
International Journal of Emerging Trends in Computer Science and Information Technology

ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.IJETCSIT-V7I1P116

Eureka Vision Publication | Volume 7, Issue 1, 108-118, 2026

Original Article

Proactive Device-Wide Resource Throttling to Prevent

System-Level ANRs in Peak-Load Commerce Applications

Varun Reddy Guda

Little Elm, TX, USA.

Received On: 19/12/2025 Revised On: 18/01/2026 Accepted On: 27/01/2026 Published On: 05/02/2026

Abstract - Application Not Responding (ANR) events remain

one of the most critical failure modes in Android-based

commerce applications, particularly under peak-load

conditions such as flash sales, seasonal promotions, and

high-concurrency checkout events. While modern Android

frameworks provide tools for asynchronous execution and

background scheduling, these mech-anisms primarily

operate at the application or thread level and lack

awareness of device-wide resource contention. As a result,

even well-architected applications can trigger system-level

ANRs when CPU, memory, I/O, and binder resources become

saturated concurrently.

This paper introduces a Proactive Device-Wide Resource

Throttling (PDWRT) framework designed to prevent system-

level ANRs by dynamically regulating resource consumption

across the entire application process before critical

thresholds are reached. Unlike reactive watchdog-based

approaches, PDWRT continuously observes runtime

signals—including main-thread latency, binder queue depth,

garbage collection pressure, and system scheduler load—

and applies adaptive throttling strategies across foreground,

transactional, and background workloads.

The proposed framework is implemented and evaluated

in the context of large-scale Android commerce applications

oper-ating under extreme peak-load scenarios. Experimental

results demonstrate a significant reduction in ANR

incidence, improved UI responsiveness, and increased

system stability without com-promising user-perceived

performance. The findings suggest that proactive, device-

wide throttling represents a necessary evolution in mobile

system resilience engineering.

Keywords - Android ANR Prevention, System-Level

Throttling, Mobile Performance Engineering, Peak-Load

Stability, Commerce Applications, Resource Management.

1. Introduction
Android commerce applications operate under some of

the most demanding runtime conditions in the mobile

ecosystem. During peak events such as limited-time

promotions, flash sales, or large-scale marketing

campaigns—applications must handle sudden surges in

concurrent users, network requests, UI updates, analytics

events, and payment flows. These conditions expose a

fundamental limitation in current mobile performance

strategies: most ANR prevention techniques are reactive and

localized, rather than proactive and system-aware.

ANRs are not merely application bugs; they are

emergent failures caused by compounded delays across

multiple subsys-tems. An application may adhere to best

practices offloading work from the main thread, using

coroutines or reactive streams, and optimizing rendering yet

still trigger ANRs due to device-wide contention involving

CPU scheduling, garbage collection, binder IPC, and I/O

starvation.

In production commerce applications, ANRs have direct

financial consequences. They disrupt checkout flows,

degrade trust, and frequently coincide with the most revenue-

critical moments. Despite this, existing mitigation strategies

largely focus on postmortem analysis or static optimizations

rather than real-time prevention.

This paper argues that preventing system-level ANRs

re-quires a paradigm shift: from thread-level correctness

to device-wide resource governance. We propose

Proactive Device-Wide Resource Throttling (PDWRT), a

runtime frame-work that continuously evaluates global

system pressure and proactively modulates workload

execution before ANR condi-tions materialize.

2. Background: Understanding System-Level

ANRS
2.1. Anatomy of an ANR

An ANR is triggered when the Android system

detects that an application’s main thread has been

unresponsive for a defined period (typically 5 seconds for

input events). However, the root cause is rarely a single

blocking call. Instead, ANRs often emerge from

compound delays, including:

 CPU scheduler starvation

 Excessive garbage collection pauses

 Binder IPC congestion

 Disk I/O saturation

 Thread pool exhaustion

These factors interact in non-linear ways, making

ANRs difficult to predict using static analysis alone.

Varun Reddy Guda / IJETCSIT, 7(1), 108-118, 2026

109

2.2. Limitations of Traditional Mitigations

Conventional ANR mitigation techniques include:

 Moving work off the main thread

 Reducing synchronous I/O

 Optimizing layout and rendering

 Monitoring strict mode violations

While necessary, these techniques assume that

background execution is ―safe‖ by default. In peak-load

scenarios, this assumption fails: background tasks can

indirectly starve fore-ground execution by saturating

shared system resources.

2.3. Commerce-Specific Stress Patterns

Commerce applications are uniquely vulnerable to system-

level ANRs due to:

 Burst-heavy network traffic

 Concurrent analytics and experimentation

pipelines

 Payment SDK integrations

 Real-time inventory and pricing updates

These workloads frequently align temporally, creating

syn-chronized resource pressure spikes.

3. Motivation for Proactive Device-Wide

Throttling
3.1. Reactive Systems Fail Too Late

Android’s ANR detection is fundamentally reactive it

sig-nals failure after responsiveness has already degraded.

By the time an ANR is logged, user trust and revenue impact

have already occurred.

3.2. Need for Predictive Intervention

Modern commerce applications already collect rich

teleme-try related to performance and behavior. PDWRT

leverages these signals to identify pre-ANR conditions,

enabling inter-vention before user-visible degradation

occurs.

3.3. Design Goals

The PDWRT framework is designed around four core goals:

 Proactivity: Intervene before ANRs occur

 Global Awareness: Observe device-wide resource

usage

 Foreground Protection: Preserve UI and input

respon-siveness

 Graceful Degradation: Prefer throttling over failure

4. Scope and Contributions
This work focuses on the prevention of system-level Ap-

plication Not Responding (ANR) events in Android-based

commerce applications operating under extreme peak-load

conditions. Rather than addressing isolated performance de-

fects or individual blocking calls, the scope of this paper

encompasses emergent ANR behavior arising from com-

pounded resource contention across CPU, memory, binder

IPC, and I/O subsystems.

4.1. Scope of the Study

The scope of this research is intentionally defined to ensure

both technical depth and practical relevance:

4.1.1. Platform Scope

The proposed framework targets Android applications

running on consumer devices, with particular emphasis on

modern Android runtime environments (Android 12 and

above). While the concepts may generalize to other

mobile platforms, this study is grounded in Android’s

execution model, lifecycle constraints, and system watchdog

mechanisms.

4.1.2. Application Domain Scope

The primary application domain is large-scale com-merce

and transactional mobile applications, char-acterized by:

 High concurrency during peak events

 Burst-heavy network and IPC workloads

 Integration with third-party SDKs (payments, ana-

lytics, experimentation)

 Revenue-critical UI responsiveness requirements

Although the framework may apply to other domains, the

evaluation and design choices are optimized for

commerce edifice stress patterns.

4.1.3. Failure Mode Scope

This paper focuses specifically on system-level ANRs,

rather than:

 Application crashes

 Logic-level deadlocks

 Purely UI rendering inefficiencies

The framework addresses ANRs caused by resource

saturation and scheduling delays, not correctness bugs or

blocking API misuse.

4.1.4. Intervention Layer Scope

The proposed solution operates entirely at the applica-tion

layer, without requiring:

 Root access

 OS-level scheduler modifications

 Kernel instrumentation

This constraint ensures deployability within standard

production Android environments.

4.2. Problem Boundary and Non-Goals

To maintain clarity and avoid overgeneralization, the fol-

lowing aspects are explicitly out of scope:

 Replacement or modification of Android’s ANR

watch-dog mechanism

 Static code analysis or compile-time performance

en-forcement

 Fine-grained kernel scheduling control (e.g.,

cgroups, CPU affinity)

 Long-term user behavior prediction or

personalization Instead, the framework is designed

to cooperate with the Android system, adapting

workload behavior dynamically based on observed

runtime pressure.

Varun Reddy Guda / IJETCSIT, 7(1), 108-118, 2026

110

4.3. Research Contributions

This paper makes the following primary research

contributions:

 Reframing ANR Prevention as a System-Level

Problem: The paper formalizes system-level

ANRs as emer-gent failures, demonstrating that

thread-level correct-ness alone is insufficient

under peak load. This reframing shifts ANR

prevention from reactive debugging to proactive

system governance.

 Definition of Pre-ANR System Pressure Signals:

The study identifies and categorizes a set of runtime

signals—including main-thread latency growth,

binder queue depth, garbage collection frequency,

and scheduler contention—that reliably precede

ANR events under load.

 Device-Wide Throttling Model: A novel device-

wide resource throttling model is introduced,

enabling coordinated regulation of fore-ground,

transactional, and background workloads based on

global system pressure rather than local task

priority.

 Adaptive Throttling Policy Framework: The paper

defines adaptive throttling policies that balance

responsiveness, fairness, and throughput. These

policies dynamically adjust execution rates instead

of statically disabling features, enabling graceful

degradation rather than failure.

4.4. Engineering Contributions

In addition to theoretical insights, this work provides

practical engineering contributions suitable for real-world

de-ployment:

1) Production-Ready Android Architecture: The

framework is designed to integrate with modern

Android stacks using Kotlin coroutines, lifecycle-

aware scopes, and reactive telemetry pipelines,

ensuring com-patibility with contemporary app

architectures.

2) Foreground Responsiveness Guarantees: The

system explicitly prioritizes UI responsiveness and

input handling, ensuring that throttling decisions

never compromise user-perceived interactivity.

3) Fail-Safe and Fallback Mechanisms: Conservative

fallback strategies ensure that throttling logic itself

cannot introduce instability, enabling safe operation

even under uncertain telemetry conditions.

4) Observability and Debuggability: The framework

emphasizes explainable throttling de-cisions,

enabling developers to trace system pressure signals

and intervention outcomesan essential require-mint

for production debugging and experimentation.

4.5. Empirical Contributions

Finally, this paper contributes empirical evidence through:

 Controlled peak-load experiments simulating

commerce traffic surges

 Comparative evaluation against baseline Android

execu-tion models

 Quantitative analysis of ANR reduction, UI latency

sta-bilization, and system throughput preservation

These results demonstrate that proactive, device-wide

throt-tling can materially reduce ANR incidence without

degrading business-critical user flows.

4.6. Positioning Within Existing Literature

Taken together, the contributions of this work position

PDWRT as:

 Complementary to existing asynchronous and

coroutine-based models

 Orthogonal to static performance optimizations

 Foundational for future research into self-regulating

mo-bile systems

By bridging the gap between system telemetry and

runtime execution control, this paper advances the state of

the art in mobile resilience engineering.

5. Related Work
This section surveys prior research and industry

practices related to ANR prevention, mobile resource

management, and system-level throttling. While

substantial work exists in each individual area, this

review highlights a persistent gap: the absence of

proactive, device-wide throttling mechanisms tailored for

high-concurrency commerce workloads.

5.1. Android ANR Detection and Analysis

Android’s ANR mechanism is documented

extensively in platform guidelines and developer tooling.

The system triggers an ANR when the main thread

fails to respond to input events or broadcast receivers

within a fixed timeout window. Prior studies have

focused on postmortem ANR analysis, log correlation,

and static code inspection to identify blocking calls.

Tools such as StrictMode, Systrace, and Perfetto

enable developers to diagnose main-thread violations and

rendering bottlenecks. However, these tools are

diagnostic rather than preventative. They provide

visibility into failures after they occur but offer no

runtime mitigation when system pressure escalates

dynamically.

Academic work on ANR root causes has shown that

many incidents are indirectly caused by background

execution pat-terns, garbage collection pauses, or binder

IPC congestion rather than explicit main-thread blocking.

These findings re-inforce the need for a holistic, system-

aware approach.

5.2. Thread-Level and Coroutine-Based Mitigations

Modern Android applications rely heavily on

asynchronous execution models such as Kotlin

coroutines, reactive streams, and executor pools. These

abstractions significantly reduce the likelihood of direct

main-thread blocking and improve developer ergonomics.

Varun Reddy Guda / IJETCSIT, 7(1), 108-118, 2026

111

However, prior research has demonstrated that

thread-level correctness does not imply system-level

safety. Under peak load, aggressive parallelism can

overwhelm shared resources even when individual tasks

are correctly dispatched off the main thread. Coroutine

dispatchers, for example, may saturate CPU cores or

trigger excessive context switching, indirectly starving UI

execution.

Existing coroutine scheduling strategies prioritize

fairness among tasks but do not account for global

system pressure or workload criticality. As a result,

background analytics or experimentation workloads may

compete equally with UI-critical tasks during high-load

events.

5.3. OS-Level Resource Management and Scheduling

Operating system research has long explored CPU

schedul-ing, memory reclamation, and I/O prioritization.

Linux-based systems employ mechanisms such as

Completely Fair Sched-uler (CFS), cgroups, and I/O

schedulers to balance resource usage across processes.

Android inherits many of these mechanisms but

applies them at a coarse granularity. Application

developers have limited direct control over cgroups or

kernel-level scheduling policies. Consequently,

application-level strategies must oper-ate above the OS

layer, inferring system pressure indirectly and adapting

workload behavior cooperatively.

Prior work on mobile energy management and thermal

throttling demonstrates the effectiveness of proactive inter-

vention based on system telemetry. However, these systems

primarily target battery life and thermal constraints rather

than responsiveness and ANR prevention.

5.4. Load Shedding and Graceful Degradation

Load shedding techniques are widely used in distributed

systems to maintain availability under overload conditions.

These approaches selectively drop or delay non-critical work

to preserve core functionality.

In mobile applications, load shedding has been applied

sporadically typically by disabling optional features or re-

ducing update frequency. However, these implementations

are often static and lack fine-grained control. They do not

adapt dynamically to real-time system conditions, nor do

they coordinate across workload classes. The PDWRT

framework extends load shedding concepts into a continuous,

telemetry-driven throttling model specifically designed to

prevent ANRs rather than recover from failures.

6. Problem Definition
6.1. System-Level ANRs as Emergent Failures

System-level ANRs are not the result of a single

blocking operation but rather the emergent outcome of

compounded scheduling delays across multiple subsystems.

These include CPU contention between runnable threads,

garbage collection pauses triggered by memory pressure,

binder IPC backlog caused by excessive inter-process

communication, and disk I/O starvation.

Crucially, these subsystems interact multiplicatively

rather than additively. For example, increased background

CPU usage may delay garbage collection, which in turn

increases memory pressure, leading to longer GC pauses that

stall the main thread. Such cascades are largely invisible to

thread-level correctness checks. This emergent nature

explains why many ANRs occur in applications that

otherwise follow Android best practices.

6.2. Pre-ANR Execution States

Through empirical observation of peak-load commerce sce-

narios, system-level ANRs are typically preceded by a pre-

ANR execution state, characterized by:

 Increasing main-thread message queue latency

 Sustained CPU saturation above runnable

equilibrium

 Rapid growth in binder transaction backlog

 Elevated GC frequency with decreasing allocation

effi-ciency

 Increased scheduler context switching

These indicators form the basis for predictive

intervention, distinguishing PDWRT from reactive

mitigation strategies.

6.3. Formal Problem Statement

Let an Android application process PPP execute a set of

concurrent workloads

W={wf,wt,wb}W = \w f, w t, w b\W={wf,wt,wb},

rep-resenting foreground, transactional, and background

tasks.

Given finite device resources

R={CPU,Memory,I/O,IPC}

R= \CPU, Memory, I/O, IPC\

R={CPU,Memory,I/O,IPC},

and dynamic system pressure S(t)S(t)S(t), the problem is to

dynam-ically regulate execution rates E(W,t)E(W,t)E(W,t)

such that:

1) UI responsiveness constraints are preserved

2) System pressure remains below ANR-triggering

thresh-olds

3) Business-critical operations complete with

acceptable latency without prior knowledge of

future workload arrivals.

6.4. Limitations of Existing Solutions

Existing Android performance strategies fail this

formula-tion because they:

 Optimize only individual task correctness

 Treat background execution as independent from

fore-ground safety

 Lack continuous feedback from global system

pressure

 React after watchdog thresholds are crossed

These limitations motivate the need for a proactive,

Varun Reddy Guda / IJETCSIT, 7(1), 108-118, 2026

112

device-wide control model.

7. Design Requirements
The design of a proactive system for preventing

system-level ANRs must be driven by both theoretical

constraints of mobile operating systems and practical

realities of production Android commerce applications.

This section formalizes the requirements that any viable

solution must satisfy in order to be effective, deployable,

and safe under peak-load conditions.

7.1. Global Observability Requirement

1) Requirement R1: A system designed to prevent

system-level ANRs must observe device-wide

resource pressure rather than isolated thread- or task-

level metrics.

2) Rationale: System-level ANRs emerge from global

con-tention across shared resources, including CPU

scheduling, memory management, IPC, and I/O.

Monitoring only local in-dicators such as main-thread

blocking or coroutine execution time fails to capture

the cascading interactions that precede ANRs.

3) Implications:

 Telemetry must aggregate signals across multiple

subsys-tems

 Observability must be continuous rather than event-

driven

 Metrics must reflect pressure trends, not just

instanta-neous spikes

This requirement directly motivates the global

pressure vector.

7.2. Predictive Intervention Requirement

1) Requirement R2: The system must intervene before

Android watchdog thresholds are violated.

2) Rationale: Android’s ANR detection is fundamentally

reactive. Once the watchdog triggers, responsiveness has

al-ready degraded beyond acceptable limits. A

preventative sys-tem must therefore detect pre-ANR

states and act proactively.

3) Implications::

 Telemetry signals must be predictive rather than

diagnos-tic

 Intervention logic must operate on leading

indicators

 Throttling actions must be triggered during pressure

es-calation, not failure

This requirement justifies the focus on pre-ANR

execution states and continuous feedback control.

7.3. Workload Differentiation Requirement

1) Requirement R3: The system must differentiate work-

loads based on user impact and business criticality.

2) Rationale: Not all workloads contribute equally to user

experience or revenue. Treating UI rendering, checkout

pro-cessing, and background analytics identically under

load leads to suboptimal outcomes. ANR prevention

requires selective protection, not uniform throttling.

3) Implications:

 Workloads must be classified into distinct execution

classes

 Throttling policies must be asymmetric across

classes

 Foreground responsiveness must be preserved even

under severe pressure

This requirement underpins the Foreground /

Transactional / Background workload model.

7.4. Android Compatibility Requirement

1) Requirement R4: The solution must operate entirely

within application-layer constraints.

2) Rationale: Production Android applications cannot as-

sume control over kernel-level scheduling, cgroups, or

OS watchdog behavior. Any solution requiring root

access, OS modification, or privileged APIs is

impractical for real-world deployment.

3) Implications:

 All telemetry must be accessible via standard

Android APIs

 Intervention must be cooperative rather than

authoritative

 The system must coexist with Android’s lifecycle

and scheduling policies

This requirement ensures deployability and strongly

influences the control-plane design.

7.5. Performance Safety Requirement

1) Requirement R5: The ANR prevention mechanism itself

must not introduce measurable performance regression.

2) Rationale: A system that increases overhead,

introduces blocking behavior, or causes oscillatory

execution patterns risks becoming a new source of

instability. Preventative logic must be lighter than the

failures it prevents.

3) Implications:

 Telemetry collection must be low overhead

 Decision logic must be bounded in time and

complexity

 Throttling actions must be incremental and

reversible

This requirement directly informs the adaptive (non-binary)

throttling policies.

7.6. Fail-Safe and Stability Requirement

1) Requirement R6: The system must fail safely under

uncertainty.

2) Rationale: Telemetry may be noisy, incomplete, or

tem-porarily unavailable. In such cases, aggressive

throttling or incorrect decisions could degrade user

experience more than inaction.

3) Implications:

 Conservative defaults must be enforced

 Throttling must degrade gracefully rather than

abruptly

Varun Reddy Guda / IJETCSIT, 7(1), 108-118, 2026

113

 The system must be able to disengage without side

effects

This requirement motivates the hysteresis, fallback,

and reversibility mechanisms embedded in the PDWRT

control plane.

7.7. Explainability and Debuggability Requirement

1) Requirement R7: Throttling decisions must be

observ-able and explainable to developers.

2) Rationale: In production commerce systems, unex-

plained behavior is unacceptable. Developers must be

able to reason about why throttling occurred, which

signals triggered it, and what impact it had.

3) Implications:

 Decisions must be traceable to telemetry inputs

 Throttling actions must be logged in a structured

manner

 The system must support offline analysis and tuning

This requirement ensures that PDWRT can be safely

operated, tuned, and evolved over time.

7.8. Scalability and Evolution Requirement

1) Requirement R7: The framework must scale with

appli-cation complexity and evolve with platform

changes.

2) Rationale: Commerce applications continuously inte-

grate new SDKs, features, and experimentation

pipelines. An ANR prevention system must remain

effective as workloads evolve.

3) Implications:

 Workload classification must be extensible

 Telemetry signals must be modular

 Policies must be tunable without architectural

redesign

This requirement positions PDWRT as a long-term systems

framework, not a one-off optimization.

8. System-Level Resource Contention Model
8.1. Android as a Shared Resource System

Android applications execute within a cooperatively

sched-uled, multi-tenant environment where application

processes, system services, and background tasks compete

for finite hardware resources. Unlike server environments

with explicit resource quotas and isolation, Android

applications are subject to implicit and dynamic scheduling

decisions made by the operating system.

The most critical shared resource domains influencing ANR

behavior are:

 CPU scheduling, governed by the Linux

Completely Fair Scheduler (CFS)

 Memory management, including heap allocation,

garbage collection (GC), and paging

 Binder IPC, which mediates communication

between application and system services

 Disk and network I/O, subject to kernel queues and

priority arbitration

These domains are tightly coupled. Contention in one

domain frequently propagates to others, producing non-linear

degra-dation in responsiveness.

8.2. Contention Coupling and Amplification Effects

A defining characteristic of system-level ANRs is con-

tention amplification, where moderate increases in workload

volume produce disproportionate increases in execution

delay.

For example:

1) Background analytics increases CPU load

2) Elevated CPU load delays GC scheduling

3) Delayed GC increases heap pressure

4) Heap pressure causes longer stop-the-world GC pauses

5) GC pauses delay main-thread message handling

6) Input event deadlines are missed → ANR

This cascade demonstrates that ANRs are rarely caused

by a single blocking operation, but by the compounded effect

of multiple subsystems operating near saturation.

8.3. System Pressure Representation

To reason about overload conditions that lead to system-

level ANRs, PDWRT represents runtime stress as a

composite view of device-wide resource pressure rather

than as isolated performance metrics.

At runtime, the framework continuously observes four pri-

mary resource domains that are known to influence ANR

behavior in Android applications:

 CPU pressure, reflecting sustained scheduling

contention and runnable thread backlog

 Memory pressure, capturing garbage collection fre-

quency, allocation churn, and heap stress

 IPC pressure, indicating binder transaction

congestion and inter-process latency

 I/O pressure, representing contention in disk and

net-work operations

 Each domain is translated into a normalized

pressure signal that reflects how close the

system is to unsafe operating conditions for

that resource. These signals are not treated

independently; instead, they are evaluated

together to form a holistic view of overall

system stress.

By aggregating pressure across domains, PDWRT

avoids reacting to localized or misleading indicators and

instead focuses on global system conditions that reliably

precede ANR events.

8.4. Pre-ANR State Identification

PDWRT introduces the notion of a pre-ANR state,

defined as a runtime condition in which the system is

trending toward unresponsiveness but has not yet violated

Android watchdog thresholds.

Varun Reddy Guda / IJETCSIT, 7(1), 108-118, 2026

114

A pre-ANR state is identified when:

 One or more resource domains exhibit elevated

pressure, and

 That pressure remains consistently high or

continues to increase over a short time window

This temporal requirement is essential. Brief spikes

in CPU usage or memory activity are common in well-

functioning applications and do not warrant intervention.

PDWRT there-fore distinguishes between transient bursts

and sustained escalation, intervening only in the latter

case.

By acting during pre-ANR states rather than after

fail-ures occur, PDWRT is able to regulate workload

execution proactively, reducing the likelihood of user-

visible freezes and system-triggered ANRs.

9. Telemetry Signal Taxonomy and Selection
9.1. Telemetry Design Constraints

Telemetry used for proactive throttling must satisfy four

constraints:

1) Predictive – correlated with imminent ANR conditions

2) Low overhead – safe under peak load

3) Stable – resistant to short-lived noise

4) Accessible – obtainable from application-layer APIs

Signals that violate any of these constraints are

excluded, even if diagnostically useful.

9.2. Responsiveness Signals

Responsiveness signals directly capture degradation in user-

facing execution:

 Main-thread message queue latency

 Input dispatch delay

 UI frame time variance

These signals act as hard safety constraints: PDWRT prior-

itizes restoring responsiveness over maximizing throughput.

9.3. Scheduler and CPU Pressure Signals

CPU pressure is inferred from:

 Sustained CPU utilization near core saturation

 Runnable thread backlog

 Context switch frequency

Rather than instantaneous utilization, PDWRT emphasizes

trend persistence, recognizing that short CPU bursts are

common and often harmless.

9.4. Memory and Garbage Collection Signals

Memory pressure is one of the most frequent hidden con-

tributors to ANRs. PDWRT monitors:

 GC invocation rate

 Allocation-to-reclamation efficiency

 Heap growth velocity

High-frequency GC combined with low reclamation

efficiency is treated as a strong pre-ANR indicator.

9.5. IPC and Binder Pressure Signals

Binder IPC pressure is inferred from:

 Transaction backlog depth

 IPC latency growth

This is especially important for commerce applications

inte-grating payment SDKs, authentication services, and

system APIs.

10. PDWRT Control Plane Architecture
10.1. Control Plane Overview

The Proactive Device-Wide Resource Throttling

(PDWRT) control plane is designed as a continuous

feedback system that monitors device-wide resource

conditions and regulates application workload execution in

real time. Its primary ob-jective is to prevent system-level

ANRs by intervening before Android watchdog thresholds

are reached.

Rather than relying on static limits or reactive failure

detection, the control plane operates continuously, adapting

execution behavior as system conditions evolve. It functions

entirely within application-layer constraints and cooperates

with Android’s scheduling mechanisms.

At a high level, the control plane consists of three coordi-

nated responsibilities:

 Observing system pressure

 Evaluating risk and selecting interventions

 Modulating workload execution rates

This separation ensures clarity, stability, and

debuggability in production environments.

10.2. Pressure Aggregation and Interpretation

The control plane aggregates telemetry signals from

mul-tiple subsystems including CPU scheduling, memory

man-agement, IPC, and I/O into a unified view of system

stress. Each signal is interpreted relative to empirically

defined safe operating ranges rather than absolute thresholds.

Instead of reacting to individual metrics in isolation, the

control plane evaluates patterns of pressure accumulation,

identifying scenarios in which multiple subsystems exhibit

sustained stress simultaneously. This holistic interpretation is

critical for detecting conditions that reliably precede ANR

events. Pressure assessment is performed continuously but

conser-vatively, prioritizing stability over responsiveness to

short-lived fluctuations.

10.3. Risk Evaluation and Decision Logic

Based on observed pressure trends, the control plane clas-

sifies the system into one of several operational states,

such as:

 Normal operation

 Elevated pressure

 Critical (pre-ANR) pressure

Transitions between states are governed by temporal

Varun Reddy Guda / IJETCSIT, 7(1), 108-118, 2026

115

con-sistency, meaning that pressure must persist across

multiple observation windows before escalation occurs.

This prevents oscillation and unnecessary throttling. Once

a risk state is identified, the control plane determines the

minimum intervention required to restore stability. Deci-

sions are monotonic: as pressure increases, throttling

becomes progressively stronger, and as pressure subsides,

restrictions are gradually relaxed.

10.4. Workload-Aware Execution Modulation

All executable work within the application is categorized

into workload classes based on user impact and business

criticality:

 Foreground workloads, including UI rendering and

in-put handling

 Transactional workloads, such as checkout,

authentica-tion, and pricing

 Background workloads, including analytics,

logging, and prefetching

The control plane never throttles foreground

workloads di-rectly. Instead, it protects user-facing

responsiveness by reg-ulating competing transactional

and background execution. Transactional work may be

rate-limited or deferred under sustained pressure, while

background work may be delayed or temporarily

suspended. This workload-aware modulation ensures that

essential user interactions remain responsive even under

extreme load.

10.5. Adaptive Throttling Behavior

Throttling actions applied by the control plane are

adaptive and reversible. Rather than abruptly enabling or

disabling ex-ecution paths, PDWRT adjusts execution

rates incrementally, allowing the system to degrade

gracefully under load.

Examples of adaptive behaviors include:

 Reducing execution frequency of background tasks

 Introducing short deferral windows for transactional

work

 Gradually restoring execution rates as pressure

subsides

This approach avoids sudden behavioral changes that

could degrade user experience or introduce instability.

10.6. Stability and Fail-Safe Guarantees

To ensure that the control plane itself does not become a

source of instability, PDWRT enforces several safety

guaran-tees:

 Throttling decisions are bounded and time-limited

 Conservative defaults are applied under uncertainty

 The control plane can disengage entirely without

side effects

If telemetry becomes unreliable or ambiguous, the

system prioritizes correctness and responsiveness by reverting

to baseline execution behavior.

10.7. Observability and Explainability

All control plane decisions are designed to be

observable and explainable. Throttling actions are logged

with contextual information describing the triggering

conditions and affected workloads. This transparency enables

developers to analyze system be-havior, tune thresholds, and

validate effectiveness during peak-load events an essential

requirement for operating complex commerce applications at

scale.

11. Adaptive Throttling Policies
11.1. Design Philosophy

Adaptive throttling in PDWRT is guided by a single

princi-ple: preserve user-visible responsiveness while

degrading non-essential work gracefully under load. Rather

than relying on binary enable/disable switches, PDWRT

employs progressive, reversible execution control that

adjusts work-load behavior in response to sustained system

pressure.

This approach acknowledges that transient spikes are

com-mon in commerce applications and should not trigger

aggres-sive intervention. Throttling is therefore incremental,

conser-vative, and continuously reassessed.

11.2. Foreground Protection Policy

Foreground workloads including UI rendering, input

han-dling, and navigation are never throttled directly.

Protect-ing these workloads is non-negotiable, as any

degradation in foreground execution immediately impacts

user experience and risks triggering Android watchdog

violations.

Instead of acting on foreground work itself, PDWRT

pre-serves responsiveness by regulating competing

workloads that share device resources. This indirect

protection strategy en-sures that user interactions remain

fluid even during extreme peak-load conditions.

11.3. Transactional Workload Regulation

Transactional workloads include business-critical

operations such as checkout, authentication, pricing, and

inventory vali-dation. These tasks must complete reliably but

are often burst-heavy and capable of saturating shared

resources if executed without coordination.

PDWRT regulates transactional workloads using a combi-

nation of:

 Admission rate control, limiting how many

transactional tasks may execute concurrently

 Short deferral windows, delaying execution when

sys-tem pressure is rising

 Priority softening, reducing scheduling

aggressiveness during sustained load

 These measures preserve correctness and forward

progress while preventing transactional bursts from

overwhelming the system.

Varun Reddy Guda / IJETCSIT, 7(1), 108-118, 2026

116

11.4. Background Load Shedding Policy

Background workloads including analytics, logging,

ex-perimentation, and speculative prefetching are the

primary candidates for throttling. While valuable for long-

term insights and optimization, these tasks are non-

essential during periods of high system stress.

Under elevated pressure, PDWRT may:

 Reduce execution frequency

 Batch background work for later execution

 Temporarily suspend background tasks during

critical pressure windows

All background load shedding is bounded and

reversible, ensuring that deferred work resumes once

conditions stabilize.

11.5. Progressive Escalation and Relaxation

Throttling intensity in PDWRT escalates gradually as

sys-tem pressure increases and relaxes slowly as pressure

subsides. This progression avoids sudden behavioral

shifts that could confuse users or destabilize execution.

Escalation and relaxation are governed by:

 Sustained pressure duration

 Rate of pressure change

 Current workload mix

This ensures that throttling behavior remains predictable and

stable over time.

11.6. Avoiding Oscillation and Overcorrection

To prevent oscillatory behavior where throttling

rapidly toggles on and off PDWRT enforces temporal

consistency in its decisions. Pressure must remain

elevated for a minimum duration before stronger

throttling is applied, and pressure must remain low for a

similar duration before restrictions are lifted. This

hysteresis ensures that PDWRT responds to genuine

overload conditions rather than short-lived fluctuations.

11.7. Fail-Safe and Recovery Behavior

In situations where telemetry becomes ambiguous or

unre-liable, PDWRT defaults to conservative behavior.

Throttling actions are limited in scope and duration, and

the system can disengage entirely without affecting

application correctness. Recovery from throttling is

automatic and requires no developer intervention. Once

system pressure returns to safe levels, execution behavior

gradually returns to baseline.

11.8. Policy Observability and Debuggability

All throttling decisions are recorded with sufficient

context to enable offline analysis and tuning. Developers

can inspect which workloads were throttled, why

decisions were made, and how system pressure evolved

over time. This transparency is essential for operating

PDWRT in pro-duction commerce environments, where

understanding system behavior is as important as

preventing failures.

12. Android Runtime Integration
12.1. Application-Layer Deployment Model

The Proactive Device-Wide Resource Throttling

(PDWRT) framework is deployed entirely at the application

layer, ensuring compatibility with standard Android

production environments. No modifications to the operating

system, kernel scheduler, or privileged APIs are required.

This design choice enables PDWRT to be integrated into

existing commerce appli-cations without violating platform

constraints or deployment policies.

The control plane is initialized during application startup

but remains lightweight and passive under normal operating

conditions. Throttling logic is activated only when sustained

system pressure is detected, ensuring that PDWRT

introduces no measurable overhead during steady-state

execution.

12.2. Coroutine-Based Execution Control

Modern Android applications rely heavily on Kotlin

corou-tines to manage asynchronous execution. PDWRT

integrates directly with this model by introducing execution

gates that regulate when tasks are admitted for execution,

rather than interrupting tasks after they have begun.

Each workload class is assigned a dedicated coroutine scope:

 Foreground scope, used for UI rendering and

input handling

 Transactional scope, used for checkout,

authentication, and pricing

 Background scope, used for analytics, logging,

and prefetching

Throttling is applied at the scope level, allowing

PDWRT to regulate concurrency and execution frequency in

a controlled and predictable manner.

12.3. Lifecycle Awareness and Safety

PDWRT is fully lifecycle-aware. All throttling decisions

and telemetry collection are bound to lifecycle-safe scopes,

ensuring that execution state is correctly reset when the

application is backgrounded, resumed, or terminated. This

prevents stale throttling decisions from persisting across

lifecycle transitions a common source of instability in long-

running Android applications.

13. Telemetry Collection and Overhead

Management
13.1. Low-Overhead Signal Acquisition

Telemetry signals used by PDWRT are collected using

non-blocking, low-frequency probes designed to minimize

runtime overhead. Signals are selected based on their predic-

tive value for ANR conditions and their accessibility at the

application layer.

Examples include:

 Main-thread message latency sampling

 CPU utilization trends

 Garbage collection frequency

Varun Reddy Guda / IJETCSIT, 7(1), 108-118, 2026

117

 Binder transaction backlog estimates

Sampling frequency is dynamically adjusted to reduce

over-head during high-pressure periods

13.2. Noise Filtering and Stability Controls

To avoid reacting to transient spikes, PDWRT applies

several stability mechanisms:

 Sliding-window aggregation

 Trend detection over time

 Minimum-duration thresholds before escalation

These techniques ensure that throttling decisions

reflect sustained pressure rather than short-lived fluctuations.

14. Throttling Execution Strategies
14.1. Foreground Protection Strategy

Foreground workloads are explicitly protected and are

never throttled directly. This includes UI rendering, input

dispatch, and navigation logic. PDWRT preserves

foreground respon-siveness by regulating competing

workloads instead. This strategy aligns with Android’s

responsiveness contract and ensures that user-perceived

performance remains stable even under extreme load.

14.2. Transactional Throttling Strategy

Transactional workloads are regulated cautiously to balance

correctness and system stability. PDWRT applies:

 Admission rate limiting

 Short execution deferrals

 Priority softening during sustained pressure

These measures prevent burst-induced overload while

ensuring that all transactions eventually complete.

14.3. Background Load Shedding Strategy

Background workloads are the primary targets of throttling.

Under elevated or critical pressure, PDWRT may:

 Reduce execution frequency

 Batch work for later execution

 Temporarily suspend execution

All background throttling is bounded and reversible,

ensuring no permanent loss of data or functionality.

15. Experimental Methodology
15.1. Experimental Environment

Evaluation was conducted using a production-

representative Android commerce application

supporting browsing, personalization, checkout, analytics,

and experimentation pipelines.

The device matrix included:

 Low-tier devices (2–4 GB RAM)

 Mid-tier devices (6–8 GB RAM)

 High-tier devices (12+ GB RAM)

Tests were conducted across Android 12–14.

15.2. Peak-Load Simulation

Peak-load scenarios were simulated using synchronized

workload bursts, including:

 Concurrent user journeys

 Elevated analytics and experimentation traffic

 High-frequency UI updates

 Simulated payment and inventory checks

These scenarios replicate real-world flash sale and

promotional events.

15.3. Baseline Comparisons

PDWRT was evaluated against:

 Standard coroutine-based execution

 Thread-level best-practice optimizations

 Reactive ANR monitoring only

All configurations were tested under identical conditions.

15.4. Metrics Collected

Metrics included:

 System-level ANR incidence

 Main-thread latency distribution

 Garbage collection pause frequency

 Binder backlog growth

 Transaction completion latency

 UI responsiveness stability

16. Experimental Results
16.1. ANR Reduction

PDWRT reduced system-level ANRs by:

 Up to 62% on low-tier devices

 Up to 54% on mid-tier devices

 Up to 41% on high-tier devices

Reductions were most pronounced during synchronized

work-load bursts.

16.2. UI Responsiveness

Main-thread latency variance decreased significantly

under PDWRT, with fewer prolonged frame stalls and

improved in-put event handling consistency. No regressions

were observed under normal load.

16.3. Transactional Throughput

Despite throttling, transaction completion rates remained

stable. Minor execution deferrals were observed under

critical pressure but did not result in abandoned or failed

transactions.

16.4. Background Work Behavior

Background tasks were delayed or batched during peak

pressure and resumed automatically once conditions

stabilized. No data loss was observed.

17. Discussion
PDWRT demonstrates that proactive, device-wide gov-

ernance is more effective than reactive ANR mitigation.

By acting during pre-ANR states, the framework prevents

Varun Reddy Guda / IJETCSIT, 7(1), 108-118, 2026

118

cascading failures that typically lead to watchdog violations.

The design prioritizes responsiveness over raw throughput

during peak load—a tradeoff that aligns with user

experience and business goals in commerce applications.

18. Threats to Validity
Potential threats include:

 Limited generalization beyond commerce

workloads

 Approximation of kernel state via application-layer

telemetry

 Device- and vendor-specific scheduling behaviors

These risks are mitigated through conservative throttling and

fallback behavior.

19. Future Work
Future extensions include:

 Predictive throttling using on-device learning

 Cross-process coordination across apps

 Integration with OS-level scheduling hints

 Automated policy tuning

20. Conclusion
This paper presented Proactive Device-Wide

Resource Throttling (PDWRT), a runtime framework for

preventing system-level ANRs in peak-load Android

commerce appli-cations. By continuously observing

device-wide pressure and adaptively regulating workload

execution, PDWRT transforms ANR prevention from

reactive debugging into proactive sys-tem governance.

References
[1] Android Developers, Application Not Responding

(ANR) Documentation, 2023

[2] J. Dean and L. Barroso, ―The Tail at Scale,‖

Communications of the ACM, 2013

[3] A. Carroll and G. Heiser, ―An Analysis of Power

Consumption in a Smartphone,‖ USENIX ATC,

2010

[4] Y. Liu et al., ―Adaptive Scheduling for Mobile

Systems,‖ IEEE Transac-tions on Mobile Computing,

2016

[5] S. Hong et al., ―Mobile Workload Characterization,‖

IEEE ISPASS, 2014

[6] M. Zaharia et al., ―Delay Scheduling,‖ EuroSys, 2010

[7] Android Developers, App Startup and Performance,

2024

[8] L. Kleinrock, Queueing Systems, Wiley

[9] W. H. Cantrell, and W. A. Davis, ―Amplitude

modulator utilizing a high-Q class-E DC-DC

converter‖, 2003 IEEE MTT-S Int. Microwave Symp.

Dig., vol. 3, pp. 1721-1724, June 2003.

[10] H. L. Krauss, C. W. Bostian, and F. H. Raab, Solid

State Radio Engineering, New York: J. Wiley &

Sons, 1980.

