

Original Article

From Manual to Smart Manufacturing: Advancements in Assembly for Future Factories

Chinmay Patil

Skydio Inc, Hayward, CA, USA.

Received On: 03/11/2025

Revised On: 25/11/2025

Accepted On: 02/12/2025

Published On: 11/12/2025

Abstract - Manufacturing is experiencing a historic transformation from labor-intensive manual assembly toward intelligent, interconnected, and autonomous production. The increasing deployment of industrial robots, multifunctional machines (MFMs), and humanoid systems, combined with artificial intelligence (AI), is enabling the concept of “lights-off” factories that can operate continuously with minimal human intervention. This paper traces the evolution of assembly automation, from Henry Ford’s moving line and Toyota’s lean principles to Tesla’s high-automation journey, Apple’s precision robotics ecosystem, and FANUC’s fully autonomous “lights-off” plant. Lessons learned from these pioneers inform the design of future factories facilities that combine human intelligence with robotic precision, flexibility, and resilience.

Keywords - Smart Manufacturing, Industry 4.0, Lights-Off Factory, Automation, Robots, Multifunctional Machines, Digital Twins, Lean Production.

1. Introduction

The manufacturing landscape has evolved dramatically over the last century, driven by shifts in labor economics, product complexity, and technological capability. Early 20th-century factories relied almost entirely on manual assembly, where efficiency depended on human dexterity and repetition. As global competition intensified, automation emerged as the key to consistency, scalability, and quality improvement. Today, manufacturers are transitioning toward the *factory of the future* an ecosystem characterized by cyber-physical integration, autonomous decision-making and adaptive production lines [1].

The progression from manual to smart assembly is not merely technological it represents a fundamental redefinition of how value is created in manufacturing. The integration of robotics, data analytics, and AI enables dynamic process optimization, predictive maintenance, and near-zero defect production [2]. The concept of a *lights-off* factory where operations continue without human presence has evolved from a futuristic notion to a practical ambition in industries such as electronics, automotive, and aerospace [3].

However, this transition has not been linear. The automation journey has encountered numerous inflection pointsmechanization, assembly line production,

programmable control, industrial robotics, and now AI-driven autonomy. Each stage has been marked by lessons learned and the redefinition of human roles within production systems [4].

This paper investigates the path from manual to smart manufacturing, exploring the role of robotics and multifunctional machines in shaping future assembly systems. Through historical and contemporary case studies including Ford, Toyota, Tesla, Apple, and FANUC it identifies the technological enablers and strategic frameworks leading toward fully autonomous “lights-off” factories.

2. Evolution of manufacturing automation

The first industrial revolution introduced mechanization through steam power and mechanical looms. However, it was not until the early 20th century that true *systematic manufacturing* took shape, primarily through the pioneering efforts of Henry Ford. Ford’s moving assembly line (1913) fundamentally transformed production economics by standardizing motion, reducing worker fatigue, and exponentially increasing throughput [5].

Post-World War II, manufacturing philosophies shifted toward efficiency and quality. Japanese firms most notably Toyota developed lean manufacturing, emphasizing waste reduction and continuous improvement (*kaizen*) [15]. By the late 20th century, industrial robots began to populate factory floors, taking over repetitive and hazardous tasks. The first industrial robot, *Unimate*, developed by George Devol and Joseph Engelberger in 1961, marked the beginning of automated material handling and welding [6].

As computing advanced, programmable logic controllers (PLCs) enabled flexible automation and faster reconfiguration of assembly lines [7]. The convergence of robotics with digital control laid the foundation for modern smart factories where data from sensors, machines, and products informs real-time optimization and adaptive control [8].

Today’s automation ecosystem integrates robotics, artificial intelligence, and digital twins to create a closed feedback loop between design, production, and performance. The trajectory from Ford’s manual assembly to Tesla’s AI-

orchestrated manufacturing represents not only technological evolution but also a philosophical shift manufacturing as a living, learning system [9].

3. Case studies

3.1. Case Study I: Ford and the Birth of Automated Flow

Henry Ford's introduction of the moving assembly line at the Highland Park Plant in 1913 is widely regarded as the birth of modern manufacturing [10]. The concept dividing complex assembly tasks into repetitive, standardized operations revolutionized productivity. The time to assemble a Model T chassis dropped from over twelve hours to just ninety-three minutes [11].

This breakthrough demonstrated that process design could be as important as machinery. Workers no longer moved around vehicles; instead, vehicles moved past stationary workers, each performing a single task. This was the genesis of *flow production* principle that remains central to automated manufacturing systems today [12].

Ford's system relied on human labor but mechanized motion. Conveyors synchronized material flow, reducing variability and enabling precision timing. While Fordism dramatically improved output, it also revealed limitations: inflexible lines, low worker engagement, and minimal adaptability to product changes [13].

As automation technology evolved, manufacturers sought to retain Ford's efficiency while addressing its rigidity. The emergence of flexible manufacturing systems (FMS) and computer numerical control (CNC) machining in the 1970s began to replace fixed conveyors with reprogrammable machine cells [14]. The Ford assembly line thus laid both the conceptual and practical foundation for automated and later, smart manufacturing systems.

Key takeaways from Ford's assembly line were:

- Foundation of Process-Centric Manufacturing: Ford demonstrated that systematic process design rather than machinery alone can drastically improve efficiency. This principle underpins modern factory planning, where workflows are optimized before introducing automation.
- Flow Production as a Core Principle: The moving assembly line introduced continuous material flow, minimizing idle time and enhancing precision. This concept is central to today's automated and smart manufacturing systems, including conveyor-based production, robotics, and synchronized machine cells.
- Trade-offs Between Specialization and Flexibility: While task specialization increased speed and consistency, it limited adaptability and worker engagement. The evolution toward flexible manufacturing systems (FMS) and reprogrammable CNC machines reflects efforts to retain efficiency while enabling rapid changeovers and product customization.

- Human-Machine Synergy: Ford's assembly line mechanized motion but relied on human labor, illustrating early integration of humans and machines. Modern smart factories expand on this, incorporating advanced sensors, AI, and collaborative robots to optimize productivity while enhancing adaptability.
- Legacy Driving Future Factory Design: The conceptual and practical foundations established by Ford standardization, workflow synchronization, and process efficiency directly inform the design of next-generation smart manufacturing systems, bridging the gap from manual assembly to fully automated, data-driven production.

3.2. Case Study II: Toyota and the Evolution of Lean Manual Assembly

While Ford pioneered flow production, Toyota refined it into a flexible, human-centered philosophy. In the aftermath of World War II, resource constraints pushed Toyota Motor Corporation to maximize efficiency using minimal inventory and capital. The result was the Toyota Production System (TPS) a comprehensive approach to manufacturing that emphasized waste elimination (muda), just-in-time (JIT) production, and continuous improvement (kaizen) [15]. TPS was not merely a set of techniques but a holistic philosophy that integrated processes, people, and problem-solving into a unified system as explained in figure 1.

Figure 1. Visual Model of the Toyota Production System Illustrating Its Core Layers

Unlike Ford's rigid line, TPS empowered workers to stop production and correct problems in real time. Jidoka, or "automation with a human touch," ensured that machines automatically halted when anomalies occurred, embedding quality at the source rather than relying on downstream inspection [16]. This principle prevented defects from propagating through the system and emphasized the importance of human judgment in overseeing automated processes. Toyota's Andon cord system exemplified early human-machine collaboration: any worker could pull the

cord to signal a problem, prompting immediate attention and resolution.

Just-in-Time (JIT) production, another core pillar of TPS, focused on producing only what was needed, when it was needed, and in the quantity required. This reduced excess inventory, lowered storage costs, and increased responsiveness to market demand. JIT required precise coordination across suppliers, production schedules, and assembly operations, laying the groundwork for the real-time data-driven scheduling systems now found in smart factories.

Central to TPS was kaizen, or continuous improvement, which encouraged all employees from assembly line workers to managers to identify inefficiencies, suggest improvements, and experiment with solutions. This bottom-up approach fostered a culture of collaboration, innovation, and incremental learning. Tools such as 5S (Sort, Set in order, Shine, Standardize, Sustain) and visual management boards helped maintain organized, transparent, and efficient workspaces, reinforcing discipline and operational clarity.

Through TPS, Toyota demonstrated that efficiency did not require complete automation. Instead, integrating human creativity with machine precision could achieve both flexibility and quality. This lean philosophy spread globally, influencing companies from General Electric to Boeing and serving as the intellectual foundation for later digital lean and Industry 4.0 initiatives [17], [18]. Even as Toyota embraced automation in the 21st century particularly in body welding, painting, and robotic assembly it retained human craftsmanship in final assembly processes. As then-President Akio Toyoda emphasized, “We use machines to build cars, but people build the machines” [19].

Today, TPS continues to serve as a model for hybrid smart manufacturing systems, combining human judgment, robotic precision, and data-driven decision-making. Its emphasis on waste reduction, flexibility, and quality at the source informs advanced factory concepts, including autonomous production cells, collaborative robots (cobots), and AI-enabled production monitoring. By balancing standardization with adaptability, TPS illustrates how human-centric principles can coexist with automation in creating the factories of the future.

Important lessons learnt included:

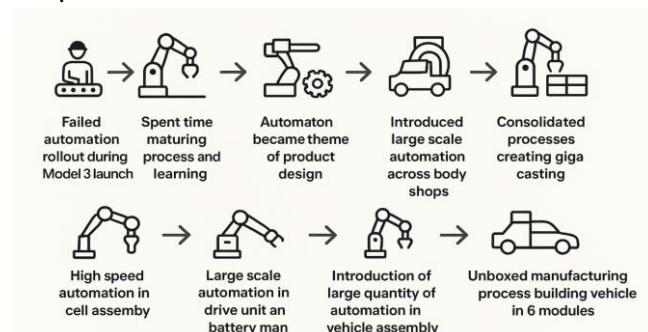
- **Flexibility and Responsiveness:** TPS demonstrates that production systems can achieve high efficiency without rigid automation. Human oversight and real-time problem-solving allow factories to adapt quickly to changes in demand or process disruptions an essential principle for future smart factories.
- **Embedded Quality at the Source:** The principle of Jidoka ensures that defects are identified and corrected immediately, minimizing waste and maintaining high quality. Modern smart manufacturing extends this idea with sensors, AI,

and predictive maintenance, embedding quality and reliability directly into automated systems.

- **Just-in-Time Production for Lean Operations:** JIT reduces inventory and synchronizes production with actual demand. This approach underpins advanced scheduling and resource optimization in digital and autonomous factories, allowing them to operate efficiently with minimal waste.
- **Continuous Improvement and Employee Engagement:** Kaizen encourages all employees to participate in identifying inefficiencies and improving processes. This culture of incremental improvement supports innovation, employee engagement, and adaptability in highly automated, data-driven manufacturing environments.
- **Human–Machine Collaboration:** TPS balances automation with human skill, demonstrating that machines should augment not replace human judgment. Modern smart factories leverage this principle using collaborative robots (cobots) and AI-assisted decision-making to create hybrid systems that are both precise and adaptable.
- **Lean Principles as a Bridge to Industry 4.0:** The lean foundations of TPS waste reduction, standardization, and process optimization serve as a conceptual bridge to Industry 4.0 technologies, including digital twins, real-time monitoring, and AI-driven production analytics.

3.3. Case Study III: Tesla’s Automation Journey from Production Hell to the Unboxed Factory

Tesla’s manufacturing evolution captures both the promise and pitfalls of automation. When the Model 3 entered production in 2017, CEO Elon Musk set an ambitious goal: a “machine that builds the machine.” Tesla aimed to achieve near-lights-out automation using high-speed robots for assembly, welding, and material handling [20]. However, the company soon faced bottlenecks caused by over-automation and underdeveloped integration between software and hardware systems [21]. Robotic modules performed tasks efficiently in isolation but often struggled with synchronization, flexibility, and recovery from minor process deviations.


Musk later admitted that “excessive automation at Tesla was a mistake” and that “humans are underrated” [22]. The Model 3 “production hell” revealed a key lesson automation must be implemented progressively and intelligently, aligned with process maturity. Tesla temporarily reintroduced manual processes in some lines to stabilize throughput while developing more reliable automation frameworks. This hybrid approach combining human oversight with digital optimization became the foundation for Tesla’s next-generation smart manufacturing philosophy.

Following these lessons, Tesla refined its automation strategy to emphasize end-to-end integration and digital adaptability. Battery cell manufacturing (at Giga factory Nevada) and drive-unit lines (at Shanghai, Berlin, and Texas) became showcases of integrated robotics, machine

vision, and advanced manufacturing execution systems (MES)[23]. Tesla's Giga press a 6,000- to 9,000-ton die-casting machine produced by Idra Group revolutionized vehicle body assembly by replacing hundreds of welded components with single-piece aluminum castings, dramatically reducing complexity, cost, and assembly time [24].

Building on these advances, Tesla unveiled its Unboxed Process in 2023 a modular manufacturing approach where large vehicle subassemblies (front, rear, and floor) are produced in parallel and later integrated in final assembly [25]. This distributed architecture allows automated subsystems to operate semi-independently, improving scalability, reconfigurability, and throughput. In this design, automation cells function like autonomous nodes each with localized AI control before converging through synchronized robotics and digital coordination.

Tesla's automation focus extends well beyond vehicle production. Its energy division producing Power wall, Power pack, and Mega pack energy storage systems leverages high-throughput automation for cell packaging, thermal management integration, and inverter assembly. The company's Giga factory Lathrop is a near-lights-out facility designed for continuous, AI-optimized production of Mega packs, where robotics manage not only assembly but also quality control, logistics, and predictive maintenance. Similarly, solar roof manufacturing in Buffalo employs flexible robotic lines capable of adapting to variable product geometries with minimal human intervention

Figure 2. Tesla's Automation Journey: From Manual Assembly to the Unboxed Process

By 2025, Tesla's Gigafactories were estimated to achieve over 95% automation in certain production lines, supported by digital twins, computer vision, and reinforcement learning algorithms that dynamically optimize throughput and energy usage [26]. Across its vehicle, energy, and AI infrastructures, Tesla's evolution underscores that smart manufacturing is not merely the deployment of robots but is the integration of digital intelligence, flexible automation, and continuous learning. The company's progression from over-automation to intelligent automation exemplifies the broader transition from mechanized efficiency to cognitive manufacturing, a defining characteristic of future lights-off factories. Figure 2

best represents the evolution of Tesla's manufacturing systems.

Some important takeaways from Tesla's automation strategy are:

- **Automation Must Evolve With Process Maturity:** Tesla's early Model 3 challenges illustrate that excessive or premature automation can reduce flexibility and create bottlenecks. Smart manufacturing requires a phased, feedback-driven approach where automation grows in parallel with process understanding.
- **Integrated Automation Outperforms Isolated Robotics:** Tesla's shift from over-automation to integrated systems (MES, vision-guided robotics, synchronized automation cells) demonstrates that connectivity and coordination are more critical than sheer robot density. System-level architecture is the defining factor in modern factory performance.
- **Modular Production Layouts Enable Scalability and Flexibility:** The Unboxed Process embodies next-generation manufacturing: distributed, modular, and reconfigurable assembly cells that support rapid product variation and parallelized operations. This architecture aligns with emerging trends in future factories and lights-out scenarios.
- **Automation Drives Value across Product Ecosystem:** From vehicle assembly to battery storage (Megapack/Powerwall) and AI hardware, Tesla applies automation as a unifying strategy across business units. Energy product Gigafactories, especially Lathrop, mirror the automotive shift toward near-lights-out, vertically integrated production.
- **Human Insight Remains Essential in Automated Systems:** Lessons from "production hell" reinforce that human expertise is crucial for designing, supervising, and improving automated systems. Tesla's trajectory supports the hybrid Industry 5.0 philosophy: human creativity guiding highly autonomous systems.
- **Tesla as a Bridge between Today's Automation and Tomorrow's Lights-Out Factories:** With >95% automation in certain lines, synchronized robotics, and AI-driven process control, Tesla demonstrates how modern factories can progress toward fully autonomous operation. The company provides a real-world example of factories transitioning from manual, to automated, to intelligent, and eventually to lights-off operation.

3.4. Case Study IV: Apple and the Precision Automation Ecosystem

Apple Inc. has been at the forefront of integrating high-precision robotics, automation, and human expertise to achieve consistent quality at scale. Although Apple does not own most of its assembly plants, it dictates strict automation, quality-control, and process-integration requirements for its global suppliers particularly Foxconn, Pegatron, Luxshare, Wistron, and ASE. The production of the iPhone arguably

the world's most advanced mass-manufactured electronic device relies on a combination of high-precision multi-function machines (MFMs), custom robotics, vision-guided alignment systems, and highly trained human operators, creating a hybrid ecosystem that maximizes throughput while maintaining sub-micron tolerances [27].

Foxconn, Apple's principal manufacturing partner, began extensive automation deployment under its "Foxbot" initiative in 2011, following labor shortages and rising wages in China [28]. By 2020, the company operated over 100,000 industrial robots across its facilities, with the long-term goal of achieving "lights-off" capability in certain assembly segments [29]. Apple's manufacturing philosophy merges automation with craftsmanship using robots for precision alignment, component insertion, and testing, while humans perform inspection and intricate assembly tasks that still surpass robotic dexterity.

One of Apple's landmark investments in automation came with the introduction of the *Taptic Engine* and *Face ID* systems, which required sub-millimeter assembly tolerances. Advanced multifunctional machines (MFMs) were developed to integrate laser welding, adhesive application, and optical calibration in a single station [30]. Apple's design-for-manufacturing (DFM) approach ensures product and process co-development, where engineers design parts explicitly for automated assembly [31].

Moreover, Apple's commitment to sustainability has driven adoption of autonomous recycling and disassembly systems, such as *Daisy*, a robot capable of disassembling 200 iPhones per hour while recovering critical materials like cobalt and rare earth elements [32]. These initiatives exemplify Apple's hybrid model automation not for labor replacement but for sustainability, safety, and scalability.

Beginning around 2010–2012, Foxconn launched its Foxbot Initiative, driven by China's rising labor costs and labor shortages. The company built and deployed thousands of in-house-designed industrial robots to automate:

- Solder-paste application and reflow inspection: Foxbots equipped with 3D structured-light sensors perform PCB solder application with repeatability exceeding that of human operators.
- Precision screw-driving: Apple famously redesigned its devices to use custom pentalobe and tri-point screw hardware explicitly optimized for robotic feeding and torque-controlled insertion.
- Camera alignment & module bonding: Foxbots with 6-DOF active alignment actuators position camera modules to within ± 10 microns, something impossible for humans at scale.
- Surface-finish polishing (pre-iPhone X): Prior to Apple's move to more machining-intensive casings, Foxconn utilized robotic buffing arms to achieve the mirror finish on the iPhone 4 and 5's stainless frames.
- By 2020, Foxconn operated over 100,000 robots, with full "lights-off" trials in select machining and

sub-assembly lines (especially metal unibody machining for MacBooks and iPads).

Apple rarely purchases off-the-shelf automation. Instead, it works with specialty machine builders such as Foxconn Automation Technology (FAT), GoerTek, Hans Laser, ASEE, and Jabilto co-develop MFMs tuned specifically to Apple's product geometry and materials.

Notable examples include:

3.4.1. Taptic Engine Assembly Automation

The Taptic Engine involves laser-welded steel housings, precision magnet alignment, and micro-coil placement. Apple built a suite of MFMs that:

- Laser-weld the housing with micron-scale accuracy
- Insert magnets using robotic pick-and-place systems guided by magnetic-field mapping sensors
- Tune the haptic response using machine-learning algorithms that adjust coil tolerances and spring alignment in real time

This system was so unique that Apple established dedicated Taptic Engine production lines in Shenzhen and later Hoa Lac (Vietnam).

3.4.2. Face ID Assembly: Sub-Micron Optical Calibration

Face ID required a global overhaul of Apple's automation capabilities. The TrueDepth module incorporates:

- A VCSEL laser projector
- A dot-pattern diffractive optical element (DOE)
- Multiple infrared sensors
- A depth camera

Apple developed custom MFMs that:

- Laser-attach optical components
- Actively align lenses and emitters
- Perform real-time optical calibration (mapping IR dot patterns)
- Validate assembly with machine-vision metrology systems capable of sub-micron measurement

The yield rate for early Face ID components was initially low, prompting Apple to double investment in fully automated calibration rigs.

3.4.3. Hermetically Sealed Apple Watch Sensors

The Apple Watch's blood-oxygen and heart-rate sensors use precision bonding of sapphire crystal lenses. MFMs perform:

- Automated sapphire placement
- UV-cured adhesive dispensing with volumetric flow control
- Laser-based micro-sealing to ensure water resistance

Apple's Design-for-Automation Culture

Apple integrates manufacturing constraints early in design practice that has led to:

- Unibody MacBook chassis designed for multi-axis CNC machining and robotic anodization
- Battery modules designed to fit into robotic adhesive-laying and adhesive-removal systems
- iPhone internal architecture optimized for automated board stacking and precision robotic screwdriving
- Robotic handling of fragile OLED panels, assisted by vacuum-based end effectors co-designed with display suppliers

This “design products for robots” philosophy is what enables Foxconn and Pegatron to execute automation at scale.

One of Apple’s most groundbreaking contributions is applying automation to the end of a product’s life cycle. Apple operates a family of recycling robots:

- Daisy: Disassembles 200 iPhones per hour, removes batteries, modules, and rare-earth magnets
- Dave: Extracts Taptic Engine magnets and tungsten components
- Taz: Uses high-speed agitation to recover rare-earth materials from shredded modules

These systems contribute to Apple’s stated goal of reducing its reliance on newly mined materials.

This evaluation informs us of few important aspects -

3.4.4. Leader in precision automation, even without owning factories.

Apple sets some of the world’s strictest manufacturing and automation standards for suppliers like Foxconn, Pegatron, and Luxshare. It co-develops custom machines instead of relying on off-the-shelf automation.

3.4.5. High-precision modules driving major automation breakthroughs.

These components required:

- Sub-micron alignment
- Laser welding
- Complex optical calibration

This forced Apple and its suppliers to advance their robotics, machine vision, and metrology capabilities.

3.4.6. Design-for-manufacturing (DFM) is embedded in product philosophy.

Apple designs products *specifically for automated assembly*, including:

- Custom screws
- Unibody machining
- Adhesive-friendly battery modules
- Robotic handling-optimized OLED panels

3.4.7. Apple uses automation not just for speed but for quality and reliability.

Robots maintain extremely tight tolerances (sub-millimeter or sub-micron). Humans still handle intricate,

high-dexterity tasks, creating a hybrid model that combines robotic precision with human finesse.

3.4.8. Apple applies advanced robotics to sustainability initiatives.

Through robots like Daisy, Dave, and Taz, Apple:

- Disassembles iPhones
- Recovers rare earths, tungsten, cobalt
- Feeds recovered aluminum back into new products

Automation drives Apple’s circular-materials strategy.

3.4.9. Automation strategy as long-term, systemic, and innovation-driven.

Unlike companies focused on labor reduction, Apple automates to:

- Improve quality
- Enable complex product designs
- Scale global production
- Support sustainability goals

This results in one of the most advanced hybrid human-robot manufacturing ecosystems in the world.

3.5. Case Study V: FANUC and the Lights-Off Factory

FANUC Corporation, headquartered at the foot of Mount Fuji in Yamanashi Prefecture, Japan, represents one of the most advanced examples of continuous, unmanned production in the world. Its flagship complex often referred to simply as the FANUC Factory is widely recognized as the first truly operational *lights-off* factory, capable of producing CNC systems, servo motors, and industrial robots with nearly zero on-site human labor [33]. The facility embodies the ideal of recursive automation: robots building robots.

At the heart of FANUC’s approach is extreme standardization combined with long-cycle autonomous operation. FANUC’s yellow robots handle virtually every step of production, including material transport, part loading and unloading, high-speed precision machining, screwdriving, adhesive application, calibration, packaging, and even autonomous inspection. The facility’s different buildings such as the Robot Factory, Servo Motor Factory, and CNC Factory are interconnected through automated guided vehicles (AGVs) and robotic palletizing systems designed to operate continuously without human intervention.

FANUC’s factories routinely run lights-off for up to 720 hours (30 days) at a time. During these periods:

- Robots perform multi-shift machining with automatic tool changes.
- In-line metrology systems and machine vision cameras detect micron-level deviations.
- Robots automatically remove defective parts and reroute workflows.
- Autonomous forklifts restock materials at night via pre-programmed routes.

- Predictive maintenance algorithms forecast spindle wear and servo degradation days or weeks ahead.

This long-duration autonomy is enabled by FANUC's unmatched focus on system reliability. Unlike many Western CNC or automation suppliers, FANUC prioritizes decades-long operational uptime, fan-cooled electronics, and extremely conservative component derating. The result: mean time between failures (MTBF) measured in years not months.

The coordination of thousands of robotic operations is managed through FANUC Intelligent Edge Link and Drive (FIELD) System a scalable industrial IoT and AI platform [34]. FIELD System:

- Connects every robot, CNC machine, and material-handling unit into one data layer.
- Performs edge computing for real-time motion optimization.
- Uses machine learning to predict when a robot component will fail.
- Supports plug-in “apps” from partners like Cisco, Rockwell, and Preferred Networks.
- Allows remote operators to track factory performance from anywhere in the world.

One notable example is the use of deep learning for vision-based bin picking, enabling robots to autonomously grasp randomly oriented components a capability previously requiring human intervention. The facility can run for up to 30 days without direct human intervention, with remote monitoring ensuring uptime and predictive maintenance [35].

Perhaps the most iconic aspect of FANUC's operation is recursion: the robots produced in the factory are themselves partially assembled by robots.

Robots handle:

- Casting machining for robot arms.
- Precision drilling of joint housings.
- Calibration of servo motors.
- Assembly of gearboxes and drive units.
- Testing of robot repeatability (down to ± 0.02 mm).
- Final packaging and palletizing.

This recursive pipeline creates a self-scaling manufacturing model: as demand increases, FANUC deploys more robots many produced in its own facility to expand capacity with minimal staffing increases.

FANUC's lights-off success has influenced next-generation automated factories worldwide. Examples include [36]:

- Philips Drachten Factory (Netherlands): 128 robots building electric shavers with minimal human presence.
- Siemens Amberg Digital Factory (Germany): 99.998% automation accuracy with integrated cyber-physical systems.

- ABB Robotics Factory (Shanghai): Using autonomous mobile robots (AMRs) and digital twins for robot assembly.
- DMG Mori (Japan/Germany): Lights-off machining cells for ultra-precision components.

Global manufacturers cite FANUC's 24/7 unmanned model as proof that:

1. Continuous robotics-driven production is technically feasible.
2. Reliability and integration matter more than robot count.
3. Humans remain critical for design, optimization, and maintenance even if they no longer touch day-to-day production [37].

Total unmanned production at this scale is rare. FANUC achieves it because:

- Every component is designed for extreme durability and self-monitoring.
- Processes are standardized to minimize variability.
- Inspection is integrated into every step of production, eliminating reliance on human QC.
- FIELD System enables real-time adaptive control and predictive maintenance.
- The company avoids frequent product redesigns, allowing decades-long process refinement.

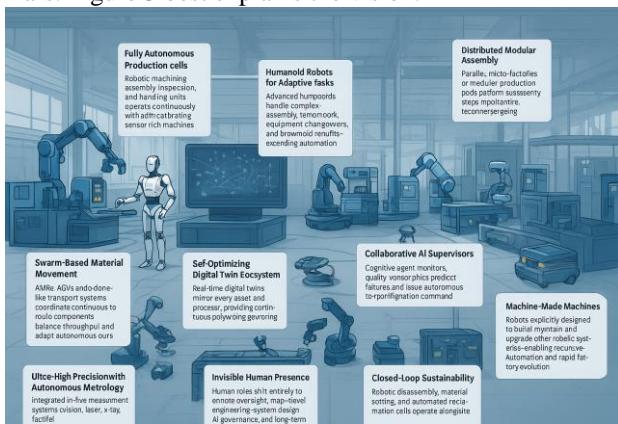
Despite the facility's autonomy, humans remain essential. They:

- Design robots and manufacturing architecture.
- Program and update motion algorithms.
- Perform facility-wide preventive maintenance (between lights-off cycles).
- Analyze data outputs from FIELD System for optimization.
- Oversee long-term quality and system improvements.

In other words, FANUC proves that autonomy eliminates human *labor* not human *expertise*.

6. Factory of Future

The “Factory of the Future” represents a fully cyber-physical ecosystem where automation, data, and intelligence converge. Unlike traditional automation, which performs repetitive programmed actions, the future factory is *adaptive*, capable of learning from its own performance, reconfiguring itself for new products, and collaborating seamlessly with humans and humanoid robots [38].


In this vision, humanoid robots augment high-speed automation by performing tasks requiring dexterity, judgment, or contextual understanding such as final assembly, inspection, or maintenance. Multifunctional machines (MFMs) integrate diverse processes milling, assembly, inspection, and additive manufacturing into reconfigurable units connected through a digital twin infrastructure [39].

AI serves as the cognitive layer of the factory. Predictive algorithms forecast demand, schedule operations, and dynamically allocate robotic resources based on sensor data and operational feedback. Cloud-edge architectures ensure low-latency control and secure data exchange. Combined with 5G connectivity, this enables near-real-time orchestration of thousands of devices across a facility [40].

The evolution of manufacturing from Ford's mechanized flow, to Toyota's lean human-centric systems, to Tesla's digital automation, Apple's precision ecosystem, and FANUC's lights-off autonomy reveals a recurring pattern: each generation of factories integrates strengths from its predecessors while solving their limitations. The factory of the future is not one paradigm but the convergence of five manufacturing lineages, each contributing essential principles:

- Ford → Flow, standardization, system-level process design
- Toyota → Flexibility, embedded quality, human-centric improvement
- Tesla → Integrated automation, AI-driven optimization, modular architecture
- Apple → Precision automation, design-for-automation (DFA), sustainability robotics
- FANUC → Fully autonomous operation, recursive robotics, self-sustaining systems

Drawing from these trajectories, the Factory of the Future can be described as a hybrid, autonomous, self-improving production ecosystem built on the following pillars. Figure 3 best explains the vision.

Figure 3. Depiction of a next-generation autonomous manufacturing system in which robotic work cells, adaptive humanoid robots, and distributed mobile units coordinate within a unified control architecture.

- Fully Autonomous Production Cells: Robotic machining, assembly, inspection, and handling units operate continuously with self-calibrating, sensor-rich multifunctional machines.
- Humanoid Robots for Adaptive Tasks: Advanced humanoids handle complex assembly, rework, equipment changeovers, and brownfield retrofit extending automation to tasks previously dependent on human dexterity.

- Self-Optimizing Digital Twin Ecosystem: Real-time digital twins mirror every asset and process, providing continuous simulation, predictive planning, and closed-loop optimization without human oversight.
- Swarm-Based Material Movement: AMRs, AGVs, and drone-like transport systems coordinate as swarms to route components, balance throughput, and adapt autonomously to disturbances.
- Distributed Modular Assembly: Parallel micro-factories or modular production pods perform subassembly steps independently before reconverging maximizing scalability and reducing line downtime.
- Collaborative AI Supervisors: Cognitive agents monitor quality, detect anomalies, predict failures, and issue autonomous re-routing or reconfiguration commands across the entire factory network.
- Machine-Made Machines: Robots explicitly designed to build, maintain, and upgrade other robotic systems enabling recursive automation and rapid factory evolution.
- Ultra-High Precision with Autonomous Metrology: Integrated in-line measurement systems (vision, laser, x-ray, tactile) provide micron-level corrections and self-healing process adjustments.
- Closed-Loop Sustainability: Robotic disassembly, material sorting, and automated reclamation cells operate alongside production to drive zero-waste, circular manufacturing.
- Invisible Human Presence: Human roles shift entirely to remote oversight, high-level engineering, system design, AI governance, and long-term strategic improvement.

Together, these elements transform manufacturing from a sequence of human-supervised processes into a self-optimizing, learning ecosystem, bridging today's brownfield realities with tomorrow's fully autonomous "lights-off" factories. Such a system achieves near-zero downtime, eliminates human exposure to hazardous environments, enables micro-batch customization, and dramatically improves resource efficiency. McKinsey & Company projects that end-to-end smart factories can achieve productivity gains of up to 30% and defect reductions exceeding 50% compared to traditional automation [41].

7. Discussion

The transition from manual to smart manufacturing represents a synthesis of technological, organizational, and human innovation. Case studies from Ford, Toyota, Tesla, Apple, and FANUC reveal that progress in automation has always been iterative; each generation of manufacturing integrates lessons from the previous one. Ford's moving line demonstrated the power of process standardization. Toyota refined this into lean, human-centric adaptability. Tesla attempted full automation but learned the importance of balance between machine and human oversight. Apple's precision automation demonstrated the fusion of robotics

with sustainability and craftsmanship. FANUC, finally, proved the technical feasibility of unmanned continuous production.

The common thread across these transformations is integration between design and production, human and robot, cyber and physical. The future factory will not simply replace humans with machines but will *redistribute intelligence* across both. Humanoids will bridge the flexibility gap, while AI and multifunctional machines (MFM) will handle optimization and execution.

However, achieving this vision involves overcoming several challenges:

7.1. Interoperability

Today's factory automation ecosystem is fragmented: robotic arms, AMRs, vision systems, PLCs, MES/ERP platforms, and digital twins often rely on proprietary interfaces, custom APIs, or closed protocols. This lack of interoperability creates barriers to scaling autonomy because each integration requires significant engineering, middleware, and maintenance. A standardized communication framework similar to OPC UA, ROS-Industrial, or emerging industrial IoT standards would enable seamless coordination between heterogeneous robotic platforms and control layers. By establishing uniform data models, semantic definitions, motion-command standards, and safety messaging frameworks, manufacturers could rapidly deploy mixed fleets of robots, simplify digital twin integration, and allow autonomous systems to coordinate without bespoke engineering. Ultimately, interoperability becomes the backbone for modular, plug-and-play automated factories [42].

7.2. Safety and Ethics

Humanoid robots introduce new levels of complexity and risk because they operate in spaces, tasks, and ergonomics originally designed for humans. Ensuring safe deployment requires moving beyond traditional machine safety guards toward dynamic perception-based safety, intent prediction, bio-mechanical compliance, and safe failure-mode behaviors. As these systems increasingly make real-time decisions whether to stop, reroute, assist a human, or resolve conflicting objectives ethical frameworks become essential. Factories must define rules for prioritizing human well-being, handling edge cases, ensuring transparency in autonomous decisions, and preventing unintended harm. Certification bodies will also need updated standards that address humanoid morphology, AI-driven behaviors, and collaborative autonomy. Safety and ethics become intertwined pillars that determine how responsibly humanoid robots integrate into mixed human-robot production ecosystems [43].

7.3. Data Governance

Hyper-connected factories generate massive streams of sensor data, video, telemetry, digital twin states, maintenance logs, and operational analytics. Without strong data governance, these systems face cybersecurity vulnerabilities, intellectual property leakage, and

manipulation risks that could disrupt entire production flows. Resilient AI architectures featuring federated learning, secure enclaves, hardware-level encryption, and anomaly detection will be required to safeguard proprietary manufacturing knowledge. Additionally, standardized access-control models, lifecycle data retention policies, and traceability standards ensure that data remains accurate, auditable, and tamper-resistant. In self-optimizing factories where AI directs production, secure data governance is not only a compliance issue but a critical operational safety requirement [44].

7.4. Workforce Transformation:

Automation will not eliminate the need for people; it will change what people do. As tasks previously performed by human hands shift to robots, human roles migrate toward high-skill cognitive and supervisory domains: robot programming, machine learning oversight, data interpretation, simulation engineering, and autonomous system orchestration. This shift requires continuous reskilling because technological change outpaces traditional training models. Manufacturers that invest in lifelong learning pathways, micro credentials, VR-based robotics labs, and rapid upskilling programs will build a workforce capable of collaborating with advanced automation. Competitiveness will increasingly depend on human adaptability: companies able to transition their workforce into these higher-value roles will outperform those that treat automation solely as a cost-cutting initiative [45]. In summary, the shift toward smart manufacturing is not a replacement of the human element but its amplification through technology. The "factory of the future" will operate autonomously, but its evolution will remain guided by human ingenuity.

8. Conclusion

The journey from manual assembly to smart manufacturing encapsulates more than a century of industrial innovation. From Ford's assembly line to Toyota's lean philosophy, from Tesla's reimagined automation to Apple's precision robotics, and culminating in FANUC's self-operating facility, each milestone reflects the coevolution of human skill and machine intelligence. The convergence of robotics, multifunctional machines, humanoids, and AI is transforming manufacturing into an intelligent, adaptive ecosystem. The future lights-off factory will not be devoid of human input but will embody human creativity embedded in code, design, and control logic. As we move deeper into the era of Industry 5.0 where automation coexists with sustainability, flexibility, and resilience, the challenge will be to design systems that are not only efficient but also *empathetic* to human values. The lights on these production lines would turn off, but human innovation will always remain the light guiding future factories.

References

- [1] McKinsey & Company, "Automation, robotics, and the factory of the future," 2017.
- [2] BCG, "Advanced Robotics in the Factory of the Future," 2019.

- [3] FANUC America, “FANUC CNC & Robot Powers Moore’s Ideal Products’ Lights-Off Production,” Case Study, 2023.
- [4] J. Pires, “Trends in Smart Manufacturing: Role of Humans and Industrial Robots in Smart Factories,” *Current Robotics Reports*, vol. 1, pp. 35–41, 2020.
- [5] Ford Motor Company, “The Moving Assembly Line and the Five-Dollar Workday,” Corporate History Page, 1913.
- [6] Assembly Magazine, “The Moving Assembly Line Turns 100,” *Assembly*, 2013.
- [7] Siemens AG, “50 Years of PLC Innovation,” White Paper, 2018.
- [8] World Economic Forum, “The Fourth Industrial Revolution: Shaping the Future of Production,” 2018.
- [9] B. Marr, “How Artificial Intelligence Is Changing Manufacturing,” *Forbes*, 2022.
- [10] Ford Motor Company Archives, “Highland Park Plant Historical Overview,” 2019.
- [11] H. Ford, *My Life and Work*, Garden City Publishing, 1922.
- [12] Assembly Magazine, “Lean Flow: From Henry Ford to Industry 4.0,” 2017.
- [13] S. Tolliday, “Fordism and Flexibility in the Automobile Industry,” *Industrial and Corporate Change*, vol. 6, no. 1, 1997.
- [14] J. Miltenburg, *Manufacturing Strategy: How to Formulate and Implement a Winning Plan*, CRC Press, 2005.
- [15] T. Ohno, *Toyota Production System: Beyond Large-Scale Production*, Productivity Press, 1988.
- [16] J. Liker, *The Toyota Way: 14 Management Principles from the World’s Greatest Manufacturer*, McGraw-Hill, 2004.
- [17] M. Holweg, “The genealogy of lean production,” *Journal of Operations Management*, vol. 25, no. 2, pp. 420–437, 2007.
- [18] A. Hines, *Learning from Toyota: Reassessing Lean in the Digital Era*, *International Journal of Production Research*, vol. 58, no. 20, 2020.
- [19] Toyota Motor Corporation, “The Human Touch in an Automated World,” Corporate Report, 2019.
- [20] Tesla Inc., “Tesla Q3 2017 Update,” Investor Relations Report, 2017.
- [21] Reuters, “Inside Tesla’s Struggle with Model 3 Automation,” 2018.
- [22] C. Clifford, “Elon Musk: Excessive Automation Was a Mistake Humans Are Underrated,” *CNBC*, Apr. 2018.
- [23] Electrek, “Tesla Gigafactory’s Fully Automated Battery Module Line,” 2020.
- [24] Idra Group, “Gigapress: Ultra-Large Die Casting for Automotive Manufacturing,” Technical White Paper, 2021.
- [25] Tesla Inc., “Investor Day 2023: The Unboxed Manufacturing Process,” 2023.
- [26] IEEE Spectrum, “How Tesla Reinvented Factory Automation,” 2024.
- [27] Bloomberg, “Inside Apple’s Automation Push with Foxconn,” 2020.
- [28] Foxconn Technology Group, “Automation Strategy and Foxbot Program,” Corporate White Paper, 2017.
- [29] Nikkei Asia, “Foxconn Ramps Up Robot Workforce,” 2020.
- [30] TechInsights, “Inside Apple’s Manufacturing Automation,” 2021.
- [31] Apple Inc., “Environmental Progress Report,” 2023.
- [32] Apple Inc., “Daisy Robot: The Future of iPhone Recycling,” Press Release, 2022.
- [33] FANUC Corporation, “Unmanned Factory Operations Overview,” 2021.
- [34] FANUC FIELD System, “Smart Factory Integration,” Technical Guide, 2022.
- [35] MIT Technology Review, “FANUC’s Lights-Off Factory Produces Robots with Robots,” 2023.
- [36] Siemens AG, “Amberg Digital Factory: 99.998% Quality Rate,” Case Study, 2022.
- [37] S. Bortolini et al., “Industry 4.0 Technologies for Flexible Manufacturing,” *Procedia Manufacturing*, vol. 17, pp. 106–113, 2023.
- [38] KPMG, “The Future of Smart Manufacturing,” Global Manufacturing Outlook, 2022.
- [39] ABB Robotics, “Multifunctional Robotics and Reconfigurable Manufacturing Systems,” 2023.
- [40] Ericsson, “5G for Industrial Automation: Connectivity in Smart Factories,” 2021.
- [41] McKinsey & Company, “Smart Factories: How AI and Automation Are Transforming Manufacturing,” 2023.
- [42] International Federation of Robotics (IFR), “World Robotics Report 2024,” IFR, 2024.
- [43] ISO/TC 299 Robotics, “Safety Requirements for Collaborative Industrial Robots (ISO 10218-2:2023),” ISO, 2023.
- [44] World Economic Forum, “Cybersecurity for the Fourth Industrial Revolution,” 2023.
- [45] Deloitte, “The Manufacturing Skills Gap: 2025 Outlook,” 2024.