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Abstract - Application Not Responding (ANR) events remain
one of the most critical failure modes in Android-based
commerce applications, particularly under peak-load
conditions such as flash sales, seasonal promotions, and
high-concurrency checkout events. While modern Android
frameworks provide tools for asynchronous execution and
background scheduling, these mech-anisms primarily
operate at the application or thread level and lack
awareness of device-wide resource contention. As a result,
even well-architected applications can trigger system-level
ANRs when CPU, memory, 1/0, and binder resources become
saturated concurrently.

This paper introduces a Proactive Device-Wide Resource
Throttling (PDWRT) framework designed to prevent system-
level ANRs by dynamically regulating resource consumption
across the entire application process before critical
thresholds are reached. Unlike reactive watchdog-based
approaches, PDWRT continuously observes runtime
signals—including main-thread latency, binder queue depth,
garbage collection pressure, and system scheduler load—
and applies adaptive throttling strategies across foreground,
transactional, and background workloads.

The proposed framework is implemented and evaluated
in the context of large-scale Android commerce applications
oper-ating under extreme peak-load scenarios. Experimental
results demonstrate a significant reduction in  ANR
incidence, improved Ul responsiveness, and increased
system stability without com-promising user-perceived
performance. The findings suggest that proactive, device-
wide throttling represents a necessary evolution in mobile
system resilience engineering.

Keywords - Android ANR Prevention, System-Level
Throttling, Mobile Performance Engineering, Peak-Load
Stability, Commerce Applications, Resource Management.

1. Introduction

Android commerce applications operate under some of
the most demanding runtime conditions in the mobile
ecosystem. During peak events such as limited-time
promotions, flash sales, or large-scale marketing
campaigns—applications must handle sudden surges in
concurrent users, network requests, Ul updates, analytics
events, and payment flows. These conditions expose a
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fundamental limitation in current mobile performance

strategies: most ANR prevention techniques are reactive and
localized, rather than proactive and system-aware.

ANRs are not merely application bugs; they are
emergent failures caused by compounded delays across
multiple subsys-tems. An application may adhere to best
practices offloading work from the main thread, using
coroutines or reactive streams, and optimizing rendering yet
still trigger ANRs due to device-wide contention involving
CPU scheduling, garbage collection, binder IPC, and 1/O
starvation.

In production commerce applications, ANRs have direct
financial consequences. They disrupt checkout flows,
degrade trust, and frequently coincide with the most revenue-
critical moments. Despite this, existing mitigation strategies
largely focus on postmortem analysis or static optimizations
rather than real-time prevention.

This paper argues that preventing system-level ANRs
re-quires a paradigm shift: from thread-level correctness
to device-wide resource governance. We propose
Proactive Device-Wide Resource Throttling (PDWRT), a
runtime frame-work that continuously evaluates global
system pressure and proactively modulates workload
execution before ANR condi-tions materialize.

2. Background: Understanding System-Level
ANRS
2.1. Anatomy of an ANR
An ANR is triggered when the Android system
detects that an application’s main thread has been
unresponsive for a defined period (typically 5 seconds for
input events). However, the root cause is rarely a single
blocking call. Instead, ANRs often emerge from
compound delays, including:

e  CPU scheduler starvation
Excessive garbage collection pauses
Binder IPC congestion
Disk 1/O saturation
Thread pool exhaustion

These factors interact in non-linear ways, making
ANRs difficult to predict using static analysis alone.
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2.2. Limitations of Traditional Mitigations
Conventional ANR mitigation techniques include:
e Moving work off the main thread
e Reducing synchronous 1/0
e  Optimizing layout and rendering
e  Monitoring strict mode violations

While necessary, these techniques assume that
background execution is “safe” by default. In peak-load
scenarios, this assumption fails: background tasks can
indirectly starve fore-ground execution by saturating
shared system resources.

2.3. Commerce-Specific Stress Patterns
Commerce applications are uniquely vulnerable to system-
level ANRs due to:

e  Burst-heavy network traffic

e Concurrent analytics and

pipelines

e Payment SDK integrations

e Real-time inventory and pricing updates
These workloads frequently align temporally,
syn-chronized resource pressure spikes.

experimentation

creating

3. Motivation for Proactive Device-Wide

Throttling
3.1. Reactive Systems Fail Too Late

Android’s ANR detection is fundamentally reactive it
sig-nals failure after responsiveness has already degraded.
By the time an ANR is logged, user trust and revenue impact
have already occurred.

3.2. Need for Predictive Intervention

Modern commerce applications already collect rich
teleme-try related to performance and behavior. PDWRT
leverages these signals to identify pre-ANR conditions,
enabling inter-vention before user-visible degradation
occurs.

3.3. Design Goals
The PDWRT framework is designed around four core goals:
e  Proactivity: Intervene before ANRs occur
e Clobal Awareness: Observe device-wide resource
usage
e Foreground Protection: Preserve Ul and input
respon-siveness
o  Graceful Degradation: Prefer throttling over failure

4. Scope and Contributions

This work focuses on the prevention of system-level Ap-
plication Not Responding (ANR) events in Android-based
commerce applications operating under extreme peak-load
conditions. Rather than addressing isolated performance de-
fects or individual blocking calls, the scope of this paper
encompasses emergent ANR behavior arising from com-
pounded resource contention across CPU, memory, binder
IPC, and I/O subsystems.

4.1. Scope of the Study
The scope of this research is intentionally defined to ensure
both technical depth and practical relevance:

4.1.1. Platform Scope

The proposed framework targets Android applications
running on consumer devices, with particular emphasis on
modern Android runtime environments (Android 12 and
above). While the concepts may generalize to other
mobile platforms, this study is grounded in Android’s
execution model, lifecycle constraints, and system watchdog
mechanisms.

4.1.2. Application Domain Scope
The primary application domain is large-scale com-merce
and transactional mobile applications, char-acterized by:

e High concurrency during peak events

e  Burst-heavy network and IPC workloads

e Integration with third-party SDKs (payments, ana-

Iytics, experimentation)
e Revenue-critical Ul responsiveness requirements

Although the framework may apply to other domains, the
evaluation and design choices are optimized for
commerce edifice stress patterns.

4.1.3. Failure Mode Scope
This paper focuses specifically on system-level ANRs,
rather than:

e Application crashes

e Logic-level deadlocks

e  Purely Ul rendering inefficiencies

The framework addresses ANRs caused by resource
saturation and scheduling delays, not correctness bugs or
blocking API misuse.

4.1.4. Intervention Layer Scope
The proposed solution operates entirely at the applica-tion
layer, without requiring:

e Root access

e  OS-level scheduler modifications

e  Kernel instrumentation

This constraint ensures deployability within standard
production Android environments.

4.2. Problem Boundary and Non-Goals
To maintain clarity and avoid overgeneralization, the fol-
lowing aspects are explicitly out of scope:
e Replacement or modification of Android’s ANR
watch-dog mechanism
e Static code analysis or compile-time performance
en-forcement

e Fine-grained kernel scheduling control (e.g.,
cgroups, CPU affinity)
e lLong-term  user  behavior prediction or

personalization Instead, the framework is designed
to cooperate with the Android system, adapting
workload behavior dynamically based on observed
runtime pressure.

109



4.3.
This

Varun Reddy Guda / IJETCSIT, 7(1), 108-118, 2026

Research Contributions
paper makes the following primary research

contributions:

4.4.

e Reframing ANR Prevention as a System-Level
Problem: The paper formalizes system-level
ANRs as emer-gent failures, demonstrating that
thread-level correct-ness alone is insufficient
under peak load. This reframing shifts ANR
prevention from reactive debugging to proactive
system governance.

e Definition of Pre-ANR System Pressure Signals:
The study identifies and categorizes a set of runtime
signals—including main-thread latency growth,
binder queue depth, garbage collection frequency,
and scheduler contention—that reliably precede
ANR events under load.

e Device-Wide Throttling Model: A novel device-
wide resource throttling model is introduced,
enabling coordinated regulation of fore-ground,
transactional, and background workloads based on
global system pressure rather than local task
priority.

e Adaptive Throttling Policy Framework: The paper
defines adaptive throttling policies that balance
responsiveness, fairness, and throughput. These
policies dynamically adjust execution rates instead
of statically disabling features, enabling graceful
degradation rather than failure.

Engineering Contributions

In addition to theoretical insights, this work provides
practical engineering contributions suitable for real-world

de-p

45.
Fina

loyment:

1) Production-Ready Android Architecture: The
framework is designed to integrate with modern
Android stacks using Kotlin coroutines, lifecycle-
aware scopes, and reactive telemetry pipelines,
ensuring com-patibility with contemporary app
architectures.

2) Foreground Responsiveness Guarantees: The
system explicitly prioritizes Ul responsiveness and
input handling, ensuring that throttling decisions
never compromise user-perceived interactivity.

3) Fail-Safe and Fallback Mechanisms: Conservative
fallback strategies ensure that throttling logic itself
cannot introduce instability, enabling safe operation
even under uncertain telemetry conditions.

4) Observability and Debuggability: The framework
emphasizes explainable throttling de-cisions,
enabling developers to trace system pressure signals
and intervention outcomesan essential require-mint
for production debugging and experimentation.

Empirical Contributions

Ily, this paper contributes empirical evidence through:

e Controlled peak-load experiments simulating
commerce traffic surges

e Comparative evaluation against baseline Android
execu-tion models

e Quantitative analysis of ANR reduction, Ul latency

sta-bilization, and system throughput preservation

These results demonstrate that proactive, device-wide
throt-tling can materially reduce ANR incidence without
degrading business-critical user flows.

4.6. Positioning Within Existing Literature
Taken together, the contributions of this work position
PDWRT as:
e Complementary to existing asynchronous and
coroutine-based models
e Orthogonal to static performance optimizations
e Foundational for future research into self-regulating
mo-bile systems

By bridging the gap between system telemetry and
runtime execution control, this paper advances the state of
the art in mobile resilience engineering.

5. Related Work

This section surveys prior research and industry
practices related to ANR prevention, mobile resource
management, and system-level throttling. While
substantial work exists in each individual area, this
review highlights a persistent gap: the absence of
proactive, device-wide throttling mechanisms tailored for
high-concurrency commerce workloads.

5.1. Android ANR Detection and Analysis

Android’s ANR  mechanism is documented
extensively in platform guidelines and developer tooling.
The system triggers an ANR when the main thread
fails to respond to input events or broadcast receivers
within a fixed timeout window. Prior studies have
focused on postmortem ANR analysis, log correlation,
and static code inspection to identify blocking calls.

Tools such as StrictMode, Systrace, and Perfetto
enable developers to diagnose main-thread violations and
rendering bottlenecks. However, these tools are
diagnostic rather than preventative. They provide
visibility into failures after they occur but offer no
runtime mitigation when system pressure escalates
dynamically.

Academic work on ANR root causes has shown that
many incidents are indirectly caused by background
execution pat-terns, garbage collection pauses, or binder
IPC congestion rather than explicit main-thread blocking.
These findings re-inforce the need for a holistic, system-
aware approach.

5.2. Thread-Level and Coroutine-Based Mitigations
Modern Android applications rely heavily on
asynchronous execution models such as Kotlin
coroutines, reactive streams, and executor pools. These
abstractions significantly reduce the likelihood of direct
main-thread blocking and improve developer ergonomics.
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However, prior research has demonstrated that
thread-level correctness does not imply system-level
safety. Under peak load, aggressive parallelism can
overwhelm shared resources even when individual tasks
are correctly dispatched off the main thread. Coroutine
dispatchers, for example, may saturate CPU cores or
trigger excessive context switching, indirectly starving Ul
execution.

Existing coroutine scheduling strategies prioritize
fairness among tasks but do not account for global
system pressure or workload criticality. As a result,
background analytics or experimentation workloads may
compete equally with Ul-critical tasks during high-load
events.

5.3. OS-Level Resource Management and Scheduling
Operating system research has long explored CPU
schedul-ing, memory reclamation, and 1/O prioritization.
Linux-based systems employ mechanisms such as
Completely Fair Sched-uler (CFS), cgroups, and 1/O
schedulers to balance resource usage across processes.

Android inherits many of these mechanisms but
applies them at a coarse granularity. Application
developers have limited direct control over cgroups or
kernel-level ~ scheduling  policies.  Consequently,
application-level strategies must oper-ate above the OS
layer, inferring system pressure indirectly and adapting
workload behavior cooperatively.

Prior work on mobile energy management and thermal
throttling demonstrates the effectiveness of proactive inter-
vention based on system telemetry. However, these systems
primarily target battery life and thermal constraints rather
than responsiveness and ANR prevention.

5.4. Load Shedding and Graceful Degradation

Load shedding techniques are widely used in distributed
systems to maintain availability under overload conditions.
These approaches selectively drop or delay non-critical work
to preserve core functionality.

In mobile applications, load shedding has been applied
sporadically typically by disabling optional features or re-
ducing update frequency. However, these implementations
are often static and lack fine-grained control. They do not
adapt dynamically to real-time system conditions, nor do
they coordinate across workload classes. The PDWRT
framework extends load shedding concepts into a continuous,
telemetry-driven throttling model specifically designed to
prevent ANRs rather than recover from failures.

6. Problem Definition

6.1. System-Level ANRs as Emergent Failures
System-level ANRs are not the result of a single

blocking operation but rather the emergent outcome of

compounded scheduling delays across multiple subsystems.

These include CPU contention between runnable threads,

garbage collection pauses triggered by memory pressure,

binder IPC backlog caused by excessive inter-process
communication, and disk 1/O starvation.

Crucially, these subsystems interact multiplicatively
rather than additively. For example, increased background
CPU usage may delay garbage collection, which in turn
increases memory pressure, leading to longer GC pauses that
stall the main thread. Such cascades are largely invisible to
thread-level correctness checks. This emergent nature
explains why many ANRs occur in applications that
otherwise follow Android best practices.

6.2. Pre-ANR Execution States
Through empirical observation of peak-load commerce sce-
narios, system-level ANRs are typically preceded by a pre-
ANR execution state, characterized by:
e Increasing main-thread message queue latency
e Sustained CPU saturation above runnable
equilibrium
o Rapid growth in binder transaction backlog
o Elevated GC frequency with decreasing allocation
effi-ciency
e Increased scheduler context switching

the basis for
PDWRT from

These indicators form
intervention,  distinguishing
mitigation strategies.

predictive
reactive

6.3. Formal Problem Statement
Let an Android application process PPP execute a set of
concurrent workloads

W={wf,wt,wb}W =\w_f, w_t, w_b\W={wf,wt,wb},
rep-resenting foreground, transactional, and background
tasks.

Given finite device resources
R={CPU,Memory,lI/O,IPC}
R=\CPU, Memory, I/0, IPC\
R={CPU,Memory,|/O,IPC},
and dynamic system pressure S(t)S(t)S(t), the problem is to
dynam-ically regulate execution rates E(W,t)E(W,t)E(W,t)
such that:
1) Ul responsiveness constraints are preserved
2) System pressure remains below ANR-triggering
thresh-olds
3) Business-critical  operations  complete  with
acceptable latency without prior knowledge of
future workload arrivals.

6.4. Limitations of Existing Solutions
Existing Android performance strategies fail this
formula-tion because they:
e  Optimize only individual task correctness
e Treat background execution as independent from
fore-ground safety
e Lack continuous feedback from global system
pressure
o React after watchdog thresholds are crossed

These limitations motivate the need for a proactive,
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device-wide control model.

7. Design Requirements

The design of a proactive system for preventing
system-level ANRs must be driven by both theoretical
constraints of mobile operating systems and practical
realities of production Android commerce applications.
This section formalizes the requirements that any viable
solution must satisfy in order to be effective, deployable,
and safe under peak-load conditions.

7.1. Global Observability Requirement

1) Requirement R1: A system designed to prevent
system-level ANRs must observe device-wide
resource pressure rather than isolated thread- or task-
level metrics.

2) Rationale: System-level ANRs emerge from global
con-tention across shared resources, including CPU
scheduling, memory management, IPC, and I/O.
Monitoring only local in-dicators such as main-thread
blocking or coroutine execution time fails to capture
the cascading interactions that precede ANRs.

3) Implications:

e Telemetry must aggregate signals across multiple
subsys-tems

e  Observability must be continuous rather than event-
driven

e Metrics must reflect pressure trends,
instanta-neous spikes

not just

This requirement directly motivates the global
pressure vector.

7.2. Predictive Intervention Requirement

1) Requirement R2: The system must intervene before
Android watchdog thresholds are violated.

2) Rationale: Android’s ANR detection is fundamentally
reactive. Once the watchdog triggers, responsiveness has
al-ready degraded beyond acceptable limits. A
preventative sys-tem must therefore detect pre-ANR
states and act proactively.

3) Implications::

e Telemetry signals must be predictive rather than
diagnos-tic

e Intervention
indicators

e Throttling actions must be triggered during pressure
es-calation, not failure

logic must operate on leading

This requirement justifies the focus on pre-ANR
execution states and continuous feedback control.

7.3. Workload Differentiation Requirement

1) Requirement R3: The system must differentiate work-
loads based on user impact and business criticality.

2) Rationale: Not all workloads contribute equally to user
experience or revenue. Treating Ul rendering, checkout
pro-cessing, and background analytics identically under
load leads to suboptimal outcomes. ANR prevention
requires selective protection, not uniform throttling.

3) Implications:
e  Workloads must be classified into distinct execution
classes
e Throttling policies must be asymmetric across
classes
e Foreground responsiveness must be preserved even
under severe pressure

This requirement underpins the Foreground /
Transactional / Background workload model.

7.4. Android Compatibility Requirement
1) Requirement R4: The solution must operate entirely
within application-layer constraints.
2) Rationale: Production Android applications cannot as-
sume control over kernel-level scheduling, cgroups, or
OS watchdog behavior. Any solution requiring root
access, OS modification, or privileged APIs is
impractical for real-world deployment.
3) Implications:
e All telemetry must be accessible via standard
Android APIs
e Intervention must be cooperative
authoritative
e The system must coexist with Android’s lifecycle
and scheduling policies

rather than

This requirement ensures deployability and
influences the control-plane design.

strongly

7.5. Performance Safety Requirement
1) Requirement R5: The ANR prevention mechanism itself
must not introduce measurable performance regression.
2) Rationale: A system that increases overhead,
introduces blocking behavior, or causes oscillatory
execution patterns risks becoming a new source of
instability. Preventative logic must be lighter than the
failures it prevents.
3) Implications:
e Telemetry collection must be low overhead
e Decision logic must be bounded in time and
complexity
e Throttling actions
reversible

must be incremental and

This requirement directly informs the adaptive (non-binary)
throttling policies.

7.6. Fail-Safe and Stability Requirement

1) Requirement R6: The system must fail safely under
uncertainty.

2) Rationale: Telemetry may be noisy, incomplete, or
tem-porarily unavailable. In such cases, aggressive
throttling or incorrect decisions could degrade user
experience more than inaction.

3) Implications:

e  Conservative defaults must be enforced
e Throttling must degrade gracefully rather than
abruptly
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e The system must be able to disengage without side
effects

This requirement motivates the hysteresis, fallback,
and reversibility mechanisms embedded in the PDWRT
control plane.

7.7. Explainability and Debuggability Requirement

1) Requirement R7: Throttling decisions must be
observ-able and explainable to developers.

2) Rationale: In production commerce systems, unex-
plained behavior is unacceptable. Developers must be
able to reason about why throttling occurred, which
signals triggered it, and what impact it had.

3) Implications:

e Decisions must be traceable to telemetry inputs

e Throttling actions must be logged in a structured
manner

e  The system must support offline analysis and tuning

This requirement ensures that PDWRT can be safely
operated, tuned, and evolved over time.

7.8. Scalability and Evolution Requirement

1) Requirement R7: The framework must scale with
appli-cation complexity and evolve with platform
changes.

2) Rationale: Commerce applications continuously inte-
grate new SDKs, features, and experimentation
pipelines. An ANR prevention system must remain
effective as workloads evolve.

3) Implications:

o Workload classification must be extensible

e  Telemetry signals must be modular

e Policies must be tunable without architectural
redesign

This requirement positions PDWRT as a long-term systems
framework, not a one-off optimization.

8. System-Level Resource Contention Model
8.1. Android as a Shared Resource System

Android applications execute within a cooperatively
sched-uled, multi-tenant environment where application
processes, system services, and background tasks compete
for finite hardware resources. Unlike server environments
with explicit resource quotas and isolation, Android
applications are subject to implicit and dynamic scheduling
decisions made by the operating system.

The most critical shared resource domains influencing ANR
behavior are:
e CPU scheduling, governed by the
Completely Fair Scheduler (CFS)
e Memory management, including heap allocation,
garbage collection (GC), and paging
e Binder IPC, which mediates communication
between application and system services
e Disk and network 1/O, subject to kernel queues and

Linux

priority arbitration

These domains are tightly coupled. Contention in one
domain frequently propagates to others, producing non-linear
degra-dation in responsiveness.

8.2. Contention Coupling and Amplification Effects

A defining characteristic of system-level ANRs is con-
tention amplification, where moderate increases in workload
volume produce disproportionate increases in execution
delay.

For example:

1) Background analytics increases CPU load

2) Elevated CPU load delays GC scheduling

3) Delayed GC increases heap pressure

4) Heap pressure causes longer stop-the-world GC pauses
5) GC pauses delay main-thread message handling

6) Input event deadlines are missed — ANR

This cascade demonstrates that ANRs are rarely caused
by a single blocking operation, but by the compounded effect
of multiple subsystems operating near saturation.

8.3. System Pressure Representation

To reason about overload conditions that lead to system-
level ANRs, PDWRT represents runtime stress as a
composite view of device-wide resource pressure rather
than as isolated performance metrics.

At runtime, the framework continuously observes four pri-
mary resource domains that are known to influence ANR
behavior in Android applications:
e CPU pressure, reflecting sustained scheduling
contention and runnable thread backlog
e Memory pressure, capturing garbage collection fre-
quency, allocation churn, and heap stress
e |IPC pressure, indicating binder
congestion and inter-process latency
e |/O pressure, representing contention in disk and
net-work operations
e Each domain is translated into a normalized
pressure signal that reflects how close the
system is to unsafe operating conditions for
that resource. These signals are not treated
independently; instead, they are evaluated
together to form a holistic view of overall
system stress.

transaction

By aggregating pressure across domains, PDWRT
avoids reacting to localized or misleading indicators and
instead focuses on global system conditions that reliably
precede ANR events.

8.4. Pre-ANR State ldentification

PDWRT introduces the notion of a pre-ANR state,
defined as a runtime condition in which the system is
trending toward unresponsiveness but has not yet violated
Android watchdog thresholds.
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A pre-ANR state is identified when:
e One or more resource domains exhibit elevated
pressure, and
e That pressure remains consistently high or
continues to increase over a short time window

This temporal requirement is essential. Brief spikes
in CPU usage or memory activity are common in well-
functioning applications and do not warrant intervention.
PDWRT there-fore distinguishes between transient bursts
and sustained escalation, intervening only in the latter
case.

By acting during pre-ANR states rather than after
fail-ures occur, PDWRT is able to regulate workload
execution proactively, reducing the likelihood of user-
visible freezes and system-triggered ANRSs.

9. Telemetry Signal Taxonomy and Selection
9.1. Telemetry Design Constraints
Telemetry used for proactive throttling must satisfy four
constraints:
1) Predictive — correlated with imminent ANR conditions
2) Low overhead — safe under peak load
3) Stable — resistant to short-lived noise
4) Accessible — obtainable from application-layer APIs
Signals that violate any of these constraints are
excluded, even if diagnostically useful.

9.2. Responsiveness Signals
Responsiveness signals directly capture degradation in user-
facing execution:

e Main-thread message queue latency

e Input dispatch delay

e Ul frame time variance

These signals act as hard safety constraints: PDWRT prior-
itizes restoring responsiveness over maximizing throughput.

9.3. Scheduler and CPU Pressure Signals

CPU pressure is inferred from:
e Sustained CPU utilization near core saturation
e Runnable thread backlog
e  Context switch frequency

Rather than instantaneous utilization, PDWRT emphasizes
trend persistence, recognizing that short CPU bursts are
common and often harmless.

9.4. Memory and Garbage Collection Signals
Memory pressure is one of the most frequent hidden con-
tributors to ANRs. PDWRT monitors:

e GCinvocation rate

e Allocation-to-reclamation efficiency

e Heap growth velocity

High-frequency GC combined with low reclamation
efficiency is treated as a strong pre-ANR indicator.

9.5. IPC and Binder Pressure Signals
Binder IPC pressure is inferred from:
e  Transaction backlog depth
e |PC latency growth

This is especially important for commerce applications
inte-grating payment SDKSs, authentication services, and
system APIs.

10. PDWRT Control Plane Architecture
10.1. Control Plane Overview

The Proactive Device-Wide Resource Throttling
(PDWRT) control plane is designed as a continuous
feedback system that monitors device-wide resource
conditions and regulates application workload execution in
real time. Its primary ob-jective is to prevent system-level
ANRs by intervening before Android watchdog thresholds
are reached.

Rather than relying on static limits or reactive failure
detection, the control plane operates continuously, adapting
execution behavior as system conditions evolve. It functions
entirely within application-layer constraints and cooperates
with Android’s scheduling mechanisms.

At a high level, the control plane consists of three coordi-
nated responsibilities:

e  Observing system pressure

o Evaluating risk and selecting interventions

e Modulating workload execution rates

This  separation ensures clarity,
debuggability in production environments.

stability, and

10.2. Pressure Aggregation and Interpretation

The control plane aggregates telemetry signals from
mul-tiple subsystems including CPU scheduling, memory
man-agement, IPC, and 1/O into a unified view of system
stress. Each signal is interpreted relative to empirically
defined safe operating ranges rather than absolute thresholds.

Instead of reacting to individual metrics in isolation, the
control plane evaluates patterns of pressure accumulation,
identifying scenarios in which multiple subsystems exhibit
sustained stress simultaneously. This holistic interpretation is
critical for detecting conditions that reliably precede ANR
events. Pressure assessment is performed continuously but
conser-vatively, prioritizing stability over responsiveness to
short-lived fluctuations.

10.3. Risk Evaluation and Decision Logic
Based on observed pressure trends, the control plane clas-
sifies the system into one of several operational states,
such as:

e Normal operation

e Elevated pressure

e  Critical (pre-ANR) pressure

Transitions between states are governed by temporal
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con-sistency, meaning that pressure must persist across
multiple observation windows before escalation occurs.
This prevents oscillation and unnecessary throttling. Once
a risk state is identified, the control plane determines the
minimum intervention required to restore stability. Deci-
sions are monotonic: as pressure increases, throttling
becomes progressively stronger, and as pressure subsides,
restrictions are gradually relaxed.

10.4. Workload-Aware Execution Modulation
All executable work within the application is categorized
into workload classes based on user impact and business
criticality:
e  Foreground workloads, including Ul rendering and
in-put handling
e Transactional workloads, such as checkout,
authentica-tion, and pricing
e Background workloads, including analytics,
logging, and prefetching

The control plane never throttles foreground
workloads di-rectly. Instead, it protects user-facing
responsiveness by reg-ulating competing transactional
and background execution. Transactional work may be
rate-limited or deferred under sustained pressure, while
background work may be delayed or temporarily
suspended. This workload-aware modulation ensures that
essential user interactions remain responsive even under
extreme load.

10.5. Adaptive Throttling Behavior

Throttling actions applied by the control plane are
adaptive and reversible. Rather than abruptly enabling or
disabling ex-ecution paths, PDWRT adjusts execution
rates incrementally, allowing the system to degrade
gracefully under load.

Examples of adaptive behaviors include:
e Reducing execution frequency of background tasks
e Introducing short deferral windows for transactional
work
e  Gradually restoring execution rates as pressure
subsides

This approach avoids sudden behavioral changes that
could degrade user experience or introduce instability.

10.6. Stability and Fail-Safe Guarantees
To ensure that the control plane itself does not become a
source of instability, PDWRT enforces several safety
guaran-tees:
e Throttling decisions are bounded and time-limited
e Conservative defaults are applied under uncertainty
e The control plane can disengage entirely without
side effects

If telemetry becomes unreliable or ambiguous, the
system prioritizes correctness and responsiveness by reverting
to baseline execution behavior.

10.7. Observability and Explainability

All control plane decisions are designed to be
observable and explainable. Throttling actions are logged
with contextual information describing the triggering
conditions and affected workloads. This transparency enables
developers to analyze system be-havior, tune thresholds, and
validate effectiveness during peak-load events an essential
requirement for operating complex commerce applications at
scale.

11. Adaptive Throttling Policies
11.1. Design Philosophy

Adaptive throttling in PDWRT is guided by a single
princi-ple:  preserve user-visible responsiveness while
degrading non-essential work gracefully under load. Rather
than relying on binary enable/disable switches, PDWRT
employs progressive, reversible execution control that
adjusts work-load behavior in response to sustained system
pressure.

This approach acknowledges that transient spikes are
com-mon in commerce applications and should not trigger
aggres-sive intervention. Throttling is therefore incremental,
conser-vative, and continuously reassessed.

11.2. Foreground Protection Policy

Foreground workloads including Ul rendering, input
han-dling, and navigation are never throttled directly.
Protect-ing these workloads is non-negotiable, as any
degradation in foreground execution immediately impacts
user experience and risks triggering Android watchdog
violations.

Instead of acting on foreground work itself, PDWRT
pre-serves responsiveness by regulating competing
workloads that share device resources. This indirect
protection strategy en-sures that user interactions remain
fluid even during extreme peak-load conditions.

11.3. Transactional Workload Regulation

Transactional ~workloads include business-critical
operations such as checkout, authentication, pricing, and
inventory vali-dation. These tasks must complete reliably but
are often burst-heavy and capable of saturating shared
resources if executed without coordination.

PDWRT regulates transactional workloads using a combi-
nation of:
e Admission rate control, limiting how many
transactional tasks may execute concurrently
e  Short deferral windows, delaying execution when
sys-tem pressure is rising
e  Priority softening, reducing scheduling
aggressiveness during sustained load
e  These measures preserve correctness and forward
progress while preventing transactional bursts from
overwhelming the system.
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11.4. Background Load Shedding Policy

Background workloads including analytics, logging,
ex-perimentation, and speculative prefetching are the
primary candidates for throttling. While valuable for long-
term insights and optimization, these tasks are non-
essential during periods of high system stress.

Under elevated pressure, PDWRT may:
e Reduce execution frequency
e Batch background work for later execution
e  Temporarily suspend background tasks during
critical pressure windows

All background load shedding is bounded and
reversible, ensuring that deferred work resumes once
conditions stabilize.

11.5. Progressive Escalation and Relaxation

Throttling intensity in PDWRT escalates gradually as
sys-tem pressure increases and relaxes slowly as pressure
subsides. This progression avoids sudden behavioral
shifts that could confuse users or destabilize execution.

Escalation and relaxation are governed by:
e Sustained pressure duration
o Rate of pressure change
e  Current workload mix

This ensures that throttling behavior remains predictable and
stable over time.

11.6. Avoiding Oscillation and Overcorrection

To prevent oscillatory behavior where throttling
rapidly toggles on and off PDWRT enforces temporal
consistency in its decisions. Pressure must remain
elevated for a minimum duration before stronger
throttling is applied, and pressure must remain low for a
similar duration before restrictions are lifted. This
hysteresis ensures that PDWRT responds to genuine
overload conditions rather than short-lived fluctuations.

11.7. Fail-Safe and Recovery Behavior

In situations where telemetry becomes ambiguous or
unre-liable, PDWRT defaults to conservative behavior.
Throttling actions are limited in scope and duration, and
the system can disengage entirely without affecting
application correctness. Recovery from throttling is
automatic and requires no developer intervention. Once
system pressure returns to safe levels, execution behavior
gradually returns to baseline.

11.8. Policy Observability and Debuggability

All throttling decisions are recorded with sufficient
context to enable offline analysis and tuning. Developers
can inspect which workloads were throttled, why
decisions were made, and how system pressure evolved
over time. This transparency is essential for operating
PDWRT in pro-duction commerce environments, where
understanding system behavior is as important as
preventing failures.

12. Android Runtime Integration
12.1. Application-Layer Deployment Model

The Proactive Device-Wide Resource Throttling
(PDWRT) framework is deployed entirely at the application
layer, ensuring compatibility with standard Android
production environments. No modifications to the operating
system, kernel scheduler, or privileged APIs are required.
This design choice enables PDWRT to be integrated into
existing commerce appli-cations without violating platform
constraints or deployment policies.

The control plane is initialized during application startup
but remains lightweight and passive under normal operating
conditions. Throttling logic is activated only when sustained
system pressure is detected, ensuring that PDWRT
introduces no measurable overhead during steady-state
execution.

12.2. Coroutine-Based Execution Control

Modern Android applications rely heavily on Kotlin
corou-tines to manage asynchronous execution. PDWRT
integrates directly with this model by introducing execution
gates that regulate when tasks are admitted for execution,
rather than interrupting tasks after they have begun.

Each workload class is assigned a dedicated coroutine scope:
e Foreground scope, used for Ul rendering and
input handling
e Transactional scope, used for
authentication, and pricing
e Background scope, used for analytics, logging,
and prefetching

checkout,

Throttling is applied at the scope level, allowing
PDWRT to regulate concurrency and execution frequency in
a controlled and predictable manner.

12.3. Lifecycle Awareness and Safety

PDWRT is fully lifecycle-aware. All throttling decisions
and telemetry collection are bound to lifecycle-safe scopes,
ensuring that execution state is correctly reset when the
application is backgrounded, resumed, or terminated. This
prevents stale throttling decisions from persisting across
lifecycle transitions a common source of instability in long-
running Android applications.

13. Telemetry Collection and Overhead

Management
13.1. Low-Overhead Signal Acquisition

Telemetry signals used by PDWRT are collected using
non-blocking, low-frequency probes designed to minimize
runtime overhead. Signals are selected based on their predic-
tive value for ANR conditions and their accessibility at the
application layer.

Examples include:
e Main-thread message latency sampling
e CPU utilization trends
e  Garbage collection frequency
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e Binder transaction backlog estimates

Sampling frequency is dynamically adjusted to reduce
over-head during high-pressure periods

13.2. Noise Filtering and Stability Controls
To avoid reacting to transient spikes, PDWRT applies
several stability mechanisms:

¢ Sliding-window aggregation

e Trend detection over time

e  Minimum-duration thresholds before escalation

These techniques ensure that throttling decisions
reflect sustained pressure rather than short-lived fluctuations.

14. Throttling Execution Strategies
14.1. Foreground Protection Strategy

Foreground workloads are explicitly protected and are
never throttled directly. This includes Ul rendering, input
dispatch, and navigation logic. PDWRT preserves
foreground respon-siveness by regulating competing
workloads instead. This strategy aligns with Android’s
responsiveness contract and ensures that user-perceived
performance remains stable even under extreme load.

14.2. Transactional Throttling Strategy
Transactional workloads are regulated cautiously to balance
correctness and system stability. PDWRT applies:

e  Admission rate limiting

e  Short execution deferrals

e  Priority softening during sustained pressure

These measures prevent burst-induced overload while
ensuring that all transactions eventually complete.

14.3. Background Load Shedding Strategy
Background workloads are the primary targets of throttling.
Under elevated or critical pressure, PDWRT may:

e Reduce execution frequency

e  Batch work for later execution

e  Temporarily suspend execution

All background throttling is bounded and reversible,
ensuring no permanent loss of data or functionality.

15. Experimental Methodology
15.1. Experimental Environment

Evaluation was conducted using a production-
representative  Android commerce  application
supporting browsing, personalization, checkout, analytics,
and experimentation pipelines.

The device matrix included:
e Low-tier devices (2-4 GB RAM)
e  Mid-tier devices (6-8 GB RAM)
e High-tier devices (12+ GB RAM)

Tests were conducted across Android 12-14.

15.2. Peak-Load Simulation
Peak-load scenarios were simulated using synchronized
workload bursts, including:

e Concurrent user journeys

o Elevated analytics and experimentation traffic

e High-frequency Ul updates

e Simulated payment and inventory checks

These scenarios replicate real-world flash sale and
promotional events.

15.3. Baseline Comparisons

PDWRT was evaluated against:
e Standard coroutine-based execution
e Thread-level best-practice optimizations
e Reactive ANR monitoring only

All configurations were tested under identical conditions.

15.4. Metrics Collected
Metrics included:
o System-level ANR incidence
e Main-thread latency distribution
e  Garbage collection pause frequency
e Binder backlog growth
e Transaction completion latency
e Ul responsiveness stability

16. Experimental Results

16.1. ANR Reduction

PDWRT reduced system-level ANRs by:
e Upto 62% on low-tier devices
e Up to 54% on mid-tier devices
e Upto 41% on high-tier devices

Reductions were most pronounced during synchronized
work-load bursts.

16.2. Ul Responsiveness

Main-thread latency variance decreased significantly
under PDWRT, with fewer prolonged frame stalls and
improved in-put event handling consistency. No regressions
were observed under normal load.

16.3. Transactional Throughput

Despite throttling, transaction completion rates remained
stable. Minor execution deferrals were observed under
critical pressure but did not result in abandoned or failed
transactions.

16.4. Background Work Behavior

Background tasks were delayed or batched during peak
pressure and resumed automatically once conditions
stabilized. No data loss was observed.

17. Discussion

PDWRT demonstrates that proactive, device-wide gov-
ernance is more effective than reactive ANR mitigation.
By acting during pre-ANR states, the framework prevents
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cascading failures that typically lead to watchdog violations.
The design prioritizes responsiveness over raw throughput
during peak load—a tradeoff that aligns with user
experience and business goals in commerce applications.

18. Threats to Validity
Potential threats include:

e Limited generalization  beyond  commerce
workloads

e Approximation of kernel state via application-layer
telemetry

o Device- and vendor-specific scheduling behaviors

These risks are mitigated through conservative throttling and
fallback behavior.

19. Future Work
Future extensions include:
e Predictive throttling using on-device learning
e  Cross-process coordination across apps
e Integration with OS-level scheduling hints
e  Automated policy tuning

20. Conclusion

This paper presented Proactive Device-Wide
Resource Throttling (PDWRT), a runtime framework for
preventing system-level ANRs in peak-load Android
commerce appli-cations. By continuously observing

device-wide pressure and adaptively regulating workload
execution, PDWRT transforms ANR prevention from
reactive debugging into proactive sys-tem governance.
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