
International Journal of Emerging Trends in Computer Science and Information Technology

ISSN: 3050-9246 | https://doi.org/10.63282/3050-9246.IJETCSIT-V7I1P118

Eureka Vision Publication | Volume 7, Issue 1, 124-131, 2026

Original Article

Accelerating Defect and Vulnerability Discovery with ML +

HPC: High-Throughput Simulation Analytics for Software

Quality Engineering

Aditi Mishra1, Harsh Vardhan2, Rohan Shetty3, Pallavi Deshmukh4

1Information Technology Manipal University Jaipur Jaipur, Rajasthan, India.
2Artificial Intelligence Manipal University Jaipur Jaipur, Rajasthan, India.

3Information Technology Manipal University Jaipur Jaipur, Rajasthan, India.
4Artificial Intelligence Manipal University Jaipur Jaipur, Rajasthan, India.

Received On: 22/12/2025 Revised On: 21/01/2026 Accepted On: 30/01/2026 Published On: 08/02/2026

Abstract - Modern software systems evolve under tight

delivery cycles, heterogeneous cloud deployments, and

increasingly stringent security and compliance requirements.

While machine learning (ML) has demonstrated promise for

predicting defect-prone and vulnerability-prone components,

many deployments remain bounded by data sparsity, limited

execution context, and constrained throughput of dynamic

testing. Meanwhile, high-performance computing (HPC)

infrastructures provide abundant parallelism, yet they are

often underutilized for software quality engineering

workflows that require large-scale simulation, test

amplification, and telemetry-driven analytics. This

manuscript proposes an integrated ML + HPC methodology

for accelerating defect and vulnerability discovery through

high-throughput simulation analytics. The approach treats

quality discovery as a throughput-optimized, data-centric

pipeline: (i) generate execution diversity via scalable

simulation and test amplification, (ii) capture and normalize

multi-level telemetry from builds, tests, runtime traces, and

security checks, (iii) learn ranking and classification models

that prioritize code regions and change sets for deeper

analysis, and (iv) close the loop with root-cause triage and

remediation signals. We formalize the research gap as the

missing coupling between predictive models and scalable

execution diversity, and we outline an evaluation framework

spanning prediction quality, defect and vulnerability yield,

and end-to-end cost-per-finding. The resulting methodology

enables software teams to scale discovery beyond

conventional CI constraints, improving early warning

capability and accelerating remediation in complex

enterprise-grade systems.

Keywords - Defect Prediction, Vulnerability Detection,

High-Performance Computing, Simulation Analytics, Test

Amplification, Cloud-Native Software Engineering,

Explainable AI, Federated Learning.

1. Introduction
Defects and vulnerabilities remain persistent sources of

operational risk as software systems evolve toward

distributed micro services, regulated data flows, and

continuous delivery. In many organizations, discovery is

constrained by CI runtime budgets and limited execution

diversity, yielding shallow evidence for triage and delayed

detection. A central premise of this paper is that discovery

should be optimized for throughput: maximize the number of

high-value, reproducible findings per unit time while

respecting compute and human triage limits.

Large-scale cluster computing established that

independent work items can be processed in parallel at scale,

transforming throughput economics for data-intensive tasks

[1]. Analogously, software-quality discovery contains a large

fraction of embarrassingly parallel work configuration

sweeps, test variants, fuzzing campaigns, and instrumented

simulationsyet these are rarely scheduled as first-class

workloads.

Empirical software engineering has established that

defects can be predicted from measurable signals, but

performance varies by context and evaluation design. A

systematic review emphasizes that study design, feature

choice, and validation methodology materially affect

reported fault prediction performance [2]. In enterprise Java

systems, automated testing frameworks and test strategy

selection influence reliability outcomes, reinforcing that

discovery depends on both predictive analytics and execution

practice [3]. Benchmark datasets with traceable links

between defects and source artifacts enable comparison

across methods, but they generally do not encode the cost

structure of execution diversity or the operational decision of

which analyses to run next [4].

Security complicates the problem because vulnerabilities

are rarer and may not manifest as functional failures.

Complexity-based indicators can correlate with vulnerability

presence but are insufficient alone in many settings [6].

Consequently, vulnerability discovery typically blends static

analysis, dynamic testing, fuzzing, and manual review, each

limited by throughput and triage capacity. Comparative

studies of defect prediction models suggest that model

selection, feature engineering, and validation choices

influence practical outcomes [7], [16].

https://doi.org/10.63282/3050-9246.IJETCSIT-V7I1P118

Aditi Mishra et al. / IJETCSIT, 7(1), 124-131, 2026

125

From a systems perspective, iterative analytics

workloads benefit from retaining working sets in memory

and reusing intermediate artifacts across repeated

computations [8]. Software-quality pipelines similarly

benefit from caching compiled artifacts, dependency graphs,

coverage maps, and extracted features, reducing the marginal

cost of additional executions. Privacy-preserving

collaboration is increasingly relevant: federated learning

demonstrates how multiple parties can learn shared models

without centralizing sensitive data, suggesting a pathway for

cross-team quality learning when code and telemetry cannot

be freely shared [9], [19].

Enterprise cloud-native deployments introduce

additional constraints. Secure microservices architectures for

regulated processing emphasize segmentation, observability,

and repeatable deployment across platforms such as AWS

and OpenShift [10]. Explainable, auditable decision

pathways are increasingly demanded in regulated domains,

motivating interpretable prioritization and evidence

aggregation when ML influences engineering actions [11],

[34]. Cloud-native deployment optimization and monitoring

practices affect reproducibility and stability of large-scale

pipelines, particularly when orchestrating thousands of short-

running executions [25], [29].

Modern operational pipelines create upstream signal

sources that influence software quality. Predictive

monitoring in change-data-capture (CDC) pipelines can

reduce error propagation and accelerate mitigation [13]. In

regulated healthcare automation, OCR and microservice

orchestration introduce data-quality and integration risks that

can be reflected in telemetry signals used for quality

analytics [14], [36]. Architecture-centered decision

intelligence for agile governance motivates connecting defect

prediction and automated testing to sprint planning and

release control rather than treating prediction as a standalone

report [15], [31].

The technical opportunity is to couple ML-based

prioritization with HPC-capable execution diversity and

simulation analytics. Deep learning-based vulnerability

detection demonstrates the potential of representation

learning on code, but it requires diverse training signals and

robust data pipelines [17]. Pre-trained code-language models

provide a foundation for semantic feature extraction,

complementing traditional metrics and process signals [24],

[32]. Graph-based representations can capture dependency

context relevant to propagation paths and systemic risk in

distributed systems [40].

Finally, enterprise modernization projects illustrate that

large refactors and platform migrations introduce new

quality risks. SAP S/4HANA transitions and SAP Fiori

adoption highlight integration, performance, and operational

workflow risks during transformation [22]. In-memory

database layer behavior can shape the latency and failure

modes of dependent services, motivating memory-centric

performance awareness in quality evaluation [26].

2. Motivation and Related Work
Fault prediction research shows that predictive models

can identify defect-prone artifacts, but robustness and

generalization remain central challenges. The systematic

review in [2] highlights variability in reported performance

due to dataset composition, validation choices, and feature

engineering. Benchmark datasets that link defects to source

artifacts are valuable for reproducibility and comparability,

but they typically abstract away operational constraints such

as test budget and triage capacity [4].

Security prediction is harder due to rarity, semantic

specificity, and adversarial context. Complexity metrics can

provide weak signals for vulnerability proneness [6], while

representation-learning approaches require large and diverse

labeled corpora and careful handling of noise [17].

From a compute and systems standpoint, cluster

paradigms established scalable patterns for distributing

independent tasks [1]. Iterative analytics systems improved

throughput by retaining working sets and reusing

intermediate artifacts across repeated computations [8].

These ideas motivate high-throughput execution of test and

simulation variants, plus caching of compiled artifacts,

dependency graphs, and extracted features.

Cloud-native environments introduce operational

requirements for reproducibility, monitoring, and controlled

deployments. Secure, compliant microservices emphasize

segmented architecture, strong identity controls, and

disciplined deployment practices [10]. Deployment and

monitoring optimization on OpenShift with Helm-based

packaging illustrates the operational need for repeatable,

observable pipelines at scale [25]. Governance and

observability tradeoffs across platforms influence

reproducible analytics and are a practical consideration for

high-throughput execution [29].

Governance and explainability are salient. Auditable

decision pathways are demanded in regulated decision

systems [11], and explainable AI frameworks motivate

interpretable evidence aggregation even for complex models

[34]. Decision intelligence for agile governance and ML-

driven CI/CD risk detection emphasize integration into

operational workflows and evaluation under deployment

constraints rather than offline accuracy alone [15], [35].

Privacy-preserving learning provides a model for cross-

team discovery without raw-data centralization, relevant

when code and telemetry are sensitive. Federated learning

architectures show how distributed parties can collaborate on

detection without centralizing raw data [9], [19].

3. Problem Statement and Research Gap
3.1. Problem Statement

Given an evolving codebase C with frequent changes

ΔC and bounded CI resources (time, compute, and human

triage), the objective is to maximize actionable discovery of

defects and vulnerabilities. Let E be a set of candidate

executions (tests, simulations, fuzzing campaigns,

Aditi Mishra et al. / IJETCSIT, 7(1), 124-131, 2026

126

configuration sweeps, and instrumented runs). Each

execution e ∈ E has cost(e) and yields evidence obs(e) such

as failures, traces, coverage deltas, anomaly scores, and

security alerts. Let B denote triage capacity per iteration. The

objective is to schedule a subset E* ⊆ E that maximizes

expected discovery utility under compute and triage

constraints, while preserving reproducibility and

explainability.

3.2. Research Gap

Current practice frequently separates prediction (offline

scoring) from discovery (limited CI executions). Predictors

often rely on static signals and do not control which

executions are run next, leaving discovery bounded by

default test suites and limited configuration coverage.

Evaluation practices can overstate performance when they do

not match deployment realities such as temporal drift, cross-

release shift, and architectural refactors [2], [16].

Vulnerability discovery is additionally constrained by rarity

and semantic complexity, where metrics alone are

insufficient and learned detectors require diverse evidence

and careful evaluation [6], [17]. The core gap is the missing

coupling between scalable execution diversity (HPC-capable

simulation analytics) and ML-driven scheduling that

allocates compute to the highest expected-yield executions.

A second gap concerns governance: when ML influences

release decisions, evidence must be auditable and

interpretable under organizational and regulatory constraints

[11], [34].

4. Proposed Ml + Hpc Simulation Analytics

Pipeline
We propose H-DSA (High-Throughput Defect and

Security Analytics), a pipeline that unifies scalable execution

diversity generation, telemetry normalization, ML-based

prioritization, and closed-loop remediation.

4.1. Architecture Overview

H-DSA comprises: (1) ingestion and build

normalization; (2) execution diversity generation

(configuration sweeps, test amplification, targeted fuzzing);

(3) telemetry capture and schema normalization; (4) feature

store and representation learning (metrics, process signals,

semantic embeddings); (5) decision layer with ranking and

classification models; and (6) closed-loop triage and

remediation feedback.

4.2. HPC Execution Model

The execution layer schedules large numbers of

independent runs across a cluster, adopting scalable patterns

inspired by distributed task processing [1]. Intermediate

artifacts and features are cached to reduce marginal cost,

consistent with working-set acceleration principles [8].

Caching and reuse are treated as first-class design elements,

aligning with evidence that predictive analytics and Redis-

backed caching improve responsiveness in repeated

processing workloads [18].

4.3. Cloud-Native Reproducibility and Compliance

The pipeline is deployed as containerized services with

controlled environments and repeatable execution. Helm-

based packaging and monitoring practices support

operational reproducibility and observability [25]. Data

handling follows regulated microservices patterns

(segmentation, identity controls, and audit logging) [10].

Telemetry channels are protected via encryption and

anomaly monitoring to reduce leakage and tampering risk

[21].

5. Scheduling and Evidence-Driven

Prioritization
5.1. Budgeted Scheduling

Discovery acceleration requires converting predictions

into scheduling decisions. Let U(e) be expected discovery

utility of execution e, capturing probability of novel findings

and expected severity. Under compute budget K and triage

budget B, H-DSA selects E* to maximize total utility while

respecting constraints. This operationalizes decision

intelligence by explicitly connecting ML outputs to CI/CD

governance and resource allocation [15].

5.2. Evidence Fusion

Evidence fusion combines static code and process

features, semantic representations derived from source code,

dynamic signals (coverage deltas, crash signatures, trace

anomalies), and architectural context (service boundaries,

gateways). Fault-aware microservice transitions motivate

including gateway and orchestration context because new

failure modes emerge at service seams [33]. Graph-based

context can be incorporated via dependency and call graphs

to represent propagation paths and systemic risk [40]. For

privacy-constrained collaboration, federated aggregation

enables local training and model sharing without centralizing

sensitive artifacts [9], [19].

5.3. Explainability and Auditability

When the decision layer influences engineering action,

explanations must accompany scores. H-DSA produces

feature-attribution summaries, counterfactual guidance, and

evidence pointers to trace and test artifacts. This aligns with

regulatory-grade requirements for auditable decision

pathways [11] and interpretability frameworks for high-

stakes contexts [34].

6. System Deployment Considerations in

Enterprise Environments
6.1. Regulated Microservices and Data Quality

Regulated systems require strict boundaries and

controlled data flows. Secure microservices architectures for

HIPAA-compliant processing highlight segmentation,

identity enforcement, and auditability [10]. OCR-driven

workflows illustrate that extraction errors and integration

faults can dominate reliability; therefore, pipeline data-

quality metrics should be included as first-class signals [14],

[36].

Aditi Mishra et al. / IJETCSIT, 7(1), 124-131, 2026

127

6.2. Platform Choice, Monitoring, and Repeatability

Large-scale execution pipelines require repeatable

deployments and consistent monitoring. Comparative studies

of OpenShift with Helm-based deployments emphasize

deployment optimization and observability requirements

[25]. Platform comparisons (e.g., Pivotal Cloud Foundry vs.

OpenShift) underscore governance and operational tradeoffs

that influence reproducible analytics [29].

6.3. CI/CD Governance Integration

H-DSA integrates with CI/CD gates by exposing risk

scores and ranked execution plans. Real-world ML-driven

CI/CD risk detection highlights the need for evaluating

detection under real constraints and governance policies [35].

Agile early fault prediction supports sprint planning by

identifying risk hotspots before sprint closure [31].

7. Evaluation Framework

The evaluation objective is to quantify discovery

acceleration, not only predictive accuracy.

7.1. Workloads

Evaluation uses defect datasets with traceable defect-to-

artifact mapping [4] and time-aware validation aligned with

best-practice guidance [2], plus microservice scenarios

motivated by modernization effects and gateway behavior

[33]. Security evaluation combines metric-based

vulnerability indicators [6] with learned vulnerability

detection models [17].

7.2. Metrics

Primary metrics include discovery yield (confirmed

findings per compute-hour), cost-per-finding (compute plus

triage time), precision-at-budget (top-k precision at fixed

triage capacity), and operational reproducibility (rerun

determinism, failure isolation). Explainability is evaluated by

time-to-triage and faithfulness checks aligned with

interpretability expectations [34].

7.3. Statistical and Operational Validity

Comparisons should include baselines from comparative

defect prediction studies [7], [16] and must control for

leakage and temporal drift [2]. Training stability influences

calibration and downstream scheduling quality;

convergence-aware techniques should be monitored and

reported [39].

8. Discussion
8.1. Converting Prediction into Discovery

Offline risk scoring is insufficient unless it changes

execution allocation. By coupling ML with scalable

execution diversity, H-DSA increases the probability of

surfacing rare failures and high-impact vulnerabilities earlier

in the lifecycle.

8.2. Security-Specific Challenges

Because vulnerability signals are sparse and adversarial,

H-DSA emphasizes multi-evidence fusion: metrics and

process signals [6], learned representations, dynamic

evidence from simulation, and interpretability for auditability

[11], [34]. Secure telemetry channels and anomaly

monitoring reduce pipeline exposure [21].

8.3. Data Engineering and Remediation Loops

Large telemetry volumes require robust integration

patterns and schema normalization. Closed-loop learning

benefits from integrating root-cause analysis and automated

remediation patterns for multi-system integrity issues [28].

8.4. Cross-Domain Signals and Operational Context

In practice, quality analytics often benefit from

incorporating signals from adjacent operational domains.

Examples include monitoring signals from CDC pipelines

that indicate upstream data integrity risk [13], platform-layer

behavior during in-memory database operations [26], and

modernization-induced integration risks in SAP S/4HANA

and SAP Fiori transitions [22].

9. Threats to Validity

Internal validity threats include biased execution

diversity generation and artificial failure modes. Mitigations

include held-out configuration families and reproducibility

checks aligned with guidance in fault prediction reviews [2].

Construct validity threats include label noise and proxy

outcomes; mitigations include confirmation workflows and

feedback-loop tracking. External validity threats include

limited generalization across domains and architectures;

mitigations include cross-release evaluation and comparative

baselines [7], [16]. Conclusion validity requires statistically

meaningful comparisons and careful monitoring of training

dynamics and calibration [39].

10. Conclusion
This paper presented H-DSA, an ML + HPC approach

for accelerating defect and vulnerability discovery through

high-throughput simulation analytics. By treating discovery

as a throughput-optimized pipeline with evidence-driven

scheduling, caching, and explainable decision support, the

approach scales beyond conventional CI constraints while

aligning with governance and compliance needs.

Future work includes deeper graph-based reasoning over

dependency structures [40], broader federated deployments

for privacy-constrained collaboration [9], [19], improved

calibration and uncertainty-aware scheduling [39], and

governance-aligned release policies that combine

interpretability with empirical validation [11], [34].

11. Implementation Blueprint for Ml + Hpc

Quality Discovery
This section specifies a concrete blueprint for

implementing ML + HPC discovery acceleration in

production environments.

11.1. Telemetry Schema and Feature Contracts

H-DSA benefits from explicit feature contracts that

define schemas for build events, test outcomes, coverage

artifacts, runtime traces, and security alerts. Join keys should

include commit identifiers, build identifiers, module/service

Aditi Mishra et al. / IJETCSIT, 7(1), 124-131, 2026

128

names, configuration fingerprints, and environment hashes.

Unified schemas reduce integration burden when

consolidating signals across heterogeneous pipelines,

consistent with real-time integration practices in complex

ecosystems [27].

11.2. Deterministic Job Packaging

Each execution task (test variant, configuration sweep,

fuzzing run, or instrumented simulation) should be packaged

as an immutable container with pinned dependencies, fixed

toolchain versions, and explicit resource requests. Helm-

based packaging and monitoring are important at scale

because operational variance can otherwise dominate

outcomes [25]. Platform governance differences across

orchestration stacks affect repeatability and security controls

[29].

11.3. Scheduling Classes and Backpressure

H-DSA partitions workloads into low-latency gating

runs, batch discovery sweeps, and background learning jobs.

The scheduler enforces backpressure by limiting the number

of findings promoted to triage per iteration (budget B),

preventing overload. Cluster dispatch follows scalable

patterns for distributing independent tasks and aggregating

outputs [1].

11.4. Artifact Caching and Reuse

Caching is a primary throughput lever. Compiled

artifacts, dependency graphs, static analysis outputs, and

feature vectors should be stored in a content-addressable

cache keyed by commit/configuration/toolchain fingerprints.

Working-set acceleration concepts motivate keeping

frequently reused artifacts close to compute [8]. Cache-

backed optimization has been shown to improve

responsiveness in repeated processing scenarios [18].

11.5. Compliance and Secure Telemetry

When telemetry may contain sensitive traces or

regulated indicators, the pipeline must enforce least-privilege

access, audited storage boundaries, and protected data-in-

transit channels. Secure microservices designs for regulated

processing provide design cues for segmentation and

auditability [10]. Encrypted and anomaly-monitored

channels reduce the risk of tampering and leakage in high-

throughput pipelines that exchange large volumes of artifacts

[21].

11.6. Explainability Artifacts

H-DSA persists explainability artifacts as first-class

objects: feature attribution vectors, evidence pointers to

traces/tests, and change-level rationale summaries.

Regulatory-grade decision pathways motivate auditable

explanations and empirical validation [11]. Interpretability

frameworks further motivate explanation faithfulness checks

to reduce misleading rationales [34].

12. Experimental Protocol and Reproducibility

Guidelines
To evaluate discovery acceleration credibly,

experiments must reflect temporal evolution and operational

constraints.

12.1. Time-Aware Splits and Leakage Avoidance

Defect prediction and vulnerability detection should be

evaluated with time-aware splits where training precedes

testing chronologically, avoiding optimistic estimates from

leakage. This aligns with best-practice guidance emphasized

in fault prediction reviews [2]. When using defect-to-artifact

benchmarks, mappings should preserve temporal ordering

and avoid duplicate leakage across releases [4].

12.2. Scheduling Evaluation as an A/B Experiment

Because H-DSA changes which executions are

performed, scheduling should be evaluated as the primary

intervention. A baseline policy (uniform allocation or

heuristic allocation) should be compared to ML-guided

allocation under identical compute budgets. Comparative

defect prediction studies motivate including multiple model

families and reporting stability across settings [7], [16].

12.3. Ground Truth Confirmation and Cost-per-Finding

Findings should be considered actionable only when

reproducible and traceable to a minimal failing test case or

confirmed security report. Cost-per-finding combines

compute consumption with human triage effort. ML-driven

CI/CD risk detection studies emphasize measuring impact

under real deployment constraints rather than purely offline

accuracy [35].

12.4. Calibration and Training Stability

Budgeted scheduling benefits from calibrated

probabilities and uncertainty estimates. Convergence

behavior influences calibration and downstream decision

quality; convergence-aware techniques should be monitored

and reported [39].

12.5. Audit Logs and Reproducibility Artifacts

Each run should persist manifests containing commit

identifiers, configuration fingerprints, container digests, tool

versions, and schema versions. Auditability expectations

motivate retaining these artifacts for forensic analysis and

governance [11].

13. Open Challenges and Limitations
Despite the promise of ML + HPC for discovery

acceleration, several challenges remain.

13.1. Label Noise and Sparse Vulnerability Signals

Defect labels can be noisy due to incomplete linkage

between issues and commits, while vulnerability labels are

often sparse and delayed. Representation-learning

approaches require careful corpus construction and

consistent labeling to avoid unstable estimates [17].

Complexity-based indicators provide weak signals and may

not generalize across architectures [6].

Aditi Mishra et al. / IJETCSIT, 7(1), 124-131, 2026

129

13.2. Human Factors and Triage Bottlenecks

Even when compute scales, triage remains limited.

Decision intelligence approaches motivate integrating

prioritization with planning and governance processes to

ensure findings translate into action [15]. Explainability can

reduce triage time, but explanations must be faithful and

operationally useful [34].

13.3. Privacy, Cross-Team Learning, and Governance

Cross-team learning improves data diversity but raises

privacy and governance concerns. Federated learning

provides a pathway, yet introduces challenges in aggregation

robustness and heterogeneous feature spaces [9], [19].

Regulated microservices contexts further constrain data

movement and necessitate strong audit controls [10], [11].

13.4. Multi-Objective Optimization

Discovery acceleration is multi-objective: maximize

yield, minimize cost, prioritize severity, and preserve

developer trust. Future work should address multi-objective

scheduling policies and decision thresholds that remain

defensible under governance scrutiny [11], [35].

References

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified

Data Processing on Large Clusters,” in Proc. 6th Symp.

Operating Systems Design and Implementation (OSDI),

2004, pp. 137–150.

[2] T. Hall, S. Beecham, D. Bowes, D. Gray, and S.

Counsell, “A systematic literature review on fault

prediction performance in software engineering,” IEEE

Trans. Softw. Eng., vol. 38, no. 6, pp. 1276–1304, Nov.–

Dec. 2012, doi: 10.1109/TSE.2011.103.

[3] Gudi, S. R. (2023). Enhancing Reliability in Java

Enterprise Systems through Comparative Analysis of

Automated Testing Frameworks. International Journal

of Emerging Trends in Computer Science and

Information Technology, 4(2), 151-160.

https://doi.org/10.63282/3050-9246.IJETCSIT-

V4I2P115

[4] S. K. Gunda, "Enhancing Software Fault Prediction with

Machine Learning: A Comparative Study on the PC1

Dataset," 2024 Global Conference on Communications

and Information Technologies (GCCIT),

BANGALORE, India, 2024, pp. 1-4,

https://doi.org/10.1109/GCCIT63234.2024.10862351.

[5] Indrasena Manga, “Edge Software Engineering for

Lightweight AI: Real-Time Environmental Data

Processing with Embedded Systems ”, Journal of

Computational Analysis and Applications (JoCAAA),

vol. 34, no. 6, pp. 88–104, Jun. 2025.

[6] Y. Shin and L. Williams, “An Empirical Model to

Predict Security Vulnerabilities Using Code Complexity

Metrics,” in Proc. Empirical Software Engineering and

Measurement (ESEM), 2008.

[7] S. K. Gunda, "Analyzing Machine Learning Techniques

for Software Defect Prediction: A Comprehensive

Performance Comparison," 2024 Asian Conference on

Intelligent Technologies (ACOIT), KOLAR, India,

2024, pp. 1-5,

https://doi.org/10.1109/ACOIT62457.2024.10939610.

[8] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,

and I. Stoica, “Spark: Cluster Computing with Working

Sets,” in Proc. 2nd USENIX Conf. Hot Topics in Cloud

Computing (HotCloud), 2010.

[9] Thalakanti, R. R. ., Goud Bandari, S. S., & Sivva, S. D. .

(2024). Federated Learning for Privacy Preserving Fraud

Detection across Financial Institutions: Architecture

Protocols and Operational Governance. International

Journal of Emerging Research in Engineering and

Technology, 5(2), 108-114.

https://doi.org/10.63282/3050-922X.IJERET-V5I2P111

[10] Gudi, S. R. (2024). Design and Evaluation of Secure

Microservices Architecture for HIPAA-Compliant

Prescription Processing on AWS and OpenShift.

International Journal of Artificial Intelligence, Data

Science, and Machine Learning, 5(2), 144-149.

https://doi.org/10.63282/3050-9262.IJAIDSML-

V5I2P116

[11] Bandari, S. S. G. ., Sivva, S. D. ., & Thalakanti, R. R.

(2024). Regulatory Grade Fraud Detection using

Explainable Artificial Intelligence with Auditable

Decision Pathways and Empirical Validation on

Banking Data. International Journal of Artificial

Intelligence, Data Science, and Machine Learning, 5(3),

139-147. https://doi.org/10.63282/3050-

9262.IJAIDSML-V5I3P115.

[12] I. Manga, "AutoML for All: Democratizing Machine

Learning Model Building with Minimal Code

Interfaces," 2025 3rd International Conference on

Sustainable Computing and Data Communication

Systems (ICSCDS), Erode, India, 2025, pp. 347-352,

doi: 10.1109/ICSCDS65426.2025.11167529.

[13] Reddy Mittamidi VK. Leveraging AI and ML for

Predictive Monitoring and Error Mitigation in Change

Data Capture Pipelines. IJETCSIT 2025 Aug.

21;6(3):104-11. Available from:

https://ijetcsit.org/index.php/ijetcsit/article/view/515

[14] Gudi, S. R. (2024). AI-Driven Fax-to-Digital

Prescription Automation: A Cloud-Native Framework

Using OCR, Machine Learning, and Microservices for

Pharmacy Operations. International Journal of Emerging

Research in Engineering and Technology, 5(1), 111-116.

https://doi.org/10.63282/3050-922X.IJERET-V5I1P113

[15] Sivva SD, Thalakanti RR, Bandari SSG, Yettapu SDR.

AI-Driven Decision Intelligence for Agile Software

Lifecycle Governance: An Architecture-Centered

Framework Integrating Machine Learning Defect

Prediction and Automated Testing. IJETCSIT 2023 Dec.

30 ;4(4):167-72. Available from:

https://ijetcsit.org/index.php/ijetcsit/article/view/554

[16] S. K. Gunda, "Comparative Analysis of Machine

Learning Models for Software Defect Prediction," 2024

International Conference on Power, Energy, Control and

Transmission Systems (ICPECTS), Chennai, India,

2024, pp. 1-6,

https://doi.org/10.1109/ICPECTS62210.2024.10780167.

[17] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng,

and Y. Zhong, “VulDeePecker: A Deep Learning-Based

Aditi Mishra et al. / IJETCSIT, 7(1), 124-131, 2026

130

System for Vulnerability Detection,” in Proc. Network

and Distributed System Security Symposium (NDSS),

2018, doi: 10.14722/ndss.2018.23158.

[18] Gudi, S. R. (2024). Leveraging Predictive Analytics and

Redis-Backed Caching to Optimize Specialty

Medication Fulfillment and Pharmacy Inventory

Management. International Journal of AI, BigData,

Computational and Management Studies, 5(3), 155-160.

https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V5I3P116

[19] I. Manga, "Federated Learning at Scale: A Privacy-

Preserving Framework for Decentralized AI Training,"

2025 5th International Conference on Soft Computing

for Security Applications (ICSCSA), Salem, India,

2025, pp. 110-115, doi:

10.1109/ICSCSA66339.2025.11170780.

[20] Krishna GV, Reddy BD, Vrindaa T. EmoVision: An

Intelligent Deep Learning Framework for Emotion

Understanding and Mental Wellness Assistance in

Human Computer Interaction. 2025 Oct ;6(4):14-20.

https://ijaidsml.org/index.php/ijaidsml/article/view/295

[21] S. R. Gudi, "Ensuring Secure and Compliant Fax

Communication: Anomaly Detection and Encryption

Strategies for Data in Transit," 2025 4th International

Conference on Innovative Mechanisms for Industry

Applications (ICIMIA), Tirupur, India, 2025, pp. 786-

791,

https://doi.org/10.1109/ICIMIA67127.2025.11200537

[22] Raikar, T., & Apelagunta, V. (2025). Implementing SAP

Fiori in S/4HANA transitions: Key guidelines,

challenges, strategic implications, AI integration

recommendations. Journal of Engineering Research and

Sciences, 4(11), 1–9.

https://doi.org/10.55708/JS0411001

[23] Gunda, S. K. (2025). Accelerating Scientific Discovery

With Machine Learning and HPC-Based Simulations. In

B. Ben Youssef & M. Ben Ismail (Eds.), Integrating

Machine Learning Into HPC-Based Simulations and

Analytics (pp. 229-252). IGI Global Scientific

Publishing. https://doi.org/10.4018/978-1-6684-3795-

7.ch009.

[24] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong,

L. Shou, B. Qin, T. Liu, and D. Jiang, “CodeBERT: A

Pre-Trained Model for Programming and Natural

Languages,” arXiv:2002.08155, 2020.

[25] S. R. Gudi, "Monitoring and Deployment Optimization

in Cloud-Native Systems: A Comparative Study Using

OpenShift and Helm," 2025 4th International

Conference on Innovative Mechanisms for Industry

Applications (ICIMIA), Tirupur, India, 2025, pp. 792-

797,

https://doi.org/10.1109/ICIMIA67127.2025.11200594

[26] Raikar, T. (2025). High-Performance In-Memory

Computing: A Research Study on SAP S/4 HANA

Database Layer. American Journal of Technology, 4(2),

93-113. https://doi.org/10.58425/ajt.v4i2.449

[27] I. Manga, "Unified Data Engineering for Smart

Mobility: Real-Time Integration of Traffic, Public

Transport, and Environmental Data," 2025 5th

International Conference on Soft Computing for

Security Applications (ICSCSA), Salem, India, 2025,

pp. 1348-1353, doi:

10.1109/ICSCSA66339.2025.11170800.

[28] Reddy Mittamidi VK. AI/ML Powered Intelligent Root

Cause Analysis and Automated Remediation for Multi

System Data Integrity Issues. IJAIBDCMS 2025 Nov.

14;6(4):133-41. Available from:

https://ijaibdcms.org/index.php/ijaibdcms/article/view/3

38

[29] Srikanth Reddy Gudi. (2025). A Comparative Analysis

of Pivotal Cloud Foundry and OpenShift Cloud

Platforms. The American Journal of Applied Sciences,

7(07), 20–29.

https://doi.org/10.37547/tajas/Volume07Issue07-03

[30] Kishore Varma Alluri AK. Using Salesforce CRM and

Deep Learning (CNN) Techniques to Improve Patient

Journey Mapping and Engagement in Small and

Medium Healthcare Organizations. IJAIDSML 2025

Nov. 22 ;6(4):101-9. Available from:

https://ijaidsml.org/index.php/ijaidsml/article/view/330

[31] Gunda, S. K., Yalamati, S., Gudi, S. R., Manga, I., &

Aleti, A. K. (2025). Scalable and adaptive machine

learning models for early software fault prediction in

agile development: Enhancing software reliability and

sprint planning efficiency. International Journal of

Applied Mathematics, 38(2s).

https://doi.org/10.12732/ijam.v38i2s.74

[32] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A

Survey of Machine Learning for Big Code and

Naturalness,” ACM Computing Surveys, 2018.

[33] S. R. Gudi, "Deconstructing Monoliths: A Fault-Aware

Transition to Microservices with Gateway Optimization

using Spring Cloud," 2025 6th International Conference

on Electronics and Sustainable Communication Systems

(ICESC), Coimbatore, India, 2025, pp. 815-820,

https://doi.org/10.1109/ICESC65114.2025.11212326

[34] I. Manga, "Towards Explainable AI: A Framework for

Interpretable Deep Learning in High-Stakes Domains,"

2025 5th International Conference on Soft Computing

for Security Applications (ICSCSA), Salem, India,

2025, pp. 1354-1360, doi:

10.1109/ICSCSA66339.2025.11170778.

[35] Thalakanti, R. R., & Goud Bandari, S. S. . (2024).

Intelligent Continuous Integration and Delivery for

Banking Systems using Machine Learning Driven Risk

Detection with Real World Deployment Evaluation.

International Journal of AI, BigData, Computational and

Management Studies, 5(4), 168-175.

https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V5I4P118

[36] Gudi, S. R. (2025). Enhancing optical character

recognition (OCR) accuracy in healthcare prescription

processing using artificial neural networks. European

Journal of Artificial Intelligence and Machine Learning,

4(6). https://doi.org/10.24018/ejai.2025.4.6.79

[37] Kishore Varma Alluri AK. Salesforce CRM Framework

for Real Time DeFi Portfolio Intelligence and Customer

Engagement Forecasting in Web3 Based Decentralized

Finance Ecosystems Using ML Techniques.

IJAIBDCMS 2025 Nov. 6;6(4):99-107. Available from:

Aditi Mishra et al. / IJETCSIT, 7(1), 124-131, 2026

131

https://ijaibdcms.org/index.php/ijaibdcms/article/view/3

19

[38] S. K. Gunda, "Automatic Software Vulnerabilty

Detection Using Code Metrics and Feature Extraction,"

2025 2nd International Conference On Multidisciplinary

Research and Innovations in Engineering (MRIE),

Gurugram, India, 2025, pp. 115-120,

https://doi.org/10.1109/MRIE66930.2025.11156601.

[39] R. R. Thalakanti, "Enhancing Convergence in Fully

Connected Neural Networks via Optimized

Backpropagation," 2025 2nd International Conference

on Computing and Data Science (ICCDS), Chennai,

India, 2025, pp. 1-6, doi:

10.1109/ICCDS64403.2025.11209625.

[40] I. Manga, "Scalable Graph Neural Networks for Global

Knowledge Representation and Reasoning," 2025 9th

International Conference on Inventive Systems and

Control (ICISC), Coimbatore, India, 2025, pp. 1399-

1404, doi: 10.1109/ICISC65841.2025.11188341.

[41] Gunda, S.K. (2026). A Hybrid Deep Learning Model for

Software Fault Prediction Using CNN, LSTM, and

Dense Layers. In: Bakaev, M., et al. Internet and

Modern Society. IMS 2025. Communications in

Computer and Information Science, vol 2672. Springer,

Cham. https://doi.org/10.1007/978-3-032-05144-8_21.

