Quantum Hardware Design: Challenges and Developments

Authors

  • Leo James Independent Researcher, India. Author

DOI:

https://doi.org/10.56472/ICCSAIML25-168

Keywords:

Quantum Computing, Quantum Hardware, Materials Science, Qubits, Scalability, Decoherence, Integration Challenges

Abstract

Quantum computing promises to revolutionize information processing by leveraging principles such as superposition and entanglement. However, the realization of scalable and reliable quantum hardware faces significant challenges. This paper explores the current state of quantum hardware design, identifying key obstacles and recent advancements. We discuss materials challenges, integration complexities, and the need for interdisciplinary approaches to overcome these barriers. Addressing these issues is crucial for the development of practical quantum computing systems

Downloads

Download data is not yet available.

References

[1] Cai, Z., Babbush, R., Benjamin, S. C., Endo, S., Huggins, W. J., Li, Y., McClean, J. R., O'Brien, T. E. (2022). Quantum Error Mitigation. arXiv preprint arXiv:2210.00921.

[2] Kjaergaard, M., Schwartz, M. E., Braumüller, J., Krantz, P., Wang, J. I.-J., Gustavsson, S., Oliver, W. D. (2019). Superconducting Qubits: Current State of Play. arXiv preprint arXiv:1905.13641.

[3] Bravyi, S., Dial, O., Gambetta, J. M., Gil, D., Nazario, Z. (2022). The Future of Quantum Computing with Superconducting Qubits. arXiv preprint arXiv:2209.06841.

[4] Gonzalez-Zalba, M. F., de Franceschi, S., Charbon, E., Meunier, T., Vinet, M., Dzurak, A. S. (2020). Scaling silicon-based quantum computing using CMOS technology: State-of-the-art, Challenges and Perspectives. arXiv preprint arXiv:2011.11753.

[5] de Leon, N. P., Itoh, K. M., Kim, D., Mehta, K. K., Northup, T. E., Paik, H., Palmer, B. S., Samarth, N., Sangtawesin, S., Steuerman, D. W. (2021). Materials challenges and opportunities for quantum computing hardware. Science, 372(6542), 1162-1166.

[6] Thirunagalingam, A. (2024). Transforming real-time data processing: the impact of AutoML on dynamic data pipelines. Available at SSRN 5047601.

[7] Google Quantum AI. (2024). Willow processor. Wikipedia.

[8] IBM Research. (2023). IBM Q System Two. Wikipedia.

[9] D-Wave Systems. (2025). D-Wave Claims 'Quantum Supremacy,' Beating Traditional Computers. The Wall Street Journal.

[10] Nayak, C. (2025). Drama over quantum computing's future heats up. The Verge.

[11] Wall Street Journal. (2024). Quantum Computing Gets Real: It Could Even Shorten Your Airport Connection. The Wall Street Journal.

[12] The Guardian. (2024). Google unveils 'mindboggling' quantum computing chip. The Guardian.

[13] Business Insider. (2025). Big Tech is starry-eyed over quantum computers, but scientists say major breakthroughs are years away. Business Insider.

[14] L. N. Raju Mudunuri, “Maximizing Every Square Foot: AI Creates the Perfect Warehouse Flow,” FMDB Transactions on Sustainable Computing Systems., vol. 2, no. 2, pp. 64–73, 2024.

[15] Wikipedia. (2025). Quantum decoherence.

[16] Wikipedia. (2025). Quantum error correction.

[17] Wikipedia. (2025). Superconducting Qubits: Current State of Play.

[18] Mohanarajesh Kommineni. Revanth Parvathi. (2013) Risk Analysis for Exploring the Opportunities in Cloud Outsourcing.

[19] Bhagath Chandra Chowdari Marella, “Driving Business Success: Harnessing Data Normalization and Aggregation for Strategic Decision-Making”, International Journal of INTELLIGENT SYSTEMS AND APPLICATIONS IN ENGINEERING, vol. 10, no.2, pp. 308 – 317, 2022. https://ijisae.org/index.php/IJISAE/issue/view/87

[20] Sehrawat, S. K. (2023). Transforming Clinical Trials: Harnessing the Power of Generative AI for Innovation and Efficiency. Transactions on Recent Developments in Health Sectors, 6(6), 1-20.

[21] Hullurappa, M. (2023). Anomaly Detection in Real-Time Data Streams: A Comparative Study of Machine Learning Techniques for Ensuring Data Quality in Cloud ETL. Int. J. Innov. Sci. Eng, 17(1), 9.

[22] Sudheer Panyaram, (2023), AI-Powered Framework for Operational Risk Management in the Digital Transformation of Smart Enterprises.

[23] Priscila, S. S., Celin Pappa, D., Banu, M. S., Soji, E. S., Christus, A. T., & Kumar, V. S. (2024). Technological Frontier on Hybrid Deep Learning Paradigm for Global Air Quality Intelligence. In P. Paramasivan, S. Rajest, K. Chinnusamy, R. Regin, & F. John Joseph (Eds.), Cross-Industry AI Applications (pp. 144-162). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-5951-8.ch010

[24] P. K. Maroju, "Conversational AI for Personalized Financial Advice in the BFSI Sector," International Journal of Innovations in Applied Sciences and Engineering, vol. 8, no.2, pp. 156–177, Nov. 2022.

[25] MRM Reethu, LNR Mudunuri, S Banala,(2024) "Exploring the Big Five Personality Traits of Employees in Corporates," in FMDB Transactions on Sustainable Management Letters 2 (1), 1-13

[26] Thirunagalingam, A. (2024). Combining AI Paradigms for Effective Data Imputation: A Hybrid Approach. International Journal of Transformations in Business Management, 14(1), 10-37648.

Published

2025-05-18

How to Cite

1.
James L. Quantum Hardware Design: Challenges and Developments. IJETCSIT [Internet]. 2025 May 18 [cited 2025 Oct. 12];:621-4. Available from: https://www.ijetcsit.org/index.php/ijetcsit/article/view/397

Similar Articles

1-10 of 242

You may also start an advanced similarity search for this article.