Nty

International Journal of Emerging Trends in Computer Science and Information Technology
ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.1IJETCSIT-V711P118
Eureka Vision Publication | Volume 7, Issue 1, 124-131, 2026

Original Article

Accelerating Defect and Vulnerability Discovery with ML +
HPC: High-Throughput Simulation Analytics for Software
Quality Engineering

Aditi Mishra!, Harsh Vardhan?, Rohan Shetty?, Pallavi Deshmukh*

Information Technology Manipal University Jaipur Jaipur, Rajasthan, India.
2Artificial Intelligence Manipal University Jaipur Jaipur, Rajasthan, India.
*Information Technology Manipal University Jaipur Jaipur, Rajasthan, India.
4Artificial Intelligence Manipal University Jaipur Jaipur, Rajasthan, India.

Received On: 22/12/2025 Revised On: 21/01/2026
Abstract - Modern software systems evolve under tight
delivery cycles, heterogeneous cloud deployments, and
increasingly stringent security and compliance requirements.
While machine learning (ML) has demonstrated promise for
predicting defect-prone and vulnerability-prone components,
many deployments remain bounded by data sparsity, limited
execution context, and constrained throughput of dynamic
testing. Meanwhile, high-performance computing (HPC)
infrastructures provide abundant parallelism, yet they are
often underutilized for software quality engineering
workflows that require large-scale simulation, test
amplification, and telemetry-driven analytics. This
manuscript proposes an integrated ML + HPC methodology
for accelerating defect and vulnerability discovery through
high-throughput simulation analytics. The approach treats
quality discovery as a throughput-optimized, data-centric
pipeline: (i) generate execution diversity via scalable
simulation and test amplification, (ii) capture and normalize
multi-level telemetry from builds, tests, runtime traces, and
security checks, (iii) learn ranking and classification models
that prioritize code regions and change sets for deeper
analysis, and (iv) close the loop with root-cause triage and
remediation signals. We formalize the research gap as the
missing coupling between predictive models and scalable
execution diversity, and we outline an evaluation framework
spanning prediction quality, defect and vulnerability yield,
and end-to-end cost-per-finding. The resulting methodology
enables software teams to scale discovery beyond
conventional CI constraints, improving early warning
capability and accelerating remediation in complex
enterprise-grade systems.

Keywords - Defect Prediction, Vulnerability Detection,
High-Performance Computing, Simulation Analytics, Test
Amplification, Cloud-Native Software Engineering,
Explainable Al, Federated Learning.

1. Introduction

Defects and vulnerabilities remain persistent sources of
operational risk as software systems evolve toward
distributed micro services, regulated data flows, and

Accepted On: 30/01/2026 Published On: 08/02/2026
continuous delivery. In many organizations, discovery is
constrained by CI runtime budgets and limited execution
diversity, yielding shallow evidence for triage and delayed
detection. A central premise of this paper is that discovery
should be optimized for throughput: maximize the number of
high-value, reproducible findings per unit time while
respecting compute and human triage limits.

Large-scale cluster computing established that
independent work items can be processed in parallel at scale,
transforming throughput economics for data-intensive tasks
[1]. Analogously, software-quality discovery contains a large
fraction of embarrassingly parallel work configuration
sweeps, test variants, fuzzing campaigns, and instrumented
simulationsyet these are rarely scheduled as first-class
workloads.

Empirical software engineering has established that
defects can be predicted from measurable signals, but
performance varies by context and evaluation design. A
systematic review emphasizes that study design, feature
choice, and wvalidation methodology materially affect
reported fault prediction performance [2]. In enterprise Java
systems, automated testing frameworks and test strategy
selection influence reliability outcomes, reinforcing that
discovery depends on both predictive analytics and execution
practice [3]. Benchmark datasets with traceable links
between defects and source artifacts enable comparison
across methods, but they generally do not encode the cost
structure of execution diversity or the operational decision of
which analyses to run next [4].

Security complicates the problem because vulnerabilities
are rarer and may not manifest as functional failures.
Complexity-based indicators can correlate with vulnerability
presence but are insufficient alone in many settings [6].
Consequently, vulnerability discovery typically blends static
analysis, dynamic testing, fuzzing, and manual review, each
limited by throughput and triage capacity. Comparative
studies of defect prediction models suggest that model
selection, feature engineering, and validation choices
influence practical outcomes [7], [16].

https://doi.org/10.63282/3050-9246.IJETCSIT-V7I1P118

Aditi Mishra et al. / IJETCSIT, 7(1), 124-131, 2026

From a systems perspective, iterative analytics
workloads benefit from retaining working sets in memory
and reusing intermediate artifacts across repeated
computations [8]. Software-quality pipelines similarly

benefit from caching compiled artifacts, dependency graphs,
coverage maps, and extracted features, reducing the marginal
cost of additional executions. Privacy-preserving
collaboration is increasingly relevant: federated learning
demonstrates how multiple parties can learn shared models
without centralizing sensitive data, suggesting a pathway for
cross-team quality learning when code and telemetry cannot
be freely shared [9], [19].

Enterprise cloud-native deployments introduce
additional constraints. Secure microservices architectures for
regulated processing emphasize segmentation, observability,
and repeatable deployment across platforms such as AWS
and OpenShift [10]. Explainable, auditable decision
pathways are increasingly demanded in regulated domains,
motivating interpretable prioritization and evidence
aggregation when ML influences engineering actions [11],
[34]. Cloud-native deployment optimization and monitoring
practices affect reproducibility and stability of large-scale
pipelines, particularly when orchestrating thousands of short-
running executions [25], [29].

Modern operational pipelines create upstream signal
sources that influence software quality. Predictive
monitoring in change-data-capture (CDC) pipelines can
reduce error propagation and accelerate mitigation [13]. In
regulated healthcare automation, OCR and microservice
orchestration introduce data-quality and integration risks that
can be reflected in telemetry signals used for quality
analytics [14], [36]. Architecture-centered decision
intelligence for agile governance motivates connecting defect
prediction and automated testing to sprint planning and
release control rather than treating prediction as a standalone
report [15], [31].

The technical opportunity is to couple ML-based
prioritization with HPC-capable execution diversity and
simulation analytics. Deep learning-based vulnerability
detection demonstrates the potential of representation
learning on code, but it requires diverse training signals and
robust data pipelines [17]. Pre-trained code-language models
provide a foundation for semantic feature extraction,
complementing traditional metrics and process signals [24],
[32]. Graph-based representations can capture dependency
context relevant to propagation paths and systemic risk in
distributed systems [40].

Finally, enterprise modernization projects illustrate that
large refactors and platform migrations introduce new
quality risks. SAP S/4HANA transitions and SAP Fiori
adoption highlight integration, performance, and operational
workflow risks during transformation [22]. In-memory
database layer behavior can shape the latency and failure
modes of dependent services, motivating memory-centric
performance awareness in quality evaluation [26].

2. Motivation and Related Work

Fault prediction research shows that predictive models
can identify defect-prone artifacts, but robustness and
generalization remain central challenges. The systematic
review in [2] highlights variability in reported performance
due to dataset composition, validation choices, and feature
engineering. Benchmark datasets that link defects to source
artifacts are valuable for reproducibility and comparability,
but they typically abstract away operational constraints such
as test budget and triage capacity [4].

Security prediction is harder due to rarity, semantic
specificity, and adversarial context. Complexity metrics can
provide weak signals for vulnerability proneness [6], while
representation-learning approaches require large and diverse
labeled corpora and careful handling of noise [17].

From a compute and systems standpoint, cluster
paradigms established scalable patterns for distributing
independent tasks [1]. Iterative analytics systems improved
throughput by retaining working sets and reusing
intermediate artifacts across repeated computations [8].
These ideas motivate high-throughput execution of test and
simulation variants, plus caching of compiled artifacts,
dependency graphs, and extracted features.

Cloud-native environments introduce operational
requirements for reproducibility, monitoring, and controlled
deployments. Secure, compliant microservices emphasize
segmented architecture, strong identity controls, and
disciplined deployment practices [10]. Deployment and
monitoring optimization on OpenShift with Helm-based
packaging illustrates the operational need for repeatable,
observable pipelines at scale [25]. Governance and
observability tradeoffs across platforms influence
reproducible analytics and are a practical consideration for
high-throughput execution [29].

Governance and explainability are salient. Auditable
decision pathways are demanded in regulated decision
systems [11], and explainable Al frameworks motivate
interpretable evidence aggregation even for complex models
[34]. Decision intelligence for agile governance and ML-
driven CI/CD risk detection emphasize integration into
operational workflows and evaluation under deployment
constraints rather than offline accuracy alone [15], [35].

Privacy-preserving learning provides a model for cross-
team discovery without raw-data centralization, relevant
when code and telemetry are sensitive. Federated learning
architectures show how distributed parties can collaborate on
detection without centralizing raw data [9], [19].

3. Problem Statement and Research Gap
3.1. Problem Statement

Given an evolving codebase C with frequent changes
AC and bounded CI resources (time, compute, and human
triage), the objective is to maximize actionable discovery of
defects and vulnerabilities. Let E be a set of candidate
executions (tests, simulations, fuzzing campaigns,

125

Aditi Mishra et al. / IJETCSIT, 7(1), 124-131, 2026

configuration sweeps, and instrumented runs). Each
execution e € E has cost(e) and yields evidence obs(e) such
as failures, traces, coverage deltas, anomaly scores, and
security alerts. Let B denote triage capacity per iteration. The
objective is to schedule a subset E* C E that maximizes
expected discovery utility under compute and triage
constraints, while preserving reproducibility and
explainability.

3.2. Research Gap

Current practice frequently separates prediction (offline
scoring) from discovery (limited CI executions). Predictors
often rely on static signals and do not control which
executions are run next, leaving discovery bounded by
default test suites and limited configuration coverage.
Evaluation practices can overstate performance when they do
not match deployment realities such as temporal drift, cross-
release shift, and architectural refactors [2], [16].
Vulnerability discovery is additionally constrained by rarity
and semantic complexity, where metrics alone are
insufficient and learned detectors require diverse evidence
and careful evaluation [6], [17]. The core gap is the missing
coupling between scalable execution diversity (HPC-capable
simulation analytics) and ML-driven scheduling that
allocates compute to the highest expected-yield executions.
A second gap concerns governance: when ML influences
release decisions, evidence must be auditable and
interpretable under organizational and regulatory constraints
[11], [34].

4. Proposed Ml + Hpc Simulation Analytics
Pipeline

We propose H-DSA (High-Throughput Defect and
Security Analytics), a pipeline that unifies scalable execution
diversity generation, telemetry normalization, ML-based
prioritization, and closed-loop remediation.

4.1. Architecture Overview

H-DSA comprises: (1) ingestion and build
normalization; (2) execution diversity generation
(configuration sweeps, test amplification, targeted fuzzing);
(3) telemetry capture and schema normalization; (4) feature
store and representation learning (metrics, process signals,
semantic embeddings); (5) decision layer with ranking and
classification models; and (6) closed-loop triage and
remediation feedback.

4.2. HPC Execution Model

The execution layer schedules large numbers of
independent runs across a cluster, adopting scalable patterns
inspired by distributed task processing [1]. Intermediate
artifacts and features are cached to reduce marginal cost,
consistent with working-set acceleration principles [8].
Caching and reuse are treated as first-class design elements,
aligning with evidence that predictive analytics and Redis-
backed caching improve responsiveness in repeated
processing workloads [18].

4.3. Cloud-Native Reproducibility and Compliance

The pipeline is deployed as containerized services with
controlled environments and repeatable execution. Helm-
based packaging and monitoring practices support
operational reproducibility and observability [25]. Data
handling follows regulated microservices patterns
(segmentation, identity controls, and audit logging) [10].
Telemetry channels are protected via encryption and
anomaly monitoring to reduce leakage and tampering risk
[21].
Evidence-Driven

5. Scheduling and

Prioritization
5.1. Budgeted Scheduling

Discovery acceleration requires converting predictions
into scheduling decisions. Let U(e) be expected discovery
utility of execution e, capturing probability of novel findings
and expected severity. Under compute budget K and triage
budget B, H-DSA selects E* to maximize total utility while
respecting constraints. This operationalizes decision
intelligence by explicitly connecting ML outputs to CI/CD
governance and resource allocation [15].

5.2. Evidence Fusion

Evidence fusion combines static code and process
features, semantic representations derived from source code,
dynamic signals (coverage deltas, crash signatures, trace
anomalies), and architectural context (service boundaries,
gateways). Fault-aware microservice transitions motivate
including gateway and orchestration context because new
failure modes emerge at service seams [33]. Graph-based
context can be incorporated via dependency and call graphs
to represent propagation paths and systemic risk [40]. For
privacy-constrained collaboration, federated aggregation
enables local training and model sharing without centralizing
sensitive artifacts [9], [19].

5.3. Explainability and Auditability

When the decision layer influences engineering action,
explanations must accompany scores. H-DSA produces
feature-attribution summaries, counterfactual guidance, and
evidence pointers to trace and test artifacts. This aligns with
regulatory-grade requirements for auditable decision
pathways [11] and interpretability frameworks for high-
stakes contexts [34].

6. System Deployment Considerations in

Enterprise Environments
6.1. Regulated Microservices and Data Quality

Regulated systems require strict boundaries and
controlled data flows. Secure microservices architectures for
HIPAA-compliant processing highlight segmentation,
identity enforcement, and auditability [10]. OCR-driven
workflows illustrate that extraction errors and integration
faults can dominate reliability; therefore, pipeline data-
quality metrics should be included as first-class signals [14],
[36].

126

Aditi Mishra et al. / IJETCSIT, 7(1), 124-131, 2026

6.2. Platform Choice, Monitoring, and Repeatability

Large-scale execution pipelines require repeatable
deployments and consistent monitoring. Comparative studies
of OpenShift with Helm-based deployments emphasize
deployment optimization and observability requirements
[25]. Platform comparisons (e.g., Pivotal Cloud Foundry vs.
OpenShift) underscore governance and operational tradeoffs
that influence reproducible analytics [29].

6.3. CI/CD Governance Integration

H-DSA integrates with CI/CD gates by exposing risk
scores and ranked execution plans. Real-world ML-driven
CI/CD risk detection highlights the need for evaluating
detection under real constraints and governance policies [35].
Agile early fault prediction supports sprint planning by
identifying risk hotspots before sprint closure [31].

7. Evaluation Framework
The evaluation objective is to quantify discovery
acceleration, not only predictive accuracy.

7.1. Workloads

Evaluation uses defect datasets with traceable defect-to-
artifact mapping [4] and time-aware validation aligned with
best-practice guidance [2], plus microservice scenarios
motivated by modernization effects and gateway behavior
[33]. Security evaluation combines metric-based
vulnerability indicators [6] with learned vulnerability
detection models [17].

7.2. Metrics

Primary metrics include discovery yield (confirmed
findings per compute-hour), cost-per-finding (compute plus
triage time), precision-at-budget (top-k precision at fixed
triage capacity), and operational reproducibility (rerun
determinism, failure isolation). Explainability is evaluated by
time-to-triage and faithfulness checks aligned with
interpretability expectations [34].

7.3. Statistical and Operational Validity

Comparisons should include baselines from comparative
defect prediction studies [7], [16] and must control for
leakage and temporal drift [2]. Training stability influences
calibration and downstream scheduling quality;
convergence-aware techniques should be monitored and
reported [39].

8. Discussion
8.1. Converting Prediction into Discovery

Offline risk scoring is insufficient unless it changes
execution allocation. By coupling ML with scalable
execution diversity, H-DSA increases the probability of
surfacing rare failures and high-impact vulnerabilities earlier
in the lifecycle.

8.2. Security-Specific Challenges

Because vulnerability signals are sparse and adversarial,
H-DSA emphasizes multi-evidence fusion: metrics and
process signals [6], learned representations, dynamic
evidence from simulation, and interpretability for auditability

[11], [34]. Secure telemetry channels
monitoring reduce pipeline exposure [21].

and anomaly

8.3. Data Engineering and Remediation Loops

Large telemetry volumes require robust integration
patterns and schema normalization. Closed-loop learning
benefits from integrating root-cause analysis and automated
remediation patterns for multi-system integrity issues [28].

8.4. Cross-Domain Signals and Operational Context

In practice, quality analytics often benefit from
incorporating signals from adjacent operational domains.
Examples include monitoring signals from CDC pipelines
that indicate upstream data integrity risk [13], platform-layer
behavior during in-memory database operations [26], and
modernization-induced integration risks in SAP S/4HANA
and SAP Fiori transitions [22].

9. Threats to Validity

Internal validity threats include biased execution
diversity generation and artificial failure modes. Mitigations
include held-out configuration families and reproducibility
checks aligned with guidance in fault prediction reviews [2].
Construct validity threats include label noise and proxy
outcomes; mitigations include confirmation workflows and
feedback-loop tracking. External validity threats include
limited generalization across domains and architectures;
mitigations include cross-release evaluation and comparative
baselines [7], [16]. Conclusion validity requires statistically
meaningful comparisons and careful monitoring of training
dynamics and calibration [39].

10. Conclusion

This paper presented H-DSA, an ML + HPC approach
for accelerating defect and vulnerability discovery through
high-throughput simulation analytics. By treating discovery
as a throughput-optimized pipeline with evidence-driven
scheduling, caching, and explainable decision support, the
approach scales beyond conventional CI constraints while
aligning with governance and compliance needs.

Future work includes deeper graph-based reasoning over
dependency structures [40], broader federated deployments
for privacy-constrained collaboration [9], [19], improved
calibration and uncertainty-aware scheduling [39], and
governance-aligned release policies that combine
interpretability with empirical validation [11], [34].

11. Implementation Blueprint for Ml + Hpc
Quality Discovery

This section specifies a concrete blueprint for
implementing ML + HPC discovery acceleration in
production environments.

11.1. Telemetry Schema and Feature Contracts

H-DSA benefits from explicit feature contracts that
define schemas for build events, test outcomes, coverage
artifacts, runtime traces, and security alerts. Join keys should
include commit identifiers, build identifiers, module/service

127

Aditi Mishra et al. / IJETCSIT, 7(1), 124-131, 2026

names, configuration fingerprints, and environment hashes.
Unified schemas reduce integration burden when
consolidating signals across heterogeneous pipelines,
consistent with real-time integration practices in complex
ecosystems [27].

11.2. Deterministic Job Packaging

Each execution task (test variant, configuration sweep,
fuzzing run, or instrumented simulation) should be packaged
as an immutable container with pinned dependencies, fixed
toolchain versions, and explicit resource requests. Helm-
based packaging and monitoring are important at scale
because operational variance can otherwise dominate
outcomes [25]. Platform governance differences across
orchestration stacks affect repeatability and security controls
[29].

11.3. Scheduling Classes and Backpressure

H-DSA partitions workloads into low-latency gating
runs, batch discovery sweeps, and background learning jobs.
The scheduler enforces backpressure by limiting the number
of findings promoted to triage per iteration (budget B),
preventing overload. Cluster dispatch follows scalable
patterns for distributing independent tasks and aggregating
outputs [1].

11.4. Artifact Caching and Reuse

Caching is a primary throughput lever. Compiled
artifacts, dependency graphs, static analysis outputs, and
feature vectors should be stored in a content-addressable
cache keyed by commit/configuration/toolchain fingerprints.
Working-set acceleration concepts motivate keeping
frequently reused artifacts close to compute [8]. Cache-
backed optimization has been shown to improve
responsiveness in repeated processing scenarios [18].

11.5. Compliance and Secure Telemetry

When telemetry may contain sensitive traces or
regulated indicators, the pipeline must enforce least-privilege
access, audited storage boundaries, and protected data-in-
transit channels. Secure microservices designs for regulated
processing provide design cues for segmentation and
auditability [10]. Encrypted and anomaly-monitored
channels reduce the risk of tampering and leakage in high-
throughput pipelines that exchange large volumes of artifacts
[21].

11.6. Explainability Artifacts

H-DSA persists explainability artifacts as first-class
objects: feature attribution vectors, evidence pointers to
traces/tests, and change-level rationale summaries.
Regulatory-grade decision pathways motivate auditable
explanations and empirical validation [11]. Interpretability
frameworks further motivate explanation faithfulness checks
to reduce misleading rationales [34].

12. Experimental Protocol and Reproducibility

Guidelines

To evaluate discovery acceleration credibly,
experiments must reflect temporal evolution and operational
constraints.

12.1. Time-Aware Splits and Leakage Avoidance

Defect prediction and vulnerability detection should be
evaluated with time-aware splits where training precedes
testing chronologically, avoiding optimistic estimates from
leakage. This aligns with best-practice guidance emphasized
in fault prediction reviews [2]. When using defect-to-artifact
benchmarks, mappings should preserve temporal ordering
and avoid duplicate leakage across releases [4].

12.2. Scheduling Evaluation as an A/B Experiment
Because H-DSA changes which executions are
performed, scheduling should be evaluated as the primary
intervention. A baseline policy (uniform allocation or
heuristic allocation) should be compared to ML-guided
allocation under identical compute budgets. Comparative
defect prediction studies motivate including multiple model
families and reporting stability across settings [7], [16].

12.3. Ground Truth Confirmation and Cost-per-Finding

Findings should be considered actionable only when
reproducible and traceable to a minimal failing test case or
confirmed security report. Cost-per-finding combines
compute consumption with human triage effort. ML-driven
CI/CD risk detection studies emphasize measuring impact
under real deployment constraints rather than purely offline
accuracy [35].

12.4. Calibration and Training Stability

Budgeted scheduling benefits from calibrated
probabilities and uncertainty estimates. Convergence
behavior influences calibration and downstream decision
quality; convergence-aware techniques should be monitored
and reported [39].

12.5. Audit Logs and Reproducibility Artifacts

Each run should persist manifests containing commit
identifiers, configuration fingerprints, container digests, tool
versions, and schema versions. Auditability expectations
motivate retaining these artifacts for forensic analysis and
governance [11].

13. Open Challenges and Limitations
Despite the promise of ML + HPC for discovery
acceleration, several challenges remain.

13.1. Label Noise and Sparse Vulnerability Signals

Defect labels can be noisy due to incomplete linkage
between issues and commits, while vulnerability labels are
often sparse and delayed. Representation-learning
approaches require careful corpus construction and
consistent labeling to avoid unstable estimates [17].
Complexity-based indicators provide weak signals and may
not generalize across architectures [6].

128

Aditi Mishra et al. / IJETCSIT, 7(1), 124-131, 2026

13.2. Human Factors and Triage Bottlenecks

Even when compute scales, triage remains limited.
Decision intelligence approaches motivate integrating
prioritization with planning and governance processes to
ensure findings translate into action [15]. Explainability can
reduce triage time, but explanations must be faithful and
operationally useful [34].

13.3. Privacy, Cross-Team Learning, and Governance
Cross-team learning improves data diversity but raises
privacy and governance concerns. Federated learning
provides a pathway, yet introduces challenges in aggregation
robustness and heterogeneous feature spaces [9], [19].
Regulated microservices contexts further constrain data
movement and necessitate strong audit controls [10], [11].

13.4. Multi-Objective Optimization

Discovery acceleration is multi-objective: maximize
yield, minimize cost, prioritize severity, and preserve
developer trust. Future work should address multi-objective
scheduling policies and decision thresholds that remain
defensible under governance scrutiny [11], [35].

References

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified
Data Processing on Large Clusters,” in Proc. 6th Symp.
Operating Systems Design and Implementation (OSDI),
2004, pp. 137-150.

[2] T. Hall, S. Beecham, D. Bowes, D. Gray, and S.
Counsell, “A systematic literature review on fault
prediction performance in software engineering,” IEEE
Trans. Softw. Eng., vol. 38, no. 6, pp. 1276—1304, Nov.—
Dec. 2012, doi: 10.1109/TSE.2011.103.

[3] Gudi, S. R. (2023). Enhancing Reliability in Java
Enterprise Systems through Comparative Analysis of
Automated Testing Frameworks. International Journal
of Emerging Trends in Computer Science and
Information Technology, 4(2), 151-160.
https://doi.org/10.63282/3050-9246.1JETCSIT-
V412P115

[4] S. K. Gunda, "Enhancing Software Fault Prediction with
Machine Learning: A Comparative Study on the PClI
Dataset," 2024 Global Conference on Communications
and Information Technologies (GCCIT),
BANGALORE, India, 2024, pp- 1-4,
https://doi.org/10.1109/GCCIT63234.2024.10862351.

[5] Indrasena Manga, “Edge Software Engineering for
Lightweight AIl: Real-Time Environmental Data
Processing with Embedded Systems 7, Journal of
Computational Analysis and Applications (JoCAAA),
vol. 34, no. 6, pp. 88—104, Jun. 2025.

[6] Y. Shin and L. Williams, “An Empirical Model to
Predict Security Vulnerabilities Using Code Complexity
Metrics,” in Proc. Empirical Software Engineering and
Measurement (ESEM), 2008.

[71 S. K. Gunda, "Analyzing Machine Learning Techniques
for Software Defect Prediction: A Comprehensive
Performance Comparison,” 2024 Asian Conference on
Intelligent Technologies (ACOIT), KOLAR, India,

2024, pp- 1-5,
https://doi.org/10.1109/ACOIT62457.2024.10939610.

[8] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica, “Spark: Cluster Computing with Working
Sets,” in Proc. 2nd USENIX Conf. Hot Topics in Cloud
Computing (HotCloud), 2010.

[9] Thalakanti, R. R. ., Goud Bandari, S. S., & Sivva, S. D. .
(2024). Federated Learning for Privacy Preserving Fraud
Detection across Financial Institutions: Architecture
Protocols and Operational Governance. International
Journal of Emerging Research in Engineering and
Technology, 5(2), 108-114.
https://doi.org/10.63282/3050-922X . IJERET-V5I2P111

[10] Gudi, S. R. (2024). Design and Evaluation of Secure
Microservices Architecture for HIPAA-Compliant
Prescription Processing on AWS and OpenShift.
International Journal of Artificial Intelligence, Data
Science, and Machine Learning, 5(2), 144-149.
https://doi.org/10.63282/3050-9262.1JAIDSML-
V5I12P116

[11] Bandari, S. S. G. ., Sivva, S. D. ., & Thalakanti, R. R.
(2024). Regulatory Grade Fraud Detection using
Explainable Artificial Intelligence with Auditable
Decision Pathways and Empirical Validation on
Banking Data. International Journal of Artificial
Intelligence, Data Science, and Machine Learning, 5(3),
139-147. https://doi.org/10.63282/3050-
9262.1JAIDSML-VSI3P115.

[12] I. Manga, "AutoML for All: Democratizing Machine
Learning Model Building with Minimal Code
Interfaces," 2025 3rd International Conference on
Sustainable Computing and Data Communication
Systems (ICSCDS), Erode, India, 2025, pp. 347-352,
doi: 10.1109/ICSCDS65426.2025.11167529.

[13] Reddy Mittamidi VK. Leveraging Al and ML for
Predictive Monitoring and Error Mitigation in Change
Data Capture Pipelines. IJETCSIT 2025 Aug.
21;6(3):104-11. Available from:
https://ijetcsit.org/index.php/ijetcsit/article/view/515

[14] Gudi, S. R. (2024). AIl-Driven Fax-to-Digital
Prescription Automation: A Cloud-Native Framework
Using OCR, Machine Learning, and Microservices for
Pharmacy Operations. International Journal of Emerging
Research in Engineering and Technology, 5(1), 111-116.
https://doi.org/10.63282/3050-922X.1JERET-V5I1P113

[15] Sivva SD, Thalakanti RR, Bandari SSG, Yettapu SDR.
Al-Driven Decision Intelligence for Agile Software
Lifecycle Governance: An Architecture-Centered
Framework Integrating Machine Learning Defect
Prediction and Automated Testing. IJETCSIT 2023 Dec.
30 ;4(4):167-72. Available from:
https://ijetcsit.org/index.php/ijetcsit/article/view/554

[16] S. K. Gunda, "Comparative Analysis of Machine
Learning Models for Software Defect Prediction," 2024
International Conference on Power, Energy, Control and
Transmission Systems (ICPECTS), Chennai, India,
2024, pp- 1-6,
https://doi.org/10.1109/ICPECTS62210.2024.10780167.

[17] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng,
and Y. Zhong, “VulDeePecker: A Deep Learning-Based

129

Aditi Mishra et al. / IJETCSIT, 7(1), 124-131, 2026

System for Vulnerability Detection,” in Proc. Network
and Distributed System Security Symposium (NDSS),
2018, doi: 10.14722/ndss.2018.23158.

[18] Gudi, S. R. (2024). Leveraging Predictive Analytics and
Redis-Backed Caching to Optimize Specialty
Medication Fulfillment and Pharmacy Inventory
Management. International Journal of AI, BigData,
Computational and Management Studies, 5(3), 155-160.
https://doi.org/10.63282/3050-9416.1JAIBDCMS-
V5I3P116

[19] I. Manga, "Federated Learning at Scale: A Privacy-
Preserving Framework for Decentralized Al Training,"
2025 5th International Conference on Soft Computing
for Security Applications (ICSCSA), Salem, India,
2025, pp- 110-115, doi:
10.1109/ICSCSA66339.2025.11170780.

[20] Krishna GV, Reddy BD, Vrindaa T. EmoVision: An
Intelligent Deep Learning Framework for Emotion
Understanding and Mental Wellness Assistance in
Human Computer Interaction. 2025 Oct ;6(4):14-20.
https://ijaidsml.org/index.php/ijaidsml/article/view/295

[21]S. R. Gudi, "Ensuring Secure and Compliant Fax
Communication: Anomaly Detection and Encryption
Strategies for Data in Transit," 2025 4th International
Conference on Innovative Mechanisms for Industry
Applications (ICIMIA), Tirupur, India, 2025, pp. 786-
791,
https://doi.org/10.1109/ICIMIA67127.2025.11200537

[22] Raikar, T., & Apelagunta, V. (2025). Implementing SAP
Fiori in S/4HANA transitions: Key guidelines,
challenges, strategic implications, Al integration
recommendations. Journal of Engineering Research and
Sciences, 4(11), 1-9.
https://doi.org/10.55708/JS0411001

[23] Gunda, S. K. (2025). Accelerating Scientific Discovery
With Machine Learning and HPC-Based Simulations. In
B. Ben Youssef & M. Ben Ismail (Eds.), Integrating
Machine Learning Into HPC-Based Simulations and
Analytics (pp. 229-252). IGI Global Scientific
Publishing. https://doi.org/10.4018/978-1-6684-3795-
7.ch009.

[24] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong,
L. Shou, B. Qin, T. Liu, and D. Jiang, “CodeBERT: A
Pre-Trained Model for Programming and Natural
Languages,” arXiv:2002.08155, 2020.

[25] S. R. Gudi, "Monitoring and Deployment Optimization
in Cloud-Native Systems: A Comparative Study Using
OpenShift and Helm," 2025 4th International
Conference on Innovative Mechanisms for Industry
Applications (ICIMIA), Tirupur, India, 2025, pp. 792-
797,
https://doi.org/10.1109/ICIMIA67127.2025.11200594

[26] Raikar, T. (2025). High-Performance In-Memory
Computing: A Research Study on SAP S/4 HANA
Database Layer. American Journal of Technology, 4(2),
93-113. https://doi.org/10.58425/ajt.v4i2.449

[27]1 1. Manga, "Unified Data Engineering for Smart
Mobility: Real-Time Integration of Traffic, Public
Transport, and Environmental Data,” 2025 5th
International Conference on Soft Computing for

Security Applications (ICSCSA), Salem, India, 2025,
pp- 1348-1353, doi:
10.1109/ICSCSA66339.2025.11170800.

[28] Reddy Mittamidi VK. AI/ML Powered Intelligent Root
Cause Analysis and Automated Remediation for Multi
System Data Integrity Issues. IJAIBDCMS 2025 Nov.
14;6(4):133-41. Available from:
https://ijaibdcms.org/index.php/ijaibdcms/article/view/3
38

[29] Srikanth Reddy Gudi. (2025). A Comparative Analysis
of Pivotal Cloud Foundry and OpenShift Cloud
Platforms. The American Journal of Applied Sciences,
7(07), 20-29.
https://doi.org/10.37547/tajas/Volume07Issue07-03

[30] Kishore Varma Alluri AK. Using Salesforce CRM and
Deep Learning (CNN) Techniques to Improve Patient
Journey Mapping and Engagement in Small and
Medium Healthcare Organizations. IJAIDSML 2025
Nov. 22 ;6(4):101-9. Available from:
https://ijaidsml.org/index.php/ijaidsml/article/view/330

[31] Gunda, S. K., Yalamati, S., Gudi, S. R., Manga, 1., &
Aleti, A. K. (2025). Scalable and adaptive machine
learning models for early software fault prediction in
agile development: Enhancing software reliability and
sprint planning efficiency. International Journal of
Applied Mathematics, 38(2s).
https://doi.org/10.12732/ijam.v38i2s.74

[32] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A
Survey of Machine Learning for Big Code and
Naturalness,” ACM Computing Surveys, 2018.

[33] S. R. Gudi, "Deconstructing Monoliths: A Fault-Aware
Transition to Microservices with Gateway Optimization
using Spring Cloud," 2025 6th International Conference
on Electronics and Sustainable Communication Systems
(ICESC), Coimbatore, India, 2025, pp. 815-820,
https://doi.org/10.1109/ICESC65114.2025.11212326

[34] I. Manga, "Towards Explainable Al: A Framework for
Interpretable Deep Learning in High-Stakes Domains,"
2025 5th International Conference on Soft Computing
for Security Applications (ICSCSA), Salem, India,
2025, pp- 1354-1360, doi:
10.1109/ICSCSA66339.2025.11170778.

[35] Thalakanti, R. R., & Goud Bandari, S. S. . (2024).
Intelligent Continuous Integration and Delivery for
Banking Systems using Machine Learning Driven Risk
Detection with Real World Deployment Evaluation.
International Journal of Al, BigData, Computational and
Management Studies, 54), 168-175.
https://doi.org/10.63282/3050-9416.1JAIBDCMS-
V514P118

[36] Gudi, S. R. (2025). Enhancing optical character
recognition (OCR) accuracy in healthcare prescription
processing using artificial neural networks. European
Journal of Artificial Intelligence and Machine Learning,
4(6). https://doi.org/10.24018/ejai.2025.4.6.79

[37] Kishore Varma Alluri AK. Salesforce CRM Framework
for Real Time DeFi Portfolio Intelligence and Customer
Engagement Forecasting in Web3 Based Decentralized
Finance Ecosystems Using ML Techniques.
IJAIBDCMS 2025 Nov. 6;6(4):99-107. Available from:

130

Aditi Mishra et al. / IJETCSIT, 7(1), 124-131, 2026

https://ijaibdcms.org/index.php/ijaibdcms/article/view/3
19

[38] S. K. Gunda, "Automatic Software Vulnerabilty
Detection Using Code Metrics and Feature Extraction,"
2025 2nd International Conference On Multidisciplinary
Research and Innovations in Engineering (MRIE),
Gurugram, India, 2025, pp- 115-120,
https://doi.org/10.1109/MRIE66930.2025.11156601.

[39] R. R. Thalakanti, "Enhancing Convergence in Fully
Connected Neural Networks via Optimized
Backpropagation," 2025 2nd International Conference
on Computing and Data Science (ICCDS), Chennai,

India, 2025, Pp-
10.1109/ICCDS64403.2025.11209625.

[40] I. Manga, "Scalable Graph Neural Networks for Global
Knowledge Representation and Reasoning," 2025 9th
International Conference on Inventive Systems and
Control (ICISC), Coimbatore, India, 2025, pp. 1399-
1404, doi: 10.1109/ICISC65841.2025.11188341.

[41] Gunda, S.K. (2026). A Hybrid Deep Learning Model for
Software Fault Prediction Using CNN, LSTM, and
Dense Layers. In: Bakaev, M., et al. Internet and
Modern Society. IMS 2025. Communications in
Computer and Information Science, vol 2672. Springer,
Cham. https://doi.org/10.1007/978-3-032-05144-8 21.

1-6, doi:

131

