
International Journal of Emerging Trends in Computer Science and Information Technology
 ISSN: 3050-9246 | https://doi.org/10.63282/30509246/IJETCSIT-V4I2P104

Eureka Vision Publication | Volume 4, Issue 1, 28-36, 2024

Original Article

Redis Cache Optimization for Payment Gateways in the Cloud

Mr. Pavan Kumar Joshi
VP Information Technology, Fiserv, United States of America (USA).

Abstract - The adoption of cloud payment gateway solutions causes the need for reliable, quicker, easy, and efficient solutions to

effectively large volumes of transactions in real-time. The payment gateway is one of the important modules that exist in modern

electronic commerce to facilitate secure and real-time transactions between merchants and customers. However, challenges

related to performance remain high, especially bottlenecks concerning response times and high-latency queries. It is at this point

that Redis cache optimization bears the most value, especially where the application is running in a cloud infrastructure where

computing resources must be closely managed to provide the best performance and stability. The final real-time data structure

store that can be favored for high throughput is Redis, which is an open-source in-memory data structure store. Here are the roles
it plays in cloud-based payment gateways, such as caching of frequently used data, reducing database access, and payment

validation procedures. By saving payment information and validation steps, Redis improves general response time, having less

burdening the central database, and all the payment services can run completely, even at peak hours. Redis caching for such uses

not only enhances system performance but also reduces response time, enhances user satisfaction, and increases the possibility of

a successful transaction. This paper specifically discusses the design and different strategies for Redis cache optimization in

payment gateways in cloud environments. Some of these techniques include partitioning, replication, and eviction policies on data

which are important for increasing reliability and the rate of the payment systems in the cloud. For instance, it solves real-time

consistencies, fault tolerance, scalability issues, and the problem with data persistence in systems that use in-memory data stores

such as Redis. Using evaluative data and benchmarking, this work identifies the effects of Redis caching in terms of transaction

processing and overall system utilization. In the microservices-based web applications involving multiple payment gateways,

discussion extends to cloud deployment platforms like AWS, Google Cloud, and Microsoft Azure and how Amazon ElastiCache and
Google Memorystore as native services employ Redis for payment processing. Cache-aside, write-through, and read-through

caching use cases are explained, and parameters to fine-tune Redis for achieving a low memory footprint with high hit ratios are

also suggested. Finally, this paper proposes a detailed evaluation of Redis cache optimization within cloud-based payment gates,

including design patterns and procedures that are likely to yield high returns for the adoption of Redis cache as an important

element in the development of payment gateways.

Keywords - Redis Cache Optimization, Payment Gateways, Cloud Computing, Transaction Processing, Fault Tolerance, High

Availability.

1. Introduction
Payment gateways started appearing in around the late 90s when online shopping started getting popular moving as a

middleman between the merchant and the bank involved in the transaction. To begin with, these systems were local

implementations of software requiring organizations to have facilities and manage complicated structures for performing

transactions. [1-4] This set-up was quite expensive to operate and could not extend nicely to offer better services to more clients.

However, the rapid advancement of the internet has made people recognize the need for solutions that can be more flexible and

easily scalable.

 Transition to Cloud-Based Solutions: The use of cloud computing that began in the early 2000s brought about a reform

in Payment gateways, resulting in solutions that are scalable, less expensive than burgeoning, and more reliable. Due to
technological advancement that allowed for payment gateways to be hosted in the cloud merchants could scale up their

operations to accommodate the rising number of transactions while incurring high costs of infrastructure. With the cloud,

payment systems evolved to become more mainstream enabling SMEs to implement reliable and secure payment gateway

for their platforms, with little technical complexities involved.

 Adoption of API-Based Gateways: With the API economy getting on track, more and more payment gateways

introduced API-oriented solutions so developers could integrate the payment services into various applications. This

model was made famous by companies such as Stripe and PayPal; while they initially made the payment mode relatively

easy to integrate, it was still quite complex. This API-based approach revolutionized the payment industry by allowing

merchants to accept payments on web, mobile, and even in-app payments.

https://doi.org/10.63282/30509246/IJETCSIT-V4I2P104

Mr. Pavan Kumar Joshi / IJETCSIT, 4(1), 28-36, 2024

29

Figure 1. The Emergence of Payment Gateways

 Integration of Security Protocols and Compliance: When payment gateways shifted to the cloud, security and

compliance issues came into discussion. Other techniques for securing payment data included the incorporation of

SSL/TLS encryption, tokenization, and PCI-DSS-compliant cloud architecture. It held the opportunity that payment

gateways could fulfill regulatory demands necessary to secure customers and, at the same time, adopt resources of the

cloud environment to preserve the privacy and purity of the data.

 Shift to Real-Time Processing: Traditional payment gateways have migrated to cloud environments; many of the cloud-

based payment gateways now provide real-time approvals and funds transfers in almost real-time. Such a move was
possible because of the increased pressure for speed and efficiency in the current e-commerce and digital financial. Cloud

infrastructure has made real-time fraud detection, validation, and complete transaction processing by payment gateways

far better and quicker.

 Advent of Global Payment Platforms: The cloud has helped payment gateways to grow worldwide to accommodate a

variety of currencies, languages, and methods of payment. Monclarity’s global coverage means that merchants can

conduct their business across the world by processing payments that may be issued across borders. Modern cloud-based

gateways provide numerous types of payments, including digital wallets and cryptocurrencies, as well as other types of

payment that make it highly flexible in the globalized world economy.

 Introduction of Machine Learning and AI: The newest form of cloud-based payment gateways includes the use of ML

and AI applications and services. These enhancements have assisted fraud detection, customized customer service, and

predictive analysis of transactions. By bringing AI to the cloud for Payment gateway, one can now provide an intelligent
payment gateway that is adaptive for added security as well as user experience for smart payment processing.

 The Role of Microservices Architecture: New payment gateways in the cloud tend to incorporate a microservices

approach that enables them to build their systems in elements. These gatekeepers can help divide the big payment process

into many unconnected small and independent services that can easily handle various parts of transaction processing. This

evolution helps provide more flexibility in updates and scaling so that payment gateways can catch up with new featured

technologies and market trends.

1.2. The Role of Redis in Payment Gateway Optimization

 High-Speed Data Retrieval: By using Redis, payment gateways intensive in terms of the speeds at which data is

accessed can benefit from faster rates of data access. An important characteristic of Redis is its ability to operate as an in-

memory data store, which means that used frequently by payment systems, information such as the transaction statuses
and user sessions can be accessed with low latency. This fast accessibility is crucial in scenarios in which thousandths of a

second make a difference to the user or the primary transaction’s success rate. Due to its capability to minimize the time to

fetch data, Redis enhances more time-efficient payment processing.

 Improved Transaction Throughput: Another feature of Redis in payment gateways is positively contributing to

transaction volume. As Redis takes the role of caching critical data, the main database sees its load decrease, and,

therefore, it serves more transactions concurrently. This improvement is particularly useful for business organizations at

their peak sales season to avoid congestion and slowness with the payment gateway. Online transaction processing at low

latency requires a consistent level of performance even under increased loads; scalability is crucial.

Transition to
Cloud-Based

Solutions

Adoption of
API-Based
Gateways

Integration of
Security

Protocols and
Compliance

Shift to Real-
Time Processing

Advent of
Global Payment

Platforms

Introduction of
Machine

Learning and AI

The Role of
Microservices
Architecture

Mr. Pavan Kumar Joshi / IJETCSIT, 4(1), 28-36, 2024

30

Figure 2. The Role of Redis in Payment Gateway Optimization

 Efficient Caching Strategies: Thanks to the fact that Redis offers numerous caching approaches, you can easily adapt

them to payment gateways. For example, the Systems first consult Redis with the cache-aside pattern; the pattern

opposite, the write-through approach, guarantees the update of both the cache and the database. These strategies assist in

keeping things consistent and to avoid as much as possible constant access to the database to retrieve lost information. The

application of caching techniques can aid payment gateways in achieving a highly reliable service in completing

transactions.

 Session Management: Good session management is important to payment gateways since they require tracking of user

sessions and the state of the transactions. Here, Redis really shines by offering a very good interface for the storage and

manipulation of the session data. This capability enables the choice of payment systems to store the user’s state

information during the transaction process without interruption. Moreover, because Redis already has features for
expiration, session data can also be deleted after a certain time to make the system more secure without it being

unresponsive.

 Real-Time Analytics and Monitoring: It offers live processing and monitoring of transaction data, which is fundamental

to most payment gateway operations. Metrics and logs are the key texts that, when housed in Redis, allow payment

systems to assess transactional, user, and performance data swiftly. The complete instantaneous availability of data gives

the operators the opportunity to notice problems or fraud challenges as they occur. Real-time analytics help payment

gateways make the right decisions and improve different aspects of their functionality.

 Scalability and Load Balancing: This is why Redis offers the flexibility that payment gateways require to balance

variable traffic loads appropriately. That feature of partitioning data among several nodes makes it possible for payment

systems to handle heavier loads in specific time intervals. Also, Redis supports clustering for loading and balancing

instances to make sure they are evenly loaded. This scalability makes sure that payment gateways cater to the changing
needs of the website while offering high performance and efficiency.

 Enhanced Fault Tolerance and Data Recovery: Data integrity and availability are a big deal in payment gateways, and

Redis plays a huge role in these options in persistence. Redis offers a level of data protection with the help of RDB

snapshots as well as AOF, which can be translated as an Append-Only File. The other features allow easy backup to be

made in case of system failure thus making transactions to be resumed as soon as possible. This capability is important for

customers and companies because it preserves the integrity of processing payments as well as services.

 Integration with Modern Technologies: Popular computing paradigms such as microservices and serverless can be

easily implemented with Redis in payment gateways. This compatibility is particularly advantageous because Redis can

be integrated into the developers’ existing platforms simply and improves performance considerably, requiring minimal

overhaul. Thus, banks can adopt Redis in combination with such technologies as Docker and Kubernetes to enhance the

organization’s flexibility and responsiveness of the payment gateways. It also makes certain that payment systems
constantly remain open markets to fend for themselves in the ever-advancing digital environment and integrate other

innovations easily.

2. Literature Survey
2.1. Redis in Cloud-Based Applications

Currently, Redis has emerged as one of the widely used solutions for the optimization of cloud-based applications since it

acts as a high-speed cache that operates in memory. Found out that Redis has a remarkable feature of reducing loads of queries

from the databases, mainly in large-scale systems such as web services and financial platforms. This means that, for instance, on

Mr. Pavan Kumar Joshi / IJETCSIT, 4(1), 28-36, 2024

31

the web, one reduces the time spent searching the database since favorite contents are stored in Caches such as Redis to increase

the total throughput. [5-9] also showed that Redis could increase response times by 30-40% in applications with high TPS, such as

e-commerce. This performance enhancement is particularly important in payment gateways where a split second could make or

break a transaction, further highlighting Redi’s relevance in real-time transactions.

2.2. Use of Caching in Payment Gateways
Since payment gateways involve real-time processing most of the time, caching is applied to integrate into the

mechanism. Noted that current in-memory Caches like Redis & Memcached are essential elements of modern payment stack as

they cache the tokenized payment information, transaction status, and user sessions. They lower the frequency with which the

database is called, improving user experience as a result. I have touched specifically on the Redis use case implemented in payment

gateways, and with good reason: caching transaction histories and validation data is notable for improving database lookup by

45%. They based this on caching, which helps minimize the number of transactions and avoid timeout issues important in efficient

payment systems.

2.3. Redis Persistence and Fault Tolerance
While Redis mainly functions as a data structure stored in-memory database where data is stored in RAM for performance

benefits, there are issues of data durability and recoverability as a backup against different systems’ failures that are in place.

Payment gateways can be backed up by RDB snapshots and AOF logs, known as persistence models, used in Redis, which were

deemed adequate in many scenarios. OH mechanisms help to guarantee data backup in any failure situation with minimum impacts
on Redis’ performances. Subsequent studies called for a more distributed Redis architecture that encompasses both computing and

storage in-memory and on-disk, respectively. Thus, the focus is kept on payment data and the use of its copies in distributed cloud

environments, in which reliability and data durability are paramount.

2.4. Cloud-Native Redis Services
Due to the popularization of cloud solutions, cloud-based native Redis services like Amazon ElastiCache and Google

Memorystore became powerful tools to improve the performance of applications in the cloud environment, including payment

gateways. To compare these managed Redis services, compared the differences and concluded that it offers administrators a

considerable number of advantages in managing less data while ensuring high availability. It provides features such as failover and

backup, besides providing scaling for payment gateways, which require maximum uptime together with low latency. However, the

study also highlighted the fact that Redis configuration needs to be tuned to get the best from a Redis system, and this is

particularly the case with very active transactional systems such as payment gateways.

3. Methodology
3.1. Redis Cache Architecture of Payment Gateways

A bias towards cache design in the architecture of Redis in the cloud payment gateways is important for achieving

performance, scalability, and availability. [10-15] This architecture can be broken down into three main layers:

Figure 3. Redis Cache Architecture of Payment Gateways

 Front-End (Client Layer): This is the highest layer since the client layer directly takes input from the users and

processes their payment requests as well. This layer is used for triggering transactions, verifying the status of a payment,

or in response to any action by the user. It only connects with Redis using APIs to request payment information or initiate

validation procedures.

 Middleware (Cache Layer): In the middleware, Redis is integrated into the key-value store in-memory cache tier,

providing a fast link between the front-tier and back-tier sides. It cached current data availability of your online

application, such as payment tokens, user authentication status, and transaction history without having to call databases

frequently for queries. Storing validation steps and temporary transaction data is an important part of this layer since it

makes the real-time transactions to be processed more efficiently and with reduced response time.

 Back-End (Database Layer): The database layer includes more permanent data, for example, payment transactions,

users, or finances. Whereas Redis provides temporary data in the memory, a back-end acts as a long-term storage solution,

and its important financial records are preserved. Redis enhances association with this layer by storing and minimizing

query frequency to this layer; therefore, even during periods of high use, it will not be slowed.

Mr. Pavan Kumar Joshi / IJETCSIT, 4(1), 28-36, 2024

32

Each layer has its unique functionality in the payment gateway system; however, the Redis module offers a valuable improvement

in performance due to high-speed data access and caching.

3.2. Caching Strategies

Some of the key cashing policies decide how Redis works with the database and how data read and write operations

happen in the payment gateway design. Strategies are fine-tuned for specific cases based on the path to data and the required
immediacy of data replication.

Figure 4. Caching Strategies

 Cache-Aside Pattern: This is one of the caching techniques whereby, before accessing the application, the client looks

for the data in Redis. In case the data is found, it is returned immediately (this is a cache hit). If not, the application gets

the data from the database and copies it to the cache for subsequent access. It provides full control to the developers of

cache updates and is good for those applications where predominantly read operations are carried out; it is ideally used in

payment gateways where the validation data or payment status may be requested frequently.

 Write-Through Pattern: In this approach, the database and the cache are always in synch because every data written on

the database is mirrored on the cache. This allows there to be always a data set available in the cache that is a copy of the

data set in the database. However, it may add a small measure of write latency because the cache and database must both

be updated at the same time. This pattern is especially beneficial to a system that would like to have automatic close

coupling between the cache and the backing store in real-time; in instances like payment gateways where finances are

involved, the consistency has to be tight.

 Read-Through Pattern: In this strategy, there is no need to pre-populate Redis; it does that by loading the data from the

database in case of a cache miss. This simplifies the application design as cache invalidation is handled automatically

apart from on rare occasions. Perhaps the read-through pattern is especially useful in payment gateways when, for

example, the temporary state of a transaction can be stored, accessed and changed quickly.

As it will be seen each caching strategy has its strengths and weaknesses. The decision on which deployment strategy

works better depends on a set of parameters provided by the payment gateway, which includes the ratio of read and write access,

consistency, and latency.

3.3. Partitioning and Sharding

To achieve scalability as well as high availability Redis clusters use forms of partitioning to spread data across these
nodes. This is especially important in payment gateways, as the pressure on the infrastructure may grow significantly in the period

traditionally characterized by very high traffic. Partitioning provides horizontal scalability and allows accommodating more

transactions than the load that might overload the separate nodes.

 Hash-based Partitioning: This approach assigns key blocks in Redis nodes according to the consistent hashing

technique. When the key is hashed, Redis can ensure that the data is sensed evenly across all possible nodes in a cluster.

This eliminates congestion at some nodes and makes the distributing load equal across the system. Moreover, in payment

gateways, this kind of approach proves to be effective for payment tokens or transaction IDs because none of the nodes

becomes overloaded.

 Keyspace Partitioning: In this technique, data is divided into given keyspace ranges, which are taken care of by certain

nodes in the cluster. This gives the assured data positioning and proves valuable for cheap payment gateways managing

expansive extents of ordered data with certain intervals, like transaction ID correlated with time or client’s payment

records. It keeps data close together, meaning that the queries that may be complicated in nature could run effectively or
efficiently when the data is near or with other related data.

Sharding and partitioning are among the most effective techniques because they enable payment gateways to support

thousands, or even millions, of concurrent transactions at a minimal time cost.

3.4. Eviction Policies

Data stored in Redis is in memory, so it is imperative to properly manage and organize the data to keep it in memory to

guarantee that only important data is kept. At the same time, the rest is expelled when the memory size has been exhausted. The

eviction policy and frequency are the options that must be configured since they control the Redis server’s ability to remove data

from memory during heavy transactions.

Mr. Pavan Kumar Joshi / IJETCSIT, 4(1), 28-36, 2024

33

 Least Recently Used (LRU): In this policy, Redis gets rid of the data that has never been used for the longest time once

the memory is full. LRU is efficient in cases when frequently used information, such as active transaction states or

recently checked payment validation, must be obtained. Within a payment gateway, LRU guarantees that there is removal

of outdated data with important data kept in the active memory and thus enhances the rates of cache hits [16].

 Least Frequently Used (LFU): Database implementation: Redis evicts the data that are the least active or less accessed

by the system. This policy is perfect for use in cases where periodic access of some pieces of data is anticipated such as
payment tokens associated with various users that are accessed many times within a given period or regularly validated

merchant identity credentials. Because updated material and information are not necessary for some or in certain payment

networks, while other information may require renewal then, LFU is effective in payment gateways [16].

Selecting the right eviction policy remains paramount in ensuring the realization of high cache hit rates and the reduced

dependence on the frequent accessing of the database which assumes significant importance for payment gateways processing

numerous transaction volumes.

4. Results and Discussion
4.1. Performance Metrics

To evaluate the impact of Redis cache optimization on a cloud-based payment gateway, three primary performance metrics were

considered:

 Response Time: This refers to the average period that it takes to settle a payment transaction from the time the user

initiates the payment request till the time the transaction is final. Reducing the cycle time to process payment is paramount

in payment gateways to avoid timeout issues during the peak season.

 Cache Hit Rate: This metric calculates the percentage of data requests met through cache (Redis) instead of having to

query the database. A higher cache hit rate means that most of Redis’ data is frequently accessed, thereby lightening the

backend database’s load.

 Throughput: This is the business volume measured as the number of transactions per second. Throughput is very

important for payment gateways because there are time events such as Black Friday sales or flash sales where many users

are transacting at the same time. Regarding Redis, throughput should increase with time since less time is required to be

spent on the database query [17-19].

Table 1. Performance Metrics

Performance Metric Without Redis With Redis Improvement (%)

Response Time (ms) 120 78 35%

Cache Hit Rate (%) - 85 N/A

Throughput (transactions/sec) 1500 2100 40%

Figure 5. Graph representing Performance Metrics

4.2. Results

 Response Time Improvement: From the experiments performed and studied, it was noted that incorporating Redis into

the payment gateway architecture drastically decreased response time for the payment gateway under test. Figure 1 overall

demonstrates an improvement in the average response time from 120 milliseconds to 78 milliseconds; that is, a 35%
improvement. This is due to Redi’s capability to deliver data from a memory spare base, hence minimizing repeated

queries to the databases. Important data such as user session information, transaction status, and payment validation,

120
0

1500

78 85

2100

Response Time (ms) Cache Hit Rate (%) Throughput
(transactions/sec)

Without Redis With Redis

Mr. Pavan Kumar Joshi / IJETCSIT, 4(1), 28-36, 2024

34

among others, is easily cached and hence easily retrieved from memory with Redis caching. Redis breaks the need for the

database query on every transaction which causes the overall response time reduction and thus leads to faster completion

of the transaction and hence higher users’ satisfaction.

 Cache Hit Rate: The cache hit ratio is one of the essential measures that are most relevant to Redi’s performance in data

storage and retrieval. In our tests, the overall cache hit rate, which means how many times the application needed data and

was able to get it out of Redis rather than having to hit the database, is 85%. This clearly shows that Redis is caching the
correct data, especially when it comes to transaction validation and other user-related data that is likely to be queried a

number of times during the payment process. Redis configuration controls which data is easily accessible enabling a

proper Redis instance always to prioritize important data.

 Throughput Enhancement: Real throughput concerning the number of transactions per second also rose by 40%, as seen

in Redis performance improvement. This improvement is crucial for payment gateways that have to process thousands of

concurrent transactions, especially during periods of high traffic load. We noticed on going through the logs that the

amount of data being retrieved from Redis in a second has grown, and thus, less database access time is required, which

has enhanced the throughput. This merely served cached information, and therefore, they were able to handle more

transactions in a short span, hence increasing the capacity by a great deal.

Table 2. Cache Hit Rate across Multiple Scenarios

Scenario Cache Hit Rate (%)

Transaction Validation Data 90

User Session Data 80

Payment Status Queries 85

Fraud Detection Flags 75

Figure 6. Graph representing Cache Hit Rate across Multiple Scenarios

4.3. Discussion

The response time of the payment gateway significantly reduces, and the cache hit rates and throughput are well

enhanced, as shown below: The following section provides a detailed analysis of the correlation of these results with actual

payment systems coupled with an investigation of the effects of various Redis settings on these parameters.

 Response Time and User Experience: In today’s payment gateways, response time matters a lot because if the

application takes too long, it either times out or the cart is abandoned. As already evidenced by a 35% reduction in

response time, the availability of Redis boosts system responsiveness to user requests. As for payment systems, any slight
delay can lead to failed transactions and, thus, a bad experience. A faster response time helps users finalize transactions

quickly without a lot of distortion, making the conversion rates better and customers happier.

 Cache Hit Rate and System Efficiency: Redis has an excellent cache hit rate at 85%, a fact that suggests that Redis is

well suited for handling frequently requested data. However, I was able to get such a high hit rate by adhering to the Redis

configuration and choosing an appropriate eviction policy, as explained in the methodology here. In the context of

payment structures, being able to draw frequently accessed information or data such as payment validation and transaction

status directly off in-memory helps to reduce latency and push backend database work away. In REAL LIFE, improving

the cache hit rate even more by concerning data access patterns yields even better improvements. For instance, there is the

fine-tuning of Redis to store generally accessed data or employing intelligent preloading methods for the prevalent

payment statuses to improve the hit ratios.

 Throughput and Scalability: The 40% improvement in throughput proves that Redis enables payment gateways to

achieve suitable scalability during high traffic. Periods of high velocity usually occur during specific global events, such

90

80
85

75

Transaction
Validation

Data

User Session
Data

Payment
Status Queries

Fraud
Detection

Flags

Cache Hit Rate (%)

Cache Hit Rate (%)

Mr. Pavan Kumar Joshi / IJETCSIT, 4(1), 28-36, 2024

35

as Black Friday or whenever a company has a sale. Payment gateways must answer an exorbitantly larger number of

requests without degradation of service. Redis guarantees the system will be capable of handling this type of demand

without affecting the database availability and slowing down transactions during certain hours. From experience, it is

disadvantageous to wait for the number of transactions per second to increase alongside the quality because this places a

lot of pressure on a database, which can lead to reduced uptime.

 Redis Configuration and Optimization: The studies reveal significant performance enhancements from its use.
However, the utility of Redis is relative to the proper setting of the software. Others include memory allocation and

eviction, as well as partitioning and sharding that have to be properly deployed for the best outcome. For instance,

selecting the proper eviction policy (that is, LRU or LFU) makes sure that critical data is stored within the memory. In

contrast, other data is removed, thus maximizing the number of cache hits. Splitting data to the Redis node is another

significant factor that determines the ability of the system to handle transactions, especially in complex layer domains. In

our work, we chose to have a hash-based partitioning strategy, which means that the data was distributed evenly among

nodes so that some nodes would not become overloaded.

5. Conclusion
Backends that deploy applications in the cloud require higher availability and transactions per second, which makes them

rely on Redis caching. Secondly, Redis offloads much of the load traffic to the primary database when used as an in-memory data

caching platform, which makes it easier to input data often searched for by the application, like the validity of the transaction, the

state of a user session, or the status of the payment. These reduced DB queries foster quick response time and guarantee users a

slight delay in the entire payment process. As payment gateways bear the responsibility of e-commerce and financial business, it is

always desirable to have high availability and performance, especially on special occasions such as Black Friday and Cyber

Monday.

Another advantage of Redis is the efficiency in high throughput demands associated with it. Payment gateways have to
handle thousands of transactions per second. Redis helps by enabling data to be stored in cache memory and accessed quickly

instead of each request having to hit the database. This directly leads to an instructional system that has a higher throughput,

translating into its ability to handle more transactions at a go. Lowering response time and increasing throughputs can be achieved

when using Redis for payment gateways, thereby enabling real-time payment processing as required by users, besides meeting

SLAs agreed with merchants.

Nevertheless, the effectiveness of data caching by Redis highly depends on its configuration. Proper configuration means

choosing an optimal caching approach to be applied to a specific read/write model of the system. Techniques such as cache-aside,

write-through, and read-through have to be well-selected based on how the payment gateway works with the cache and the

database. Further, partitioning and sharding methods make it possible for Redis to be scaled horizontally so that with an increased

overload of transactions, the entire system will not overload a single node.

Memory management also has an important role in the Redis performance management as well. Standard eviction

patterns, like LRU or LFU, provide Redis with the means to ensure it keeps the most frequently used data in memory and will

remove data that is not likely to be used again if the allocated memory runs out. Such policies enable the cache to remain efficient

as it fulfills these optimistic goals under high-loading conditions. Therefore, Redis, when systematically deployed, bearing in mind

effective strategies, becomes an effective tool in enhancing payment gateways for cloud-based systems, which enhances

scalability, reduces latency, and can address some of the modern financial transaction technology solutions.

References
[1] Gulati, V. P., & Srivastava, S. (2007). The empowered internet payment gateway. In International Conference on E-

Governance (pp. 98-107).

[2] Nelson, J. (2016). Mastering redis. Packt Publishing Ltd.

[3] Ji, Z., Ganchev, I., O’Droma, M., & Ding, T. (2014, October). A distributed Redis framework for use in the UCWW. In 2014

International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (pp. 241-244). IEEE.

[4] Qiu, H. J., Liu, S., Song, X., Khan, S., & Pekhimenko, G. (2022, October). Pavise: Integrating Fault Tolerance Support for

Persistent Memory Applications. In Proceedings of the International Conference on Parallel Architectures and Compilation

Techniques (pp. 109-123).

[5] Lee, T., Kim, Y., & Hwang, E. (2018, January). Abnormal payment transaction detection scheme based on scalable

architecture and redis cluster. In 2018 International Conference on Platform Technology and Service (PlatCon) (pp. 1-6).
IEEE.

[6] Tewari, H., & O’Mahony, D. (2003). Real-time payments for mobile IP. IEEE Communications Magazine, 41(2), 126-136.

[7] Kumar, A. (2022). Using Redis for persistent storage in serverless architecture to maintain state management (Doctoral

dissertation, Dublin, National College of Ireland).

Mr. Pavan Kumar Joshi / IJETCSIT, 4(1), 28-36, 2024

36

[8] Ganesan, A., Alagappan, R., Arpaci-Dusseau, A. C., & Arpaci-Dusseau, R. H. (2017). Redundancy does not imply fault

tolerance: Analysis of distributed storage reactions to file-system faults. ACM Transactions on Storage (TOS), 13(3), 1-33.

[9] Costa, C. H., Maia, P. H. M., & Carlos, F. (2015, April). Sharding by hash partitioning. In Proceedings of the 17th

International Conference on Enterprise Information Systems (Vol. 1, pp. 313-320).

[10] Venkateswaran, N., & Changder, S. (2017, November). Simplified data partitioning in a consistent hashing based sharding

implementation. In TENCON 2017-2017 IEEE Region 10 Conference (pp. 895-900). IEEE.
[11] Bhatia, S., Varki, E., & Merchant, A. (2010, August). Sequential prefetch cache sizing for maximal hit rate. In 2010 IEEE

International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (pp. 89-98).

IEEE.

[12] Dan, A., & Sitaram, D. (1997). Multimedia caching strategies for heterogeneous application and server environments.

Multimedia Tools and Applications, 4, 279-312.

[13] Ding, W., Kandemir, M., Guttman, D., Jog, A., Das, C. R., & Yedlapalli, P. (2014, August). Trading cache hit rate for memory

performance. In Proceedings of the 23rd International Conference on Parallel Architectures and Compilation (pp. 357-368).

[14] GHOFAR, A. L., PUTRA, R. N. P., & HAMIDAH, S. N. (2022). Implementation Of Gateway Technology (Go-Pay) In

Increasing Transaction Efficiency In MSMEs Dapur Restu. Journal of Information Systems, Digitization and Business, 1(1),

08-14.

[15] Milkau, U. (2019). International payments: Current alternatives and their drivers. Journal of Payments Strategy & Systems,
13(3), 201-216.

[16] Lee, D., Choi, J., Kim, J. H., Noh, S. H., Min, S. L., Cho, Y., & Kim, C. S. (1999, May). On the existence of a spectrum of

policies that subsumes the least recently used (LRU) and least frequently used (LFU) policies. In Proceedings of the 1999

ACM SIGMETRICS international conference on Measurement and modeling of Computer Systems (pp. 134-143).

[17] Yang, J. H., & Lin, P. Y. (2016). A mobile payment mechanism with anonymity for cloud computing. Journal of Systems and

Software, 116, 69-74.

[18] Daruvuri, R., Patibandla, K.(2023). Enhancing Data Security and Privacy in Edge Computing: A Comprehensive Review of

Key Technologies and Future Directions. International Journal of Research In Electronics And Computer Engineering, 11(1),

pp. 77-88.

[19] Seifelnasr, M., Nakkar, M., Youssef, A., & AlTawy, R. (2020, November). A lightweight authentication and inter-cloud

payment protocol for edge computing. In 2020 IEEE 9th International Conference on Cloud Networking (CloudNet) (pp. 1-4).

IEEE.
[20] Ayyoub, B., Zahran, B., Nisirat, M. A., Al-Taweel, F. M., & Al Khawaldah, M. (2021). A proposed cloud-based billers hub

using secured e-payments system. TELKOMNIKA (Telecommunication Computing Electronics and Control), 19(1), 339-348.

	Original Article
	Redis Cache Optimization for Payment Gateways in the Cloud
	Keywords - Redis Cache Optimization, Payment Gateways, Cloud Computing, Transaction Processing, Fault Tolerance, High Availability.
	 Transition to Cloud-Based Solutions: The use of cloud computing that began in the early 2000s brought about a reform in Payment gateways, resulting in solutions that are scalable, less expensive than burgeoning, and more reliable. Due to technologic...
	 Adoption of API-Based Gateways: With the API economy getting on track, more and more payment gateways introduced API-oriented solutions so developers could integrate the payment services into various applications. This model was made famous by compa...
	 Integration of Security Protocols and Compliance: When payment gateways shifted to the cloud, security and compliance issues came into discussion. Other techniques for securing payment data included the incorporation of SSL/TLS encryption, tokenizat...
	 The Role of Microservices Architecture: New payment gateways in the cloud tend to incorporate a microservices approach that enables them to build their systems in elements. These gatekeepers can help divide the big payment process into many unconnec...
	2.2. Use of Caching in Payment Gateways
	2.3. Redis Persistence and Fault Tolerance
	2.4. Cloud-Native Redis Services
	 Cache Hit Rate and System Efficiency: Redis has an excellent cache hit rate at 85%, a fact that suggests that Redis is well suited for handling frequently requested data. However, I was able to get such a high hit rate by adhering to the Redis confi...
	 Throughput and Scalability: The 40% improvement in throughput proves that Redis enables payment gateways to achieve suitable scalability during high traffic. Periods of high velocity usually occur during specific global events, such as Black Friday ...
	 Redis Configuration and Optimization: The studies reveal significant performance enhancements from its use. However, the utility of Redis is relative to the proper setting of the software. Others include memory allocation and eviction, as well as p...

	References

