epair for a key range. Tier

3 Structural actions Rollback a connector or processor

deployment, revert a schema registry change, trigger a

snapshot resynchronization using a watermark based method,

perform a controlled cutover to a repaired sink.

A watermark based CDC framework supports safe

snapshot repair because it allows interleaving snapshot reads

with log events and can be triggered for specific tables or

keys [4]. Workload aware CDC research also suggests that

strategy choice influences overhead and correctness, which

can inform mitigation design [3].

7.3. Guarded automation via policy

Automation is gated by policy based rules that consider

action risk, confidence in diagnosis and business criticality

tags from contracts. For example, auto scaling a consumer

group can be executed automatically when confidence is

high and rollback is straightforward. By contrast, forcing a

snapshot resynchronization or rewinding offsets can cause

duplicates and requires human approval. Policy gates also

enforce rate limits on actions to avoid oscillations.

7.4. Verification and reconciliation after action

After any action the system verifies recovery.

Verification includes checking lag, rerunning reconciliation

Vineeth Kumar Reddy Mittamidi / IJETCSIT, 6(3), 104-111, 2025

109

and validating that duplicates and null rates return to

expected ranges. If verification fails, the system escalates.

This verification loop is also used to label outcomes for

learning.

7.5. Human in the loop workflows

Operators remain essential for complex correctness

incidents. The system is designed to assist, not replace,

engineers by reducing evidence collection time, ranking

hypotheses and proposing safe actions. Incident knowledge

retrieval supports this by surfacing prior cases and

recommended steps [7].

8. Prototype Implementation Guidance
8.1. Data collection and storage

Implement a unified telemetry store that ingests metrics,

log templates and change events. Store per connector metrics

at fine granularity and integrity checks at a cadence aligned

to business requirements. Use a time series database for

metrics and a document store for incident artifacts.

8.2. Log parsing and signature features

Deploy online log parsers such as Spell or Drain to

convert logs into templates [9][10]. Maintain template

frequency time series and detect new templates and bursts.

For CDC this is useful for recognizing new failure modes

after deploys or schema changes.

8.3. Topology graph construction

Construct the CDC topology graph from connector

configurations, streaming metadata, processor DAGs and

schema registry links. Include control plane changes as

nodes with edges to affected components. This allows

diagnosis traversal and also supports impact analysis before

change management actions..

8.4. Model training and deployment

Start with interpretable models. Use simple forecasting

for lag and robust detectors for integrity metrics. Add

learning to rank for diagnosis after collecting labeled

incidents. Use drift detection to schedule retraining. Prefer

lightweight models because CDC incidents are sparse and

high precision is more valuable than marginal recall gains.

8.5. Integration with incident management

Integrate with existing ticketing and on call processes.

When an incident is created attach the symptom signature,

diagnosis report and recommended actions. Allow operators

to confirm root cause and action. Store confirmations for

learning.

8.6. Safety and audit

Record every automated action with parameters and

approvals. Ensure that replays and offset rewinds are

bounded and idempotent where possible. Provide a dry run

mode that estimates impact and displays which partitions or

key ranges will be affected.

9. Evaluation Plan
9.1. Metrics

We propose evaluating the system across detection,

diagnosis and recovery. Mean time to detection from the start

of an integrity violation to alert Mean time to recovery from

detection to verified contract recovery Precision and recall

for contract violation detection Top k accuracy for diagnosis

compared to postmortem ground truth Mitigation success

rate and rollback rate Business impact measures such as

prevented consumption of corrupted data and reduced

reprocessing cost.

9.2. Historical incident replay

Replay historical telemetry and integrity checks to

evaluate prediction and detection. The incident knowledge

mining literature demonstrates that incident artifacts can be

used for downstream tasks including retrieval and

recommendation [7]. Use stored postmortems to label root

causes and compare diagnosis ranking quality.

9.3. Baselines

Compare against threshold based monitoring, simple

correlation with deploy times and generic microservice RCA

methods without CDC topology constraints. We expect

topology constrained search to reduce false leads and

predictive monitoring to reduce detection delays.

9.4. Stress testing with synthetic faults

Inject controlled faults in a staging environment.

Examples include artificial sink throttling, schema changes

that introduce type mismatches, connector restarts with offset

perturbations and log retention reductions. Evaluate whether

the system predicts risk, detects anomalies, diagnoses

correctly and proposes safe actions.

9.5. Operator evaluation

Conduct qualitative evaluation with on call engineers.

Measure time saved in evidence gathering and perceived

trust in recommendations. The goal is to create a system that

improves reliability without creating alert fatigue.

10. Discussion, Limitations and Future Work
10.1. Handling exactly once semantics

Some CDC deployments require exactly once semantics.

Achieving this end to end depends on connector guarantees,

streaming platform configuration and idempotent sink

behavior. The proposed architecture does not change the

underlying semantics but helps detect when guarantees are

violated and suggests mitigation that preserves idempotence.

10.2. Dependence on integrity signals

The architecture is strongest when integrity checks exist.

If reconciliation is absent, the system relies more on indirect

signals and uncertainty grows. Data quality research

emphasizes that dimensions should be operationalized into

measurable checks [1]. Implementing a minimal set of

checks for key datasets is therefore a prerequisite.

Vineeth Kumar Reddy Mittamidi / IJETCSIT, 6(3), 104-111, 2025

110

10.3. Drift and evolving topology

Drift can reflect benign change, such as a new product

launch, or harmful change, such as a misconfigured

connector. Drift detection methods and clear definitions are

needed to avoid spurious retraining and unnecessary alerts

[13]. Topology evolution should be modeled explicitly and

can itself be a predictor of risk when many changes occur in

a short window.

10.4. Safety of automation

Automation for data correctness incidents carries higher

risk than automation for availability incidents. Policy gating

and verification loops are essential. Future work can explore

more formal safety constraints for actions and simulation

based impact estimation.

10.5. Future directions

Future work can incorporate richer causal inference and

counterfactual reasoning to estimate which action will reduce

risk with minimal side effects. It can also integrate

organizational signals such as change management approvals

and deployment pipelines. Finally, it can extend incident

knowledge retrieval with structured templates and

standardized taxonomies to improve cross team learning.

11. Conclusion
CDC pipelines are foundational for delivering timely

data across enterprise systems, yet they are increasingly

complex and prone to subtle integrity failures. This paper

presented an architecture that leverages AI and ML for

predictive monitoring and error mitigation in CDC. The

approach combines contract based integrity monitoring

grounded in established data quality dimensions [1], data

observability principles [6], predictive models for lag and

divergence risk, topology constrained diagnosis inspired by

dependency aware RCA [11] and incident knowledge mining

for operational learning [7]. A guarded automation layer

executes risk tiered mitigation actions and verifies recovery

to maintain trust.

By embedding adaptive intelligence into CDC

operations, organizations can move from reactive

troubleshooting to proactive risk management. The expected

outcome is faster detection, faster recovery and lower

business impact from integrity incidents. As enterprises

continue to expand event driven architectures and rely on

CDC for critical products, such predictive and policy

governed operational intelligence will be an essential

reliability capability.

References
[1] S. K. Gunda, "Analyzing Machine Learning Techniques

for Software Defect Prediction: A Comprehensive

Performance Comparison," 2024 Asian Conference on

Intelligent Technologies (ACOIT), KOLAR, India,

2024, pp. 1-5,

https://doi.org/10.1109/ACOIT62457.2024.10939610.

[2] M. Kleppmann, "Thinking in events: from databases to

distributed collaboration software," Proceedings of the

ACM Symposium on Principles of Distributed

Computing, 2021. doi: 10.1145/3465480.3467835.

[3] W. Qu, J. Huang, J. Zhang and H. Chen, "A Workload

Aware Change Data Capture Framework for On

Demand Data Warehousing," in Advances in Databases

and Information Systems, 2021. doi: 10.1007/978-3-

030-86534-4_21.

[4] A. Andreakis and I. Papapanagiotou, "DBLog: A

Watermark Based Change Data Capture Framework,"

arXiv, 2020. doi: 10.48550/arXiv.2010.12597.

[5] S. K. Gunda, "Software Defect Prediction Using

Advanced Ensemble Techniques: A Focus on Boosting

and Voting Method," 2024 International Conference on

Electronic Systems and Intelligent Computing

(ICESIC), Chennai, India, 2024, pp. 157-161,

https://doi.org/10.1109/ICESIC61777.2024.10846550.

[6] H. L. Truong et al., "TENSAI: Practical and Responsible

Observability for Data Quality Aware Large Scale

Analytics," Journal of Data and Information Quality,

2024. doi: 10.1145/3708014.

[7] A. Saha et al., "Mining Root Cause Knowledge from

Cloud Service Incident Investigations for AIOps,"

Proceedings of the IEEE ACM International Conference

on Automated Software Engineering, 2022. doi:

10.1145/3510457.3513030.

[8] X. Song, Y. Zhu, J. Wu, B. Liu and H. Wei, "ADOps:

An Anomaly Detection Pipeline in Structured Logs,"

Proceedings of the VLDB Endowment, vol. 16, no. 12,

pp. 4050 to 4053, 2023. doi:

10.14778/3611540.3611618.

[9] S. K. Gunda, "Enhancing Software Fault Prediction with

Machine Learning: A Comparative Study on the PC1

Dataset," 2024 Global Conference on Communications

and Information Technologies (GCCIT),

BANGALORE, India, 2024, pp. 1-4,

https://doi.org/10.1109/GCCIT63234.2024.10862351.

[10] P. He, J. Zhu, Z. Zheng and M. R. Lyu, "Drain: An

Online Log Parsing Approach with Fixed Depth Tree,"

Proceedings of the IEEE International Conference on

Web Services, 2017. doi: 10.1109/ICWS.2017.13.

[11] L. Wu, J. Tordsson, E. Elmroth and O. Kao,

"MicroRCA: Root Cause Localization of Performance

Issues in Microservices," Proceedings of IEEE NOMS,

2020. doi: 10.1109/NOMS47738.2020.9110353.

[12] R. Xin, P. Chen and Z. Zhao, "CausalRCA: Causal

Inference Based Precise Fine Grained Root Cause

Localization for Microservice Applications," Journal of

Systems and Software, vol. 203, 2023. doi:

10.1016/j.jss.2023.111724.

[13] S. K. Gunda, "Comparative Analysis of Machine

Learning Models for Software Defect Prediction," 2024

International Conference on Power, Energy, Control and

Transmission Systems (ICPECTS), Chennai, India,

2024, pp. 1-6,

https://doi.org/10.1109/ICPECTS62210.2024.10780167.

[14] D. Zambon, L. Alippi and L. Livi, "Concept Drift and

Anomaly Detection in Graph Streams," IEEE

Transactions on Neural Networks and Learning

Systems, vol. 29, no. 11, pp. 5592 to 5605, 2018. doi:

10.1109/TNNLS.2018.2804443.

https://doi.org/10.1109/GCCIT63234.2024.10862351

Vineeth Kumar Reddy Mittamidi / IJETCSIT, 6(3), 104-111, 2025

111

[15] M. Tveten, P. Fryzlewicz and S. K. Wied, "Scalable

change point and anomaly detection in cross correlated

data," Annals of Applied Statistics, vol. 16, no. 2, 2022.

doi: 10.1214/21-AOAS1508.

[16] D. Seenivasan and M. Vaithianathan, "Real Time

Adaptation: Change Data Capture in Modern Computer

Architecture," International Journal of Advanced

Computer Technology, 2023. doi:

10.56472/25838628/IJACT-V1I2P106.

[17] Xie, Y., Zhang, H., & Babar, M. A. (2022). LogGD:

Detecting anomalies from system logs by graph neural

networks. arXiv.

https://doi.org/10.48550/arXiv.2209.07869

[18] S. Ghosh, S. Biswas and S. B. Roy, "Online anomaly

detection with concept drift adaptation," Proceedings of

the ACM International Conference on Information and

Knowledge Management, 2017. doi:

10.1145/3152494.3152501.

[19] Sai Krishna Gunda (2024). Smart Device for Object-

Oriented Software Prototype (UK Registered Design

No. 6400739). Registered with the UK Intellectual

Property Office, Class 14-02, granted in November

2024.

[20] M. Du and F. Li, "Spell: Streaming Parsing of System

Event Logs," Proceedings of the IEEE International

Conference on Data Mining, 2016. doi:

10.1109/ICDM.2016.0103.

[21] F. Hinder, M. Schmidt, C. Wirth, N. L. Dürr and U.

Brefeld, "One or two things we know about concept

drift: a survey on unsupervised drift detection," Frontiers

in Artificial Intelligence, 2024. doi:

10.3389/frai.2024.1330257.

[22] Abu Alhija, H., Azzeh, M., & Almasalha, F. (2022).

Software defect prediction using support vector

machine. arXiv.

https://doi.org/10.48550/arXiv.2209.14299

